International Journal of Earth Sciences

, Volume 107, Issue 4, pp 1539–1555 | Cite as

Detrital zircons from the Hronicum Carboniferous–Permian sandstones (Western Carpathians, Slovakia): depositional age and provenance

  • Anna VozárováEmail author
  • Alexander Larionov
  • Katarína Šarinová
  • Marek Vďačný
  • Elena Lepekhina
  • Jozef Vozár
  • Pavel Lvov
Original Paper


For the assessment of depositional age and provenance of the Hronicum Unit Pennsylvanian to Permian siliciclastic sediments, SIMS (SHRIMP) U–Pb analyses have been carried out on detrital zircons. To constrain the presumed provenance of the Hronicum Unit sediments five samples have been taken from two lithostratigraphic units, the Nižná Boca and the Malužiná formations. The detrital-zircon age spectrum demonstrates two prominent populations, the first, Late Pennsylvanian–Early Cisuralian (288–309 Ma) and the second, Famennian—Tournaisian (345–371 Ma). The probability density age peak at 297 Ma permits to estimate the maximum sedimentation age of the Nižná Boca Fm. to younger than Asselian and the beginning of the Malužiná Formation sedimentation has been assessed at least in Sakmarian. The sedimentation persisted, with the exception of a short break in the Wordian/Capitanian, through the Lopingian. Smaller zircon age clusters range within 446–541 Ma, with a dominance of the Cambrian detrital zircons (491–541 Ma). The Precambrian time-span is dominated by the two groups of detrital zircons; Ediacaran in the range of 545–612 Ma and Paleoproterozoic–Neoarchean ranging from 1.8 to 2.8 Ga. The documented zircon ages reflect derivation of the Hronicum sediments from the Variscan Western Carpathian crystalline basement, the Late Devonian/Early Mississippian magmatic arc. These data support close relations of the presumed Hronicum basement with the Armorican terranes and derivation from the Cadomian Belt, associated with the West African Craton during Neoproterozoic and Cambrian time.


Western Carpathians Hronicum Unit Detrital zircon U–Pb SHRIMP dating Provenance Depositional age 



The financial support of the Slovak Research and Development Agency (Project ID: APVV-0546-11) and VEGA (project VEGA 1/0141/15) is gratefully acknowledged. The authors would like to thank I. C. Balintoni, A. von Quadt and an unknown reviewer for constructive reviews which led to the significant improvement of this manuscript.

Supplementary material

531_2017_1556_MOESM1_ESM.pdf (5.9 mb)
Supplementary material 1 (PDF 6043 KB)
531_2017_1556_MOESM2_ESM.xls (747 kb)
Supplementary material 2 (XLS 747 KB)
531_2017_1556_MOESM3_ESM.pdf (3 mb)
Supplementary material 3 (PDF 3061 KB)


  1. Andrusov D (1936) Les nappes subtatriques des Carpathes occidentales. Carpatica 1:3–50 (Czech with French summary) Google Scholar
  2. Andrusov D (1968) Grundriss der Tektonik der Nördlichen Karpaten. Slovak Academy of Sciences Publ House, Bratislava, p 188Google Scholar
  3. Andrusov D, Bystrický J, Fusán O (1973) Outline of the structure of the West Carpathians—guide book for geological excursion Xth congress of Carpathian–Balkan Association. Dionýz Štúr Geological Institute, Bratislava, pp 1–44Google Scholar
  4. Bibikova EV, Cambel B, Korikovsky SP, Broska I, Gracheva TV, Makarov VA, Arakeliants MM (1988) U-Pb and K-Ar isotopic dating of Sinec (Rimavica) granites (Kohút zone of Veporides). Geol Zborn Geol Carpath 39(2):147–157Google Scholar
  5. Biely A (ed) (1992) Geological map of the Nízke Tatry Mountains 1:50,000. D Štúr Inst Geol, BratislavaGoogle Scholar
  6. Biely A, Bezák V (eds) (1997) Explanation to geological map of the Nízke Tatry Mts, 1:50,000. Geological survey of Slovak Republic, Bratislava, p 232 (in Slovak with English summary) Google Scholar
  7. Biely A, Fusán O (1967) Zum Problem der Wurzelzonen der subtatrischen Decken. Geol Práce Spr 42:51–64Google Scholar
  8. Biely A, Bezák V, Elečko M, Gross P, Kaličiak M, Konečný V, Lexa J, Mello J, Nemčok J, Potfaj M, Rakús M, Vass D, Vozár J, Vozárová A (1996a) Explanation to geological map of Slovakia, 1:500,000. Dionýz Štúr Publishers, Bratislava, p 76Google Scholar
  9. Biely A, Bezák V, Elečko M, Gross P, Kaličiak M, Konečný V, Lexa J, Mello J, Nemčok J, Potfaj M, Rakús M, Vass D, Vozár J, Vozárová A (1996b) Geological map of Slovakia: ministry of the environment of Slovak Republic. Geological Survey of Slovak Republic, BratislavaGoogle Scholar
  10. Birkenmajer K (1985) Major strike-slip faults of the Pieniny Klippen Belt and the Tertiary rotation of the Carpathians. Publ Inst Geophys Pol Acad Sci A16(175):101–115Google Scholar
  11. Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ, Foudoulis C (2003) TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chem Geol 200:155–170. CrossRefGoogle Scholar
  12. Broska I, Petrík I, Beeri-Shlevin Y, Majka J, Bezák V (2013) Devonian/Mississippian I-type granitoids in the Western Carpathians: a subduction-related hybrid magmatism. Lithos 162–163:27–36CrossRefGoogle Scholar
  13. Broutin J, Chateauneuf JJ, Galtier J, Ronchi A (1999) LʼAutunien dʼAutun reste-t-il une référence pour les dépôts continentaux du Permien inférieur dʼEurope? Apport des données paléobotaniques. Géol France 2:17–31Google Scholar
  14. Burda J, Gawęda A, Klötzli U (2011) Magma hybridization in the Western Tatra Mts. granitoid intrusion (S-Poland, Western Carpathians). Miner Petrol 103(1):19–36CrossRefGoogle Scholar
  15. Demko R, Olšavský M (2007) The question of rhyolite detritus in the Malužiná formation. Miner Slovaca (Geovestník) 39(4):8–9 (Slovak) Google Scholar
  16. Deroin JP, Bonin B (2003) Late Variscan tectonomagmatic activity in Western Europe and surrounding areas: The mid-Permian Episode. Boll Soc Geol It Spec Vol 2:169–184Google Scholar
  17. Dickinson WR (1985) Interpreting provenance relations from detrital modes of sandstones. In: Zuffa GG (ed) Provenance of Arenites. D Reidel Publ Comp, Dordrecht, pp 333–361CrossRefGoogle Scholar
  18. Dickinson WR (1988) Provenance and sediment dispersal in relation to paleotectonics and paleogeography of sedimentary basins. In: Kleinspehn KL, Paola C (eds) New perspectives in basin analysis. Springer, New York, pp 3–25CrossRefGoogle Scholar
  19. Dickinson WR, Gehrels GE (2009) Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth Planet Sci Lett 288(1–2):115–125. CrossRefGoogle Scholar
  20. Dickinson WR, Suczek CA (1979) Plate tectonics and sandstone compositions. Am Assoc Pet Geol Bull 63(12):2164–2182Google Scholar
  21. Dostal J, Vozár J, Keppie JD, Hovorka D (2003) Permian volcanism in the Central Western Carpathians (Slovakia): basin-and-range type rifting in the southern Laurussian margin. Int J Earth Sci (Geol Rundsch) 92:27–35. Google Scholar
  22. Drost K, Gerdes A, Jeffries T, Linnemann U, Storey C (2011) Provenance of Neoproterozoic and early Paleozoic siliciclastic rocks of the Teplá-Barrandian unit (Bohemian Massif): evidence from U-Pb detrital zircon ages. Gondwana Res 19(1):213–231CrossRefGoogle Scholar
  23. Ďurovič V (1971) Sedimentary-petrographical investigation of the volcano sedimentary (melaphyre) series of the Central Western Carpathians. Acta Geol Geogr Univ Comen 23:5–114 (Slovak with English summary) Google Scholar
  24. Ebner F, Vozárová A, Kovács S, Kräutner H-G, Krstić B, Szederkényi T, Jamićić D, Balen D, Belak M, Trajanova M (2008) Devonian–Carboniferous pre-flysch and flysch environments in the Circum Pannonian Region. Geol Carpath 59(2):159–195Google Scholar
  25. Fedo CM, Sircombe KN, Raibird RH (2003) Detrital zircon analysis of the sedimentary record. Rev Mineral Geochem 53:277–303. CrossRefGoogle Scholar
  26. Fernández-Suárez J, Gutiérrez-Alonso G, Jeffries TE (2002) The importance of along-margin terrane transport in northern Gondwana: insights from detrital zircon parentage in Neoproterozoic rocks from Iberia and Brittany. Earth Planet Sci Lett 204:75–88CrossRefGoogle Scholar
  27. Fernández-Suárez J, Gutiérrez-Alonso G, Pastor-Galán D, Hofmann M, Murphy JB, Linnemann U (2014) The Ediacaran–Early Cambrian detrital zircon record of NW Iberia: possible sources and paleogeographic constraints. Int J Earth Sci (Geol Rundsch) 103(5):1335–1357. CrossRefGoogle Scholar
  28. Finger F, Broska I, Haunschmid B, Hrasko L, Kohút M, Krenn E, Petrík I, Riegler G, Uher P (2003) Electron-microprobe dating of monazites from Western Carpathian basement granitoids: plutonic evidence for an important Permian rifting event subsequent to Variscan crustal anatexis. Int J Earth Sci (Geol Rundsch) 92:86–98. Google Scholar
  29. Flügel HW (1990) Das voralpine Basement im Alpin-Mediterranen Belt—Überblick und Problematik. Jb Geol B A 133(2):181–221Google Scholar
  30. Gaab AS, Poller U, Janák M, Kohút M, Todt W (2005) Zircon U-Pb geochronology and isotopic characterization for the pre-Mesozoic basement of the Northern Veporic Unit (Central Western Carpathians Slovakia). Schweiz Mineral Petrogr Mitt 85:69–88Google Scholar
  31. Guynn J, Gehrels GE (2010) Comparison of detrital zircon age distribution using the K–S test. University of Arizona, Tuscon, pp 1–16 Accessed 8 Mar 2017
  32. Havrila M (2011) The Hronicum: paleogeography and stratigraphy (Upper Pelsonian–Tuvalian), structuring and fabric. Geol Práce—Správy, Dionýz Štúr, vol 117. Dionýz Štúr Publishers, Bratislava, pp 7–107 (Slovak with English summary)Google Scholar
  33. Henderson BJ, Collins WJ, Murphy JB, Gutiérrez-Alonso G, Hand M (2016) Gondwanan basement terranes of the Variscan Appalachian orogen: Baltican, Saharan and West African hafnium isotopic fingerprints in Avalonia, Iberia and the Armorican Terranes. Tectonophysics 681:278–304CrossRefGoogle Scholar
  34. Hók J, Šujan M, Šipka F (2014) Tectonic division of the Western Carpathians: an overview and a new approach. Acta Geol Slovaca 6(2):135–143 (Slovak with English summary) Google Scholar
  35. Ingersoll RV (1990) Actualistic sandstone petrofacies: discriminating modern and ancient source rocks. Geology 18(8):733–736CrossRefGoogle Scholar
  36. International Commission on Stratigraphy. International Chronostratigraphic Chart v 2016/16 2016-16.pdf. Accessed 25 Jan 2017
  37. Izart A, Vaslet D, Briand C et al (1998) Stratigraphic correlations between the continental and marine Tethyan and Peri-Tethyan basins during the Late Carboniferous and the Early Permian. In: Crasquin-Soleau S, Izart A, Vaslet D, De Wever P (eds) Peri-Tethys: stratigraphic correlation 2. Edition scientifiques du Muséum, Paris, Geodiversitas, vol 20, pp 521–595Google Scholar
  38. Janák M, Finger F, Plašienka D, Petrík I, Humer B, Méres Š, Lupták B (2002) Variscan high P-T recrystallization of Ordovician granitoids in the Veporic unit (Nízke Tatry Mountains, Western Carpathians): new petrological and geochronological data. Geolines 14:38–39Google Scholar
  39. Kohút M, Todt W, Janák M, Poller U (1997) Thermochronometry of the Variscan basement exhumation in the Velká Fatra Mts. (Western Carpathians, Slovakia). Terra Abstr 9:494Google Scholar
  40. Kohút M, Poller U, Gurk C, Todt W (2008) Geochemistry and U-Pb detrital zircon ages of metasedimentary rocks of the Lower Unit, Western Tatra Mountains (Slovakia). Acta Geol Pol 58(4):371–384Google Scholar
  41. Kohút M, Uher P, Putiš M, Ondrejka M, Sergeev S, Larionov A, Paderin I (2009) SHRIMP U-Th-Pb zircon dating of the granitoid massifs in the Malé Karpaty Mountains (Western Carpathians): evidence of Meso-Hercynian successive S- to I-type granitic magmatism. Geol Carpath 60(5):345–350CrossRefGoogle Scholar
  42. Kohút M, Uher P, Putiš M, Broska I, Siman P, Rodionov N, Sergeev S (2010) Are there any differences in age of the two principal Hercynian (I- & S-) granite types from the Western Carpathians?—a SHRIMP approach. In: Kohút M (ed) Dating of minerals and rocks, metamorphic, magmatic and metallogenetic processes, as well as tectonic events. Dionýz Štúr State Geological Institute, Bratislava, pp 17–18Google Scholar
  43. Kráľ J, Hess JC, Kober B, Lippolt HJ (1997) 207Pb/206Pb and 40Ar/39Ar age data from plutonic rocks of the Strážovské vrchy Mts. basement, Western Carpathians. In: Grecula P, Hovorka D, Putiš M (eds) Geological evolution of the Western Carpathians. Mineralia Slovaca, Bratislava, pp 253–260Google Scholar
  44. Larionov AN, Andreichev VA, Gee DG (2004) The Vendian alkaline igneous suite of northern Timan: ion microprobe U-Pb zircon ages of gabbros and syenite. In: Gee DG, Pease V (eds) The Neoproterozoic Timanide Orogen of Eastern Baltica. Mem Geol Soc Lond, vol 30, London, pp 69–74Google Scholar
  45. Linnemann U, Pereira F, Jeffries TE, Drost K, Gerdes A (2008) The Cadomian Orogeny and the opening of the Rheic Ocean: the diacrony of geotectonic processes constrained by LA-ICP-MS U-Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461:21–43CrossRefGoogle Scholar
  46. Linnemann U, Gerdes A, Hofmann M, Marko L (2014) The Cadomian Orogen: Neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton—Constraints from U-Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambrian Res 244:236–278CrossRefGoogle Scholar
  47. Ludwig KR (2005а) SQUID 1.12 A userʼs manual. A geochronological toolkit for microsoft excel. Berkeley Geochronology Center Special Publication, pp 1–22
  48. Ludwig KR (2005b) User’s manual for ISOPLOT/Ex 3.22. A geochronological toolkit for microsoft excel. Berkeley Geochronology Center Special Publication, pp 1–71
  49. Ludwig KR (2012) User’s manual for isoplot 3.75. A geochronological toolkit for microsoft excel. Berkeley Geochronology Center Special Publication, pp 1–75,
  50. Maheľ M (1986) Geological structure of the Czechoslovak Carpathians, Part 1: paleoalpine units. Veda Publ House, Bratislava, p 503 (Slovak)Google Scholar
  51. Menning M (1995) A numerical time scale for the Permian and Triassic periods: an integrated time analysis. In: Scholle PA, Peryt TM, Ulmer-Sholle DS (eds) The Permian of Northern Pangea, paleogeography, paleoclimates, stratigraphy, vol 1. Springer, Berlin, pp 77–97CrossRefGoogle Scholar
  52. Menning M (2001) A Permian Time Scale 2000 and correlation of marine and continental sequences using the Illawarra reversal (265 Ma). In: Cassinis G (ed) Permian continental deposits of Europe and other areas. In: Proc Int Field Conf on “the continental permian of the Southern Alps and Sardinia (Italy). Regional reports and general correlations”, 15–25 Sept 1999, Brescia, Italy, pp 355–362Google Scholar
  53. Menning M, Hendrich A (eds) (2012) Stratigraphic table of Germany compact 2012 (STDKe 2012). Deutsche Stratigraphische Komission, PotsdamGoogle Scholar
  54. Neubauer F, Vozárová A (1990) The Noetsch-Veitsch-Northgemeric Zone of Alps and Carpathians: correlation, paleogeography and significance for Variscan orogeny. In: Minaříková D, Lobitzer H (eds) Thirty years of geological cooperation between Austria and Czechoslovakia. Federal Geol Surv, Vienna, pp 167–171Google Scholar
  55. Olšavský M (2008) Facial analysis of depositional sequences of the Malužiná Formation and its geological setting at northeastern slopes of the Nízke Tatry Mts. Dissertation, Comenius University in Bratislava, pp 1–194 (in Slovak)Google Scholar
  56. Petrík I, Konečný P (2009) Metasomatic replacement of inherited metamorphic monazite in a biotite–garnet granite from the Nízke Tatry Mountains, Western Carpathians, Slovakia: chemical dating and evidence for disequilibrium melting. Am Miner 94:957–974CrossRefGoogle Scholar
  57. Planderová E (1973) Palynological research in the melaphyre series of the Choč unit in the NE part of Nízke Tatry between Spišský Štiavnik and Vikartovce. Geol Práce Spr 60:143–168Google Scholar
  58. Planderová E (1979) Biostratigraphical valuation of the Carboniferous of the Choč nappe, based on palynology. Geol Práce Spr 72:31–59 (Slovak with English summary) Google Scholar
  59. Planderová E, Vozárová A (1982) Biostratigraphical correlation of Late Paleozoic formations in the West Carpathians. In: Sassi FP, Varga I (eds): Correlation of Prevariscan and Variscan events of the Alpine-Mediterranean mountain belt. Newsletter 4, IGCP Pr. No. 5, Košice, Padova. Dionýz Štúr Geological Institute, Bratislava, pp 67–71Google Scholar
  60. Plašienka D, Janák M, Hacura A, Vrbatovič P (1989) First illite crystallinity data from Alpine metamorphosed rocks of the Veporicum, Central West—Carpathians. Miner Slovaca 21:43–51 (Slovak with English summary) Google Scholar
  61. Plašienka D, Grecula P, Putiš M, Kováč M, Hovorka D (1997) Evolution and structure of the Western Carpathians: an overview. In: Grecula P, Hovorka D, Putiš M (eds) Geological evolution of the Western Carpathians. Miner Slovaca, Monograph. Geocomplex publishers, Bratislava, pp 1–24Google Scholar
  62. Poller U, Todt W (2000) U-Pb single zircon data of granitoids from the High Tatra Mountains (Slovakia): implications for the geodynamic evolution. Geol Soc Am Spec Pap 350:235–243Google Scholar
  63. Poller U, Janák M, Kohút M, Todt W (2000) Early Variscan magmatism in the Western Carpathians: U-Pb zircon data from granitoids and orthogneisses of the Tatra Mountains (Slovakia). Int J Earth Sci (Geol Rundsch) 89(2):336–349. CrossRefGoogle Scholar
  64. Putiš M, Sergeev S, Ondrejka M, Larionov A, Siman P, Spišiak J, Uher P, Paderin I (2008) Cambrian-Ordovician metaigneous rocks associated with Cadomian fragments in the West-Carpathian basement dated by SHRIMP on zircons: a record from the Gondwana active margin setting. Geol Carpath 59(1):3–18Google Scholar
  65. Putiš M, Ivan P, Kohút M, Spišiak J, Siman P, Radvanec M, Uher P, Sergeev S, Larionov A, Méreš Š, Demko R, Ondrejka M (2009) Meta-igneous rocks of the West-Carpathian basement, Slovakia: indicators of Early Paleozoic extension and shortening events. Bull Soc Géol Fr 180(6):461–471CrossRefGoogle Scholar
  66. Rakús M, Potfaj M, Vozárová A (1998) Basic paleogeographic and paleotectonic units of the Western Carpathians. In: Rakús M (ed) Geodynamic development of the Western Carpathians. D Štúr Publ, Monograph, Bratislava, pp 15–26Google Scholar
  67. Rojkovič I (1997) Uranium mineralization in Slovakia. Acta Geol Univers Comen, Monogr, Bratislava, p. 117Google Scholar
  68. Roscher M, Schneider JW (2006) Permo-Carboniferous climate: Early Pennsylvanian to Late Permian climate development of central Europe in a regional and global context. In: Lucas SG, Cassinis G, Schneider JW (eds) Non-marine permian biostratigraphy and biochronology. Geol Soc London Spec Publ, vol 265, London, pp 95–136Google Scholar
  69. Shcherbak NP, Cambel B, Bartnitsky EN, Stepanyuk LM (1990) U-Pb age of granitoid rock from the quarry Dubná Skala–Malá Fatra Mts. Geol Zborn Geol Carpath 41:407–414Google Scholar
  70. Sitár V, Vozár J (1973) Die ersten Makrofloren-Funde in dem Karbon der Choč-Einheit in der Niederen Tatra (Westkarpaten). Geol Zborn Geol Carpath 24(2):441–448Google Scholar
  71. Spencer CJ, Kirkland CL, Taylor RJM (2016) Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology. Geosci Front 7:581–589CrossRefGoogle Scholar
  72. Stampfli GM (2012) The Geodynamics of Pangea Formation. Géol Fr 1:208–211Google Scholar
  73. Stampfli GM, von Raumer J, Wilhem C (2011) The distribution of Gondwana-derived terranes in the Early Paleozoic. In: Gutiérrez-Marco JC, Rábano I, García-Bellido D (eds) Ordovician of the world. Cuadernos del Museo Geominero, 14. Instituto Geológico y Minero de España, Madrid, pp 567–574Google Scholar
  74. Stampfli GM, Hochard C, Vérard C, Wilhem C, von Raumer J (2013) The formation of Pangea. Tectonophysics 593:1–19CrossRefGoogle Scholar
  75. Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362CrossRefGoogle Scholar
  76. Šucha V, Eberl DD (1992) Burial metamorphism of Permian sediments in the Northern Gemeric and Hronic units, West Carpathians. Miner Slovaca 24(5–6):399–405 (Slovak with English summary) Google Scholar
  77. Vďačný M, Bačík P (2015) Provenance of the Permian Malužiná formation sandstones (Malé Karpaty Mts, Western Carpathians): evidence of garnet tourmaline mineral chemistry. Geol Carpath 66(2):83–97. Google Scholar
  78. Vďačný M, Vozárová A, Vozár J (2013) Geochemistry of the Permian sandstones from the Malužiná Formation in the Malé Karpaty Mts (Hronic Unit, Western Carpathians, Slovakia): implications for source-area weathering, provenance and tectonic setting. Geol Carpath 64(1):23–38. Google Scholar
  79. von Raumer JF, Stampfli GM, Bussy F (2003) Gondwana-derived microcontinents—the constituents of the Variscan and Alpine collisional orogens. Tectonophysics 365:7–22CrossRefGoogle Scholar
  80. von Raumer JF, Bussy F, Stampfli GM (2009) The Variscan evolution in the External massifs of the Alps and place in their Variscan framework. C R Geosci 341:239–252CrossRefGoogle Scholar
  81. von Raumer JF, Bussy F, Schaltegger U, Schulz B, Stampfli GM (2013) Pre-Mesozoic Alpine basements—their place in the European Paleozoic framework. Geol Soc Am Bull 125:89–108CrossRefGoogle Scholar
  82. Vozár J (1977) Magmatic rocks of the tholeiite series in the Permian of the Choč nappe in the West Carpathians. Miner Slovaca 9(4):241–258 (Slovak with English summary) Google Scholar
  83. Vozár J (1997) Rift-related volcanism in the Permian of the Western Carpathians. In: Grecula P, Hovorka D, Putiš M (eds) Geological evolution of the Western Carpathians. Miner Slovaca, Monogr, Bratislava, pp 225–234Google Scholar
  84. Vozár J, Spišiak J, Vozárová A, Bazarnik J, Kráľ J (2015) Geochemistry and Sr, Nd isotopic composition of the Hronic Upper Paleozoic basic rocks (Western Carpathians, Slovakia). Geol Carpath 66(1):3–17. CrossRefGoogle Scholar
  85. Vozárová A (1981) Lithology and Petrography of the Nižná Boca formation (Upper Carboniferous; West Carpathians). Záp Karpaty sér miner Petrogr Geoch Metal 8:143–199 (in Slovak with English summary) Google Scholar
  86. Vozárová A (1990) Significance of clastic petrofacies for reconstruction of paleotectonic development of the Late Paleozoic in the Western Carpathians. In: Sýkora M, Jablonský J, Samueal O (eds) Sedimentological problems of the West Carpathians. D Štúr Inst Geol, Bratislava, pp 69–78 (Slovak with English summary) Google Scholar
  87. Vozárová A (1996) Tectono-sedimentary evolution of Late Paleozoic Basins based on interpretation of Lithostratigraphic Data (Western Carpathians; Slovakia). Slovak Geol Mag 2(3–4):251–271Google Scholar
  88. Vozárová A (1998) Late Carboniferous to Early Permian time interval in the Western Carpathians: Northern Tethys Margin. In: Crasquin-Soleau S, Izart A, Vaslet D, De Wever P (eds) Peri-Tethys: stratigraphic correlations 2. Geodiversitas, vol 20. Edition scientifiques du Muséum, Paris, pp 621–641Google Scholar
  89. Vozárová A, Túnyi I (2003) Evidence of the Illawarra Reversal in the Permian sequence of the Hronic Nappe (Western Carpathians, Slovakia). Geol Carpath 54(4):229–236Google Scholar
  90. Vozárová A, Vozár J (1979) Crystalline complex in the basal part of Choč nappe. Geol Práce Spr 72:195–197 (Slovak with English summary) Google Scholar
  91. Vozárová A, Vozár J (1981) Lithostratigraphical subdivision of Late Paleozoic sequences of the Hronic unit. Miner Slovaca 13:385–403 (Slovak with English summary) Google Scholar
  92. Vozárová A, Vozár J (1988) Late Paleozoic in West Carpathians. Monogr, D Štúr Inst Geol, Bratislava, pp 1–314Google Scholar
  93. Vozárová A, Frank W, Kráľ J, Vozár J (2005) 40Ar/39Ar dating of detrital mica from the Upper Paleozoic sandstones in the Western Carpathians (Slovakia). Geol Carpath 56(6):463–472Google Scholar
  94. Vozárová A, Kráľ J, Vozár J (2007) Sr isotopic composition in basalts of the Hronicum. PETROS, petrological symposium Bratislava, abstracts, Comenius University Bratislava, p 22 (in Slovak)Google Scholar
  95. Vozárová A, Ebner F, Kovács S, Kräutner H-G, Szederkenyi T, Krstić B, Sremac J, Aljinovič D, Novak M, Skaberne D (2009) Late Variscan (Carboniferous to Permian) environments in the Circum Pannonian Region. Geol Carpath 60(1):71–104. CrossRefGoogle Scholar
  96. Vozárová A, Šarinová K, Larionov A, Presnyakov S, Sergeev S (2010) Late Cambrian/Ordovician magmatic arc type volcanism in the Southern Gemericum basement, Western Carpathians, Slovakia: U-Pb (SHRIMP) data from zircons. Int J Earth Sci (Geol Rundsch) 99(Suppl 1):S17–S37. CrossRefGoogle Scholar
  97. Vozárová A, Šarinová K, Rodionov N, Laurinc D, Paderin I, Sergeev S, Lepekhina E (2012) U-Pb ages of detrital zircons from Paleozoic metasandstones of the Gelnica Terrane (Southern Gemeric Unit, Western Carpathians, Slovakia): evidence for Avalonian–Amazonian provenance. Int J Earth Sci (Geol Rundsch) 101:919–936. CrossRefGoogle Scholar
  98. Vozárová A, Laurinc D, Šarinová K, Larionov A, Presnyakov S, Rodionov N, Paderin I (2013) Pb ages of detrital zircons in relation to geodynamic evolution: Paleozoic of the Northern Gemericum (Western Carpathians, Slovakia). J Sediment Res 83:915–927. CrossRefGoogle Scholar
  99. Vozárová A, Konečný P, Vďačný M, Vozár J, Šarinová K (2014) Provenance of Permian Malužiná Formation sandstones (Hronicum, Western Carpathians): evidence from monazite geochronology. Geol Carpath 65(5):329–338. CrossRefGoogle Scholar
  100. Vozárová A, Rodionov N, Šarinová K, Presnyakov S (2016) New zircon ages on the Cambrian–Ordovician volcanism of the Southern Gemericum basement (Western Carpathians, Slovakia): SHRIMP dating, geochemistry and provenance. Int J Earth Sci (Geol Rundsch). Google Scholar
  101. Vrána S, Vozár J (1969) Über die Mineralgemeinschaft der Pumpellyit-Prehnit-Quarzfazies in der Niederen Tatra. Geol Práce Spr 49:91–99 (Slovak with German summary) Google Scholar
  102. Wardlaw BR, Davydov V, Gradstein FM (2004) The Permian Period. In: Gradstein FM, Ogg JG, Smith AG (eds) Geologic timescale 2004. Cambridge University Press, Cambridge, pp 249–270Google Scholar
  103. Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandard Newslett 19:1–23CrossRefGoogle Scholar
  104. Williams IS (1998) U-Th-Pb geochronology by ion microprobe. In: McKissen MA, Shanks WC III, Ridley WS (eds) Applications of microanalytical techniques to understanding mineralizing processes. Rev Econ Geol, vol 7, pp 1–35Google Scholar
  105. Yerino LN, Maynard JB (1984) Petrography of modern marine sands from the Peru-Chile Trench and adjacent areas. Sedimentology 31(1):83–89CrossRefGoogle Scholar
  106. Zeh A, Gerdes A (2010) Baltica and Gondwana-derived sediments in the Mid-German Crystalline Rise (Central Europe): implications for the closure of the Rheic Ocean. Gondwana Res 17(2–3):254–263CrossRefGoogle Scholar
  107. Ziegler PA, Stampfli GM (2001) Late Palaeozoic-Early Mesozoic plate boundary reorganization: collapse of the Variscan orogen and opening of Neotethys. In: Cassinis G (ed) Permian continental deposits of Europe and other areas. Regional reports and correlations. Proc Int Field Conf on The continental Permian of the Southern Alps and Sardinia (Italy).ˮ 15–25 September 1999, Brescia. Natura Bresciana, Ann Mus Civ Sci Nat, Brescia Monografia N 25:17–34Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Mineralogy and Petrology, Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovakia
  2. 2.Centre of Isotopic ResearchA. P. Karpinsky Russian Geological Research Institute (FGBU «VSEGEI»)St.-PetersburgRussia
  3. 3.Earth Science Institute of the Slovak Academy of SciencesBratislavaSlovakia

Personalised recommendations