International Journal of Earth Sciences

, Volume 107, Issue 5, pp 1579–1601 | Cite as

Cadomian volcanosedimentary complexes across the Ediacaran–Cambrian transition of the Eastern Pyrenees, southwestern Europe

  • Maxime Padel
  • J. Javier ÁlvaroEmail author
  • Josep Maria Casas
  • Sébastien Clausen
  • Marc Poujol
  • Teresa Sánchez-García
Original Paper


The volcanism hosted by the Ediacaran–Terreneuvian Canaveilles Group of the Eastern Pyrenees displays two distinct geochemical affinities: (1) metabasites of the Nyer and Olette formations reflect the emplacement of a tholeiitic magmatism linked to extensional conditions, whereas (2) subsequent felsic and calc-alkaline magmatic rocks marking the top of the Olette Formation and forming the overlying Fabert and Finestrelles members represent Cadomian magmatic events. Based on U–Pb zircon dating constraints, palaeotopographic relationships linked to onlap geometries and distance from vent sources, three volcanosedimentary edifices can be distinguished, the so-called Tregurà (ca. 565–552 Ma), Cap de Creus (ca. 558 Ma) and Coll d’Ares (ca. 542–532 Ma) edifices. The top of their palaeoreliefs recorded locally the nucleation of centres of microbial carbonate productivity (Puig Sec Member) linked to synsedimentary tilting and karstification. Throughout West Gondwana, the presence of carbonate production across the Ediacaran–Cambrian transition is exclusively located in back-arc settings (Central-Iberian Zone) and areas far from the Cadomian subduction trench and devoid of significant terrigenous input, such as those reported in the Eastern Pyrenees and the neighbouring Montagne Noire.


Stratigraphy Carbonate production Volcanism Geochemistry LA-ICP-MS U–Pb dating West Gondwana 



The authors are indebted to Bernard Laumonier by his invaluable discussions in the field, and to Profs. Jürgen von Raumer and Holger Paulick by their useful and constructive revisions. Funding for this research was yielded by RGF program of the French Geological Survey (BRGM) and projects CGL2013-48877-P and CGL2015-66335-C2-1-R from Spanish MINECO.

Supplementary material

531_2017_1559_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 21 KB)
531_2017_1559_MOESM2_ESM.xls (220 kb)
Supplementary material 2 (XLS 220 KB)


  1. Álvaro JJ, Benziane F, Thomas R, Walsh GJ, Yazidi A (2014a) Neoproterozoic–Cambrian stratigraphic framework of the Anti-Atlas and Ouzellagh promontory (High Atlas), Morocco. J Afr Earth Sci 98:1–15CrossRefGoogle Scholar
  2. Álvaro JJ, Bauluz B, Clausen S, Devaere L, Gil Imaz A, Monceret E, Vizcaïno D (2014b) Stratigraphic review of the Cambrian–Lower Ordovician volcanosedimentary complexes from the northern Montagne Noire, France. Stratigraphy 11:83–96Google Scholar
  3. Álvaro JJ, Casas JM, Clausen S, Padel M, Sánchez-García T (in press) Cadomian cycle in the Pyrenees. In: Quesada C, Oliveira JT (eds) The geology of Iberia: a geodynamic approach. Regional Geology Reviews series. Springer, HeidelbergGoogle Scholar
  4. Arndt NT, Goldstein SL (1987) Use and abuse of crust formation ages. Geology 15:893–895CrossRefGoogle Scholar
  5. Ayora C, Casas JM (1986) Stratabound As-Au mineralization in pre-Caradocian rocks from the Vall de Ribes, Eastern Pyrenees, Spain. Mineralium Deposita 21:278–287CrossRefGoogle Scholar
  6. Ballèvre M, Le Goff E, Hébert R (2001) The tectonothermal evolution of the Cadomian belt of northern Brittany, France: a Neoproterozoic volcanic arc. Tectonophysics 331:19–43CrossRefGoogle Scholar
  7. Bandrés A, Eguíluz L, Gil Ibarguchi JI, Palacios T (2002) Geodynamic evolution of a Cadomian arc region: the northern Ossa-Morena Zone, Iberian massif. Tectonophysics 352:105–120CrossRefGoogle Scholar
  8. Baudin T, Autran A, Guitard G, Laumonier B (2008) Carte géologique de France (1/50 000). Feuille Arles-Sur-Tech (1100). BRGM, OrléansGoogle Scholar
  9. Bowring SA, Schoene B, Crowley JL, Ramezani J, Condon DJ (2006) High-precision U–Pb zircon geochronology and the stratigraphic record: progress and promise. Geochronology: emerging opportunities, paleontological society short course. Paleontol Soc Pap 11:23–43Google Scholar
  10. Bull KF, McPhie J (2007) Fiamme textures in volcanic successions: flaming issues of deformation and interpretation. J Volcanol Geotherm Res 164:205–216CrossRefGoogle Scholar
  11. Casas JM, Martí J, Ayora C (1986) Importance du volcanisme dans la composition lithostratigraphique du Paléozoïque inférieur des Pyrénées Catalanes. C R Acad Sci, Paris (sér 2) 302(19):1193–1198Google Scholar
  12. Casas JM, Castiñeiras P, Navidad M, Liesa M, Carreras J (2010) New insights into the Late Ordovician magmatism in the Eastern Pyrenees: U–Pb SHRIMP zircon data from the Canigó massif. Gondwana Res 17:317–324CrossRefGoogle Scholar
  13. Casas JM, Navidad M, Castiñeiras P, Liesa M, Aguilar C, Carreras J, Hofmann M, Gärtner A, Linnemann U (2015) The Late Neoproterozoic magmatism in the Ediacaran series of the Eastern Pyrenees: new ages and isotope geochemistry. Int J Earth Sci 104:909–925CrossRefGoogle Scholar
  14. Castiñeiras P, Navidad M, Liesa M, Carreras J, Casas JM (2008) U–Pb zircon ages (SHRIMP) for Cadomian and Lower Ordovician magmatism in the Eastern Pyrenees: new insights in the pre-Variscan evolution of the northern Gondwana margin. Tectonophysics 461:228–239CrossRefGoogle Scholar
  15. Cavet P (1957) Le Paléozoïque de la zone axiale des Pyrénées orientales françaises entre le Roussillon et l’Andorre. Bull Sér Carte géol Fr 55:303–518Google Scholar
  16. Cirés J, Casas JM, Muñoz JA, Fleta J, Barbera M (1995) Memoria explicativa del mapa geológico de España a escala 1:50.000. Hoja de Molló (n°218). ITGE, MadridGoogle Scholar
  17. Cocherie A, Baudin T, Autran A, Guerrot C, Fanning M, Laumonier B (2005) U–Pb zircon (ID-TIMS and SHRIMP) evidence for the early Ordovician intrusion of metagranites in the late Proterozoic Canaveilles Group of the Pyrenees and the Montagne Noire (France). Bull Soc géol Fr 176:269–282CrossRefGoogle Scholar
  18. Cortijo I, Martí Mus M, Jensen S, Palacios T (2010) A new species of Cloudina from the terminal Ediacaran of Spain. Precambr Res 176:1–10CrossRefGoogle Scholar
  19. Deloule E, Alexandrov P, Cheilletz A, Laumonier B, Barbey P (2002) In situ U–Pb zircon ages for Early Ordovician magmatism in the eastern Pyrenees, France: the Canigou orthogneisses. Int J Earth Sci 91:398–405CrossRefGoogle Scholar
  20. Denele Y, Barbey P, Deloule E, Pelleter E, Olivier P, Gleizes G (2009) Middle Ordovician U–Pb age of the Aston and Hospitalet orthogneissic laccoliths: their role in the Variscan evolution of the Pyrenees. Bull Soc géol Fr 180:209–221CrossRefGoogle Scholar
  21. DePaolo DJ (1981) Neodymiun isotopes in the Colorado Front range and crust-mantle evolution in the Proterozoic. Nature 291:193–196CrossRefGoogle Scholar
  22. DePaolo DJ, Wasserburg GJ (1976) Nd isotopic variations and petrogenetic models. Geophys Res Lett 3(5):249–252CrossRefGoogle Scholar
  23. Devaere L, Clausen S, Steiner M, Álvaro JJ, Vachard D (2013) Chronostratigraphic and palaeogeographic significance of an early Cambrian microfauna from the Heraultia Limestone, northern Montagne Noire, France. Palaeont Electr 16.2 17A:755–768Google Scholar
  24. Dickinson WR, Gehrels GE (2009) Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth Planet Sci Lett 288:115–125CrossRefGoogle Scholar
  25. Donzeau M, Laumonier B, Guitard G, Autran A, Llac F, Baudin T, Calvet M (2010) Carte géologique de France (1/50 000). Feuille Céret (1096). BRGM, OrléansGoogle Scholar
  26. Gasquet D, Levresse G, Cheilletz A, Azizi-Samir MR, Mouttaqi A (2005) Contribution to a geodynamic reconstruction of the Anti-Atlas (Morocco) during Pan-African times with the emphasis on inversion tectonics and metallogenic activity in the Precambrian–Cambrian transition. Precambr Res 140:157–182CrossRefGoogle Scholar
  27. Guitard G (1970) Le métamorphisme hercynien mésozonal et les gneiss œillés du massif du Canigou (Pyrénées orientales). Mém BRGM 63:1–353Google Scholar
  28. Guitard G, Laffite P (1956) Sur l’importance et la nature des manifestations volcaniques dans le Paléozoïque inférieur des Pyrénées orientales. C R Acad Sci Paris 242:2749–2752Google Scholar
  29. Guitard G, Laumonier B, Autran A, Bandet Y, Berger GM (1998) Notice explicative, Carte géologique de la France (1/50 000), feuille Prades (1095). BRGM, Orléans, p 198Google Scholar
  30. Irvine I, Baragar WR (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548CrossRefGoogle Scholar
  31. Keppie JD, Nance RD, Murphy JB, Dostal J (2003) Tethyan, Mediterranean, and Pacific analogues for the Neoproterozoic–Paleozoic birth and development of peri-Gondwanan terranes and their transfer to Laurentia and Laurussia. Tectonophysics 365:195–219CrossRefGoogle Scholar
  32. Kroner A, Stern RJ (2004) Pan-African orogeny. Encycl Geol 1:1–12Google Scholar
  33. Laumonier B, Abad A, Alonso JL, Baudelot S, Bessière G, Besson M, Bouquet C, Bourrouilh R, Brula P, Carreras J, Centène A, Courjault-Radé R, Courtessole R, Fauconnier D, García-Sansegundo J, Guitard G, Moreno-Eiris E, Perejón A, Vizcaïno D (1996) Cambro–Ordovicien. In: Barnolas A, Chiron JC (eds) Synthèse géologique et géophysique des Pyrénées. Tome 1: Cycle Hercynien. BRGM-ITGE, Orléans-Madrid, p 729Google Scholar
  34. Laumonier B, Autran A, Barbey P, Cheilletz A, Baudin T, Cocherie A, Guerrot C (2004) Conséquences de l’absence de socle cadomien sur l’âge et la signification des séries pré-varisques (anté-Ordovicien supérieur) du sud de la France (Pyrénées, Montagne Noire). Bull Soc géol Fr 175:105–117Google Scholar
  35. Laumonier B, Calvet M, Wiazemsky M, Barbey P, Marignac C, Lambert J, Lenoble JL (2015a) Notice explicative de la Carte géologique de la France (1/50 000). Feuille Céret (1096). BRGM, OrléansGoogle Scholar
  36. Laumonier B, Le Bayon B, Calvet M (2015b) Notice explicative de la Carte géologique de France (1/50 000). Feuille Prats-de-Mollo (1099). BRGM, OrléansGoogle Scholar
  37. Laumonier B, Calvet M, Barbey P, Guennoc P, Lambert J, Lenoble JL, Wiazemsky M (2015c) Notice explicative la Carte géologique de la France (1/50 000). Feuille Argelès-sur-Mer-Cerbère (1097). BRGM, OrléansGoogle Scholar
  38. Lescuyer JL, Cocherie A (1992) Datation sur monozircons des métadacites de Sériès. Arguments pour un âge protérozoïque terminal des “schistes X” de la Montagne Noire (Massif central français). C R Acad Sci, Paris (sér 2) 314:1071–1077Google Scholar
  39. Liesa M, Carreras J, Castiñeiras P, Casas JM, Navidad M, Vila M (2011) U–Pb zircon of Ordovician magmatism in the Albera Massif (Eastern Pyrenees). Geol Acta 9:93–101Google Scholar
  40. Linnemann U, Romer RL (2002) The Cadomian Orogeny in Saxo-Thuringia, Germany: geochemical and Nd-Sr-Pb isotopic characterization of marginal basins with constraints to geotectonic setting and provenance. Tectonophysics 352:33–64CrossRefGoogle Scholar
  41. Linnemann U, Gerdes A, Drost K, Buschmann B (2007) The continuum between Cadomian Orogenesis and opening of the Rheic Ocean: constraints from LA-ICP-MS U–Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian Zone, NE Bohemian massif, Germany). In: Linnemann U, Nance D, Kraft P, Zulauf G (eds), The Evolution of the Rheic Ocean: from Avalonian–Cadomian active margin to Alleghenian–Variscan collision. Geol Soc Am Bull 423:61–96Google Scholar
  42. Linnemann U, Pereira F, Jeffries TE, Drost K, Gerdes A (2008) The Cadomian Orogeny and the opening of the Rheic Ocean: the diacrony of geotectonic processes constrained by LA-ICP-MS U–Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461:21–43CrossRefGoogle Scholar
  43. Linnemann U, Gerdes A, Hofmann M, Marko L (2014) The Cadomian Orogen: Neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton–Constraints from U–Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambr Res 244:236–278CrossRefGoogle Scholar
  44. Ludwig KR (2012) Users Manual for Isoplot/Ex rev. 3.75. Berkeley Geochronology Center. Spec Publ 5:1–75Google Scholar
  45. Ludwig KR, Mundil R (2002) Extracting reliable U–Pb ages and errors from complex populations of zircons from Phanerozoic tuffs. Geochim Cosmochim Acta 66:A463CrossRefGoogle Scholar
  46. Manzotti P, Poujol M, Ballèvre M (2015) Detrital zircon in blueschist-facies meta-conglomerates: implications for the Early Permian palaeo-topography of the Western Alps. Int J Earth Sci 104:703–731CrossRefGoogle Scholar
  47. Martínez FJ, Iriondo A, Dietsch C, Aleinikoff JN, Peucat JJ, Cirès J, Reche J, Capdevila R (2011) U–Pb SHRIMP-RG zircon ages and Nd signature of Lower Paleozoic rifting-related magmatism in the Variscan basement of the Eastern Pyrenees. Lithos 127:10–23CrossRefGoogle Scholar
  48. McCulloch MT, Wasserburg GJ (1978) Sm–Nd and Rb–Sr chronology of continental crust formation. Science 200:1003–1011CrossRefGoogle Scholar
  49. Meloni M (2016) Tectonic Units of Central Sardinia: structural Evolution and Related Ores. PhD, Sassari University, ItalyGoogle Scholar
  50. Mezger J, Gerdes A (2016) Early Variscan (Visean) granites in the core of central Pyrenean gneiss domes: implications from laser ablation U–Pb and Th-Pb studies. Gondwana Res 29:181–198CrossRefGoogle Scholar
  51. Mingram B, Kröner A, Hegner E, Krentz O (2004) Zircon ages, geochemistry, and Nd isotopic systematics of pre–Variscan orthogneisses from the Erzgebirge, Saxony (Germany), and geodynamic interpretation. Int J Earth Sci (Geol Rundsch) 93:706–727CrossRefGoogle Scholar
  52. Murphy JB, Keppie JD, Dostal J, Nance RD (1999) Neoproterozoic–early Paleozoic evolution of Avalonia. In: Laurentia-Gondwana Connections before Pangea. (Ramos VA, Duncan KJ (eds)). Geol Soc Am Spec Pap 336:253–266Google Scholar
  53. Murphy JB, Pisarvesky SA, Nance RD, Keppie JD (2004) Neoproterozoic–Early Paleozoic evolution of peri-Gondwana terranes: implications for Laurentia-Gondwana connections. Int J Earth Sci 93:659–682CrossRefGoogle Scholar
  54. Nance DR, Murphy JB, Keppie JD (2002) A Cordilleran model for the evolution of Avalonia. Tectonophysics 352:11–31CrossRefGoogle Scholar
  55. Navidad M, Carreras J (2002) El volcanismo de la base del Paleozoico Inferior del Canigó (Pirineos Orientales). Evidencias geoquímicas de la apertura de una cuenca continental. Geogaceta 32:91–94Google Scholar
  56. Navidad M, Liesa M, Carreras J (1996) Magmatismo del Roc de Frausa (Pirineos Orientales). Acta Geol Hisp 31(4):1–15Google Scholar
  57. Padel M, Álvaro JJ, Clausen S, Guillot F, Poujol M, Chichorro M, Monceret E, Pereira MF, Vizcaïno D (in press) U–Pb laser ablation ICP-MS zircon dating across the Ediacaran–Cambrian transition of the Montagne Noire, southern France. C R Geosci.
  58. Palme H, O’Neill HSC (2004) Cosmochemical estimates of mantle composition. In: Carlson RW, Turekian KK (eds) The mantle and core. Treatise on Geochemistry. HD Holland. Elsevier-Pergamon, Oxford, vol 2:pp 1–38Google Scholar
  59. Pearce JA (1996) Sources and setting of granitic rocks. Episodes 19(4):120–125Google Scholar
  60. Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48CrossRefGoogle Scholar
  61. Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983CrossRefGoogle Scholar
  62. Pereira MF, Chichorro M, Solá AR, Silva JB, Sánchez-García T, Bellido F (2011) Tracing the Cadomian magmatism with detrital/inherited zircon ages by in-situ U-Pb SHRIMP geochronology (Ossa-Morena Zone, SW Iberian Massif). Lithos 123:204–217CrossRefGoogle Scholar
  63. Pouclet A, Aarab A, Fekkak A, Benharref M (2007) Geodynamic evolution of the northwestern Paleo-Gondwana margin in the Moroccan Atlas at the Precambrian–Cambrian boundary. In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The Evolution of the Rheic Ocean: from Avalonian–Cadomian Active Margin to Alleghenian–Variscan Collision. Geol Soc Am Spec Pap 423:27–60Google Scholar
  64. Pouclet A, Álvaro JJ, Bardintzeff JM, Gil Imaz A, Monceret E, Vizcaïno D (2017). Cambrian–Early Ordovician volcanism across the South Armorican and Occitan Domains of the Variscan Belt in France: continental break-up and rifting of the northern Gondwana margin. Geosci Frontiers 8:25–64CrossRefGoogle Scholar
  65. Reyes J, Villaseca C, Barbero L, Quejido AJ, Santos JF (1997) Descripción de un método de separación de Rb, Sr, Sm y Nd en rocas silicatadas para estudios isotópicos. In: Actas del I Congreso Ibérico de Geoquímica. CEDEX, Soria, pp 46–55Google Scholar
  66. Ribeiro ML, Pereira MF, Solá AR (2003) O ciclo Cadomiano na ZOM: evidencias geoquímicas. Congr Iber Geoqu, Univ Coimbra, Portugal, pp 102–104Google Scholar
  67. Rubio-Ordóñez A, Gutiérrez-Alonso G, Valverde-Vaquero P, Cuesta-Fernández A, Gallastegui G, Gerdes A, Cárdenes V (2015) Arc-related Ediacaran magmatism along the northern margin of Gondwana: geochronology and isotopic geochemistry from northern Iberia. Gondwana Res 27:216–227CrossRefGoogle Scholar
  68. Rudnick RL, Gao S (2004) Composition of the Continental Crust. In: Holland HD, Turekian KK (eds) The Crust. Treatise on Geochemistry, vol 3. Elsevier-Pergamon, Oxford, pp 1–64Google Scholar
  69. Sánchez Lorda ME, Sarrionandia F, Abalos B, Carracedo M, Eguíluz L, Gil Ibarguchi JL (2013) Geochemistry and paleotectonic setting of Ediacaran metabasites from the Ossa-Morena Zone (SW Iberia). Int J Earth Sci. Google Scholar
  70. Sánchez-García T, Bellido F, Quesada C (2003) Geodynamic setting and geochemical signatures of Cambrian–Ordovician rift-related igneous rocks (Ossa-Morena zone, SW Iberia). Tectonophysics 365:233–255CrossRefGoogle Scholar
  71. Sánchez-García T, Bellido F, Pereira MF, Chichorro M, Quesada C, Pin C, Silva JB (2010) Rift-related volcanism predating the birth of the Rheic Ocean (Ossa-Morena zone, SW Iberia). Gondwana Res 17:392–407CrossRefGoogle Scholar
  72. Sláma J, Košler J (2012) Effects of sampling and mineral separation on accuracy of detrital zircon studies. Geochem Geophys Geosyst 13:1–17CrossRefGoogle Scholar
  73. Spencer CJ, Kirkland CL, Taylor RJM (2016) Strategies towards statistically robust interpretations of in situ U–Pb zircon geochronology. Geosci Frontiers 7:581–589CrossRefGoogle Scholar
  74. Stampfli GM (1993) Le Briançonnais, terrain exotique dans les Alpes? Eclog geol Helvetiae 86:1–45Google Scholar
  75. Stern RJ (2002) Crustal evolution in the East African Orogen: a neodymium isotopic perspective. J Afr Earth Sci 34:109–117CrossRefGoogle Scholar
  76. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins, vol 42. Geol Soc, London, pp 429–448Google Scholar
  77. Syme EC (1998) Ore-associated and barren rhyolites in the central Flin Flon Belt: case study of the Flin Flon mine sequence. Manitoba Energy Mines Open File Rep OF98–9:1–32Google Scholar
  78. Tanaka T, Togashi S, Kamioka H, Dragusanu LC (2000) JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem Geol 168:279–281CrossRefGoogle Scholar
  79. Vermeesch P (2004) How many grains are needed for a provenance study? Earth Planet Sci Lett 224:351–441CrossRefGoogle Scholar
  80. Von Raumer J, Stampfli GM (2008) The birth of the Rheic Ocean - Early Palaeozoic subsidence patterns and tectonic plate scenarios. Tectonophysics 461:9–20CrossRefGoogle Scholar
  81. Von Raumer JF, Stampfli GM, Arenas R, Sánchez Martínez S (2015) Ediacaran to Cambrian oceanic rocks of the Gondwana margin and their tectonic interpretation. Int J Earth Sci 104:1107–1121CrossRefGoogle Scholar
  82. Walsh GJ, Benziane F, Aleinikoff JN, Harrison RW, Yazidi A, Burton WC, Quick JE, Saadane A (2012) Neoproterozoic tectonic evolution of the Jebel Saghro and Bou Azzer-El Graara inliers, eastern and central Anti-Atlas, Morocco. Precambr Res 216–219:23–62CrossRefGoogle Scholar
  83. Wendt I, Carl C (1991) The statistical distribution of the mean squared weighted deviation. Chem Geol Isotope Geosci Sect 86:275–285CrossRefGoogle Scholar
  84. Wood DA (1980) The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet Sci Lett 50:11–30CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Maxime Padel
    • 1
  • J. Javier Álvaro
    • 2
    Email author
  • Josep Maria Casas
    • 3
  • Sébastien Clausen
    • 4
  • Marc Poujol
    • 5
  • Teresa Sánchez-García
    • 6
  1. 1.BRGMOrléansFrance
  2. 2.Instituto de Geociencias (CSIC-UCM)MadridSpain
  3. 3.Departament de Dinàmica de la Terra i de l’Oceà-Institut de recerca GeomodelsUniversitat de BarcelonaBarcelonaSpain
  4. 4.UMR 8198 EEP CNRS, Université de Lille 1Villeneuve d’AscqFrance
  5. 5.Géosciences Rennes, UMR 6118, OSUR, Université de Rennes 1RennesFrance
  6. 6.IGMEMadridSpain

Personalised recommendations