International Journal of Earth Sciences

, Volume 107, Issue 4, pp 1445–1463 | Cite as

Oxygen and carbon isotope compositions of carbonates in a prominent lithologically mixed unit in the central South Norwegian Caledonides

  • Johannes JakobEmail author
  • Philippe Boulvais
  • Torgeir B. Andersen
Original Paper


A prominent pre-Scandian lithologically mixed unit in the central South Norwegian Caledonides contains more than 100 partly carbonated and hydrated metaperidotite bodies and locally fossiliferous detrital serpentinites. The lateral consistency of this mixed unit was not fully appreciated in the past. Therefore, parts of the mixed unit along strike were interpreted to belong to several different tectonostratigraphic levels. Here, we present new carbonate stable isotope data that suggest that the carbonates of the mixed unit between Bergen and Otta (re-)equilibrated at unit-wide similar peak metamorphic conditions. The isotope compositions are characteristic for this unit and indicate that it represented one single tectonic unit during the Scandian Orogeny. The carbonates in the mélange are characterized by a narrow range of δ18O (SMOW) values between + 11 and + 15.5‰ and three groups of δ13C (PDB) values: (I) + 1.6 to + 0.3‰, (II) − 1.8 to − 3.9‰, and (III) − 6 to − 8.6‰. Carbonates of group III probably were affected by decarbonation or by a fluid containing organic carbon, whereas carbonates of group I and II overlap with δ13C values typical for Ediacaran–Silurian marine carbonates and may have retained their initial δ13C imprint. We suggest that the δ18O values (re-)equilibrated with unit-wide released metamorphic fluids during Scandian metamorphism. An outcrop-scale homogenisation of the δ13C values reflects the local carbon isotope signature of the released metamorphic fluids that circulated channelized through the mélange unit.


S Norwegian Caledonides Fossil hyperextended magma-poor passive margin Carbonate O and C isotope composition Scandian Orogeny and metamorphism 



We would like to thank the Natural History Museum of Oslo for generously providing samples from the Otta conglomerate and Annabelle Bernard for her help during the analytical work. Suggestions by Abigail Bull-Aller and Reidar Trønnes in improving the manuscript are greatly appreciated. We are grateful for the useful comments of Camille Clerc and Alberto Vitale-Brovarone and for the suggestions of two anonymous reviewers and Marco Scambelluri on an earlier version of the manuscript.

Compliance with ethical standards


The Centre for Earth Evolution and Dynamics is funded by CoE-Grant 223272 from the Research Council of Norway. The project “Hyperextension in magma-poor and magma-rich domains along the pre-Caledonian passive margin of Baltica” is funded by research Grant 250327/F20 from the Research Council of Norway.


  1. Alsaker E, Furnes H (1994) Geochemistry of the Sunnfjord Melange sediment mixing from different sources during obduction of the Solund–Stavfjord Ophiolite Complex, Norwegian Caledonides. Geol Mag 131:105–121CrossRefGoogle Scholar
  2. Andersen TB (1998) Extensional tectonics in the Caledonides of southern Norway, an overview. Tectonophysics 285:333–351. doi:  10.1016/S0040-1951(97)00277-1 CrossRefGoogle Scholar
  3. Andersen TB, Skjerlie KP, Furnes H (1990) The Sunnfjord Melange, evidence of Silurian ophiolite accretion in the West Norwegian Caledonides. J Geol Soc 147:59–68. doi:  10.1144/gsjgs.147.1.0059 CrossRefGoogle Scholar
  4. Andersen TB, Jamtveit B, Dewey JF, Swensson E (1991) Subduction and eduction of continental crust major mechanisms during continent-continent collision and orogenic extensional collapse, a model based on the south Norwegian Caledonides. Terra Nova 3:303–310. doi:  10.1111/j.1365-3121.1991.tb00148.x CrossRefGoogle Scholar
  5. Andersen TB, Berry IV HN, Lux DR, Andresen A (1998) The tectonic significance of pre-Scandian 40Ar39Ar phengite cooling ages in the Caledonides of western Norway. J Geol Soc 155:297–309CrossRefGoogle Scholar
  6. Andersen TB, Torsvik TH, Eide EA, Osmundsen P-T, Faleide JI (1999) Permian and Mesozoic extensional faulting within the Caledonides of central south Norway. Journal of the Geological Society 156:1073–1080. doi:  10.1144/gsjgs.156.6.1073 CrossRefGoogle Scholar
  7. Andersen TB, Corfu F, Labrousse L, Osmundsen P-T (2012) Evidence for hyperextension along the pre-Caledonian margin of Baltica. J Geol Soc 169:601–612. doi: 10.1144/0016-76492012-011 CrossRefGoogle Scholar
  8. Austrheim H (1987) Eclogitization of lower crustal granulites by fluid migration through shear zones. Earth Planet Sci Lett 81:221–232. doi:  10.1016/0012-821x(87)90158-0 CrossRefGoogle Scholar
  9. Baird GB, Figg SA, Chamberlain KR (2014) Intrusive age and geochemistry of the Kebne Dyke Complex in the Seve Nappe Complex, Kebnekaise Massif, arctic Sweden Caledonides. Gff 136:556–570. doi: 10.1080/11035897.2014.924553 CrossRefGoogle Scholar
  10. Bakke S, Korneliussen A (1986) Jack-straw-textured olivines in some Norwegian metaperidotites. Nor J Geol 66:271–276Google Scholar
  11. Barnes I, O’Neil JR (1969) The relationship between fluids in some fresh alpine-type ultramafics and possible modern serpentinization, Western United States. Geol Soc Am Bull 80:1947–1960CrossRefGoogle Scholar
  12. Barnes CG, Prestvik T, Sundvoll B, Surratt D (2005) Pervasive assimilation of carbonate and silicate rocks in the Hortavær igneous complex,north-central Norway. Lithos 80:179–199. doi: 10.1016/j.lithos.2003.11.002 CrossRefGoogle Scholar
  13. Bebout GE, Agard P, Kobayashi K, Moriguti T, Nakamura E (2013) Devolatilization history and trace element mobility in deeply subducted sedimentary rocks: Evidence from Western Alps HP/UHP suites. Chem Geol 342:1–20. doi: 10.1016/j.chemgeo.2013.01.009 CrossRefGoogle Scholar
  14. Beinlich A, Plümper O, Hövelmann J, Austrheim H, Jamtveit B (2012) Massive serpentinite carbonation at Linnajavri, N-Norway. Terra Nova 24:446–455. doi: 10.1111/j.1365-3121.2012.01083.x CrossRefGoogle Scholar
  15. Beltrando M, Manatschal G, Mohn G, Dal Piaz GV, Vitale Brovarone A, Masini E (2014) Recognizing remnants of magma-poor rifted margins in high-pressure orogenic belts:The Alpine case study. Earth Sci Rev 131:88–115. doi: 10.1016/j.earscirev.2014.01.001 CrossRefGoogle Scholar
  16. Beltrando M, Stockli DF, Decarlis A, Manatschal G (2015) A crustal-scale view at rift localization along the fossil Adriatic margin of the Alpine Tethys preserved in NW Italy. Tectonics 34:1927–1951. doi: 10.1002/2015tc003973 CrossRefGoogle Scholar
  17. Bingen B, Demaiffe D, van Breemen O (1998) The 616 Ma old Egersund basaltic dike swarm, SW Norway, and Late Neoproterozoic opening of the Iapetus Ocean. J Geol 106:565–574CrossRefGoogle Scholar
  18. Bjerga A (2014) Evolution of talc- and carbonate-bearing alterations in ultramafic rocks on Leka (Central Norway). Master’s Thesis, University of BergenGoogle Scholar
  19. Brueckner HK, van Roermund HLM (2004) Dunk tectonics: a multiple subduction/eduction model for the evolution of the Scandinavian Caledonides. Tectonics 23:20. doi: 10.1029/2003tc001502 CrossRefGoogle Scholar
  20. Bruton DL, Harper DAT (1981) Brachiopods and trilobites of the early Ordovician serpentine Otta Conglomerate, south central Norway. Norw J Geol 61:153–181Google Scholar
  21. Bucher-Nurminen K (1988) Metamorphism of ultramafic rocks in the Central Scandinavian Caledonides. Geol Sur Norw Spec Publ 3:86–95Google Scholar
  22. Bucher-Nurminen K (1991) Mantle fragments in the Scandinavian Caledonides. Tectonophysics 190:173–192CrossRefGoogle Scholar
  23. Chacko T, Cole DR, Horita J (2001) (re-)equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. Rev Mineral Geochem 43:1–81. doi:  10.2138/gsrmg.43.1.1 CrossRefGoogle Scholar
  24. Chenin P, Manatschal G, Picazo S, Karner G, Johnson C, Ulrich M (2017) Influence of the architecture of magma-poor hyperextended rifted margins on orogens produced by the closure of narrow versus wide oceans. Geosphere 13:559–576. doi: 10.1130/GES01363.1 CrossRefGoogle Scholar
  25. Clerc C, Boulvais P, Lagabrielle Y, de Saint Blanquat M (2014) Ophicalcites from the northern Pyrenean belt: a field, petrographic and stable isotope study. Int J Earth Sci (Geol Rundsch) 103:141–163. doi: 10.1007/s00531-013-0927-z CrossRefGoogle Scholar
  26. Collins NC, Bebout GE, Angiboust S, Agard P, Scambelluri M, Crispini L, John T (2015) Subduction zone metamorphic pathway for deep carbon cycling: II. Evidence from HP/UHP metabasaltic rocks and ophicarbonates. Chem Geol 412:132–150. doi: 10.1016/j.chemgeo.2015.06.012 CrossRefGoogle Scholar
  27. Cook-Kollars J, Bebout GE, Collins NC, Angiboust S, Agard P (2014) Subduction zone metamorphic pathway for deep carbon cycling: I. Evidence from HP/UHP metasedimentary rocks, Italian Alps. Chem Geol 386:31–48. doi: 10.1016/j.chemgeo.2014.07.013 CrossRefGoogle Scholar
  28. Corfu F, Torsvik TH, Andersen TB, Ashwal LD, Ramsay DM, Roberts RJ (2006) Early Silurian mafic-ultramafic and granitic plutonism in contemporaneous flysch,Magerøy, northern Norway: U–Pb ages and regional significance. J Geol Soc 163:291–301. doi:  10.1144/0016-764905-014 CrossRefGoogle Scholar
  29. Corfu F, Gerber M, Andersen TB, Torsvik TH, Ashwal LD (2011) Age and significance of Grenvillian and Silurian orogenic events in the Finnmarkian Caledonides, northern NorwayThis article is one of a series of papers published in this Special Issue on the theme ofGeochronologyin honour of Tom Krogh. Can J Earth Sci 48:419–440. doi: 10.1139/e10-043 CrossRefGoogle Scholar
  30. Corfu F, Gasser D, Chew DM (2014) New perspectives on the Caledonides of Scandinavia and related areas: introduction. Geol Soc Lond Spec Publ 390:1–8 doi: 10.1144/SP390.28 CrossRefGoogle Scholar
  31. Das Sharma S, Patil DJ, Gopalan K (2002) Temperature dependence of oxygen isotope fractionation of CO2 from magnesite-phosphoric acid reaction. Geochim Cosmochim Acta 66:589–593CrossRefGoogle Scholar
  32. Dunning GR, Pedersen R-BS (1988) 1988 - UPb ages of ophiolites and arc-related plutons of the Norwegian Caledonides implications for the development of Iapetus. Contrib Mineral Petrol 98:13–23CrossRefGoogle Scholar
  33. Enger AS (2016) Solitary mantle peridotites in Stølsheimen, Central South Norway. Master’s Thesis, University of OsloGoogle Scholar
  34. Færseth RB, Thon A, Larsen SG, Sivertsen A, Elvestad L (1977) Geology of the lower paleozoic rocks in the Samnanger-Osterøy Area, Major Bergen Arc,Western Norway. Geol Sur Nor Bull 334:19–58Google Scholar
  35. Fauconnier J, Labrousse L, Andersen TB, Beyssac O, Duprat-Oualid S, Yamato P (2014) Thermal structure of a major crustal shear zone, the basal thrust in the Scandinavian Caledonides. Earth Planet Sci Lett 385:162–171. doi: 10.1016/j.epsl.2013.10.038 CrossRefGoogle Scholar
  36. Fossen H (1992) The role of extensional tectonics in the Caledonides of south Norway. J Struct Geol 14:1033–1046CrossRefGoogle Scholar
  37. Fossen H (1993) Structural evolution of the Bergsdalen nappes, Southwest Norway. Geol Sur Nor Bull 424:23–49Google Scholar
  38. Gee DG, Guezou J-C, Roberts D, Wolff FC (1985) The central-southern part of the Scandinavian Caledonides. In: Gee DG, Sturt BA (eds) The Caledonian Orogen—Scandinavia and related areas, vol 1. Wiley, Chichester, pp 109–133Google Scholar
  39. Gee DG, Janak M, Majka J, Robinson P, van Roermund H (2012) Subduction along and within the Baltoscandian margin during closing of the Iapetus Ocean and Baltica-Laurentia collision. Lithosphere 5:169–178. doi: 10.1130/l220.1 CrossRefGoogle Scholar
  40. Gee DG, Andréasson P-G, Li Y, Krill A (2016) Baltoscandian margin, Sveconorwegian crust lost by subduction during Caledonian collisional orogeny. GFF 139:36–51. doi: 10.1080/11035897.2016.1200667 CrossRefGoogle Scholar
  41. Glodny J, Kühn A, Austrheim H (2008) Geochronology of fluid-induced eclogite and amphibolite facies metamorphic reactions in a subduction-collision system, Bergen Arcs, Norway. Contrib Mineral Petrol 156:27–48. doi: 10.1007/s00410-007-0272-y)CrossRefGoogle Scholar
  42. Hacker BR, Gans PB (2005) Continental collisions and the creation of ultrahigh-pressure terranes: petrology and thermochronology of nappes in the central Scandinavian Caledonides. Geol Soc Am Bull 117:117. doi: 10.1130/b25549.1 CrossRefGoogle Scholar
  43. Hacker BR, Andersen TB, Johnston S, Kylander-Clark ARC, Peterman EM, Walsh EO, Young D (2010) High-temperature deformation during continental-margin subduction & exhumation: the ultrahigh-pressure Western Gneiss Region of Norway. Tectonophysics 480:149–171. doi: 10.1016/j.tecto.2009.08.012 CrossRefGoogle Scholar
  44. Harper DAT, Bruton DL, Rasmussen CMØ (2008) The Otta brachiopod and trilobite fauna palaeogeography of Early Palaeozoic terranes and biotas across Baltoscandia. Fossils Strata 54:31–40Google Scholar
  45. Hoefs J (2009) Stable isotope geochemistry. 6 edn. Springer, Berlin, HeidelbergGoogle Scholar
  46. Hövelmann J (2012) Carbonation reactions in ultramafic rocks: Experimental insights into physicochemical processes, microtexture evolution and reaction mechanisms. PhD Thesis, University of OsloGoogle Scholar
  47. Jakob J, Alsaif M, Corfu F, Andersen TB (2017a) Age and origin of thin discontinuous gneiss sheets in the distal domain of the magma-poor hyperextended pre-Caledonian margin of Baltica, southern Norway. J Geol Soc 174:557–571. doi: 10.1144/jgs2016-049 CrossRefGoogle Scholar
  48. Jakob J, Andersen TB, Boulvais P, Beyssac O (2017b) Scandian metamorphism of metapelites and serpentinites in the pre-Caledonian magma-poor hyperextended margin of Baltica. Nordic Geological Wintermeeting, OsloGoogle Scholar
  49. Jammes S, Manatschal G, Lavier L, Masini E (2009) Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean Example of the west Pyrenees. Tectonics 24. doi: 10.1029/2008TC002406
  50. Jamtveit B, Austrheim H (2010) Metamorphism: the role of fluids. Elements 6:153–158. doi: 10.2113/gselements.6.3.153 CrossRefGoogle Scholar
  51. Johannes W (1969) Siderit-Magnesit-Mischkristallbildung im System Mg2+–Fe2+–CO2– 3–Cl2– 2–H2O. Contrib Mineral Petrol 21:311–318CrossRefGoogle Scholar
  52. Jolivet L, Raimbourg H, Labrousse L, Avigad D, Leroy Y, Austrheim H, Andersen TB (2005) Softening trigerred by eclogitization, the first step toward exhumation during continental subduction. Earth Planet Sci Lett 237:532–547. doi: 10.1016/j.epsl.2005.06.047 CrossRefGoogle Scholar
  53. Kerrick DM, Connolly JAD (1998) Subduction of ophicarbonates and recycling of CO2 and H2O. Geology 26:375–378. doi: 10.1130/0091-7613(1998)026<0375:Sooaro>2.3.Co;2 CrossRefGoogle Scholar
  54. Kjelberg Ø (2015) Petrography, structure and metamorphism of the melange rocks below the Jotun Nappe in Stølsheimen, Central South Norway. Master’s Thesis, University of OsloGoogle Scholar
  55. Kolderup CF, Kolderup N-H (1940) Geology of the Bergen arc system, vol 20. Bergens Museums Skrifter, Bergen p. 137Google Scholar
  56. Kumpulainen RA, Hamilton MA, Söderlund U, Nystuen JP (2016) A new U-Pb baddeleyite age from the Ottfjället dolerite dyke swarm in the Scandinavian Caledonides—a minimum age for late Neoproterozoic glaciation in Baltica. Nordic Geological Wintermeeting, Helsinki,Google Scholar
  57. Kvale A (1945) Petrologic and structural studies in the Bergsdalen quadrangle, Western norway, Part 1: petrography, vol 1. Bergens museums årbok, Bergen, p. 201Google Scholar
  58. Kylander-Clark ARC, Hacker BR, Johnson CM, Beard BL, Mahlen NJ (2009) Slow subduction of a thick ultrahigh-pressure terrane. Tectonics 28. doi: 10.1029/2007tc002251
  59. Lagabrielle Y, Bodinier J-L (2008) Submarine reworking of exhumed subcontinental mantle rocks: field evidence from the Lherz peridotites, French Pyrenees. Terra Nova 20:11–21. doi: 10.1111/j.1365-3121.2007.00781.x CrossRefGoogle Scholar
  60. Leinonen S (2015) P-T-XCO2 pseudosection modelling of talc-magnesite soapstone. In: Lollino G, Manconi A, Guzzetti F, Culshaw M, Bobrowsky P, Luino F (eds) Engineering geology for society and territory, vol 5. Urban Geology, Sustainable Planning and Landscape Exploitation. pp 247–252. doi: 10.1007/978-3-319-09048-1_48
  61. Lindahl I, Nilsson LP (2008) Geology of the soapstone deposits of the Linnajavri area, Hamarøy, Nordland, north Norwegian Caledonides. Geol Soc Geol Surv Nor Spec Publ 11: 19–35Google Scholar
  62. Manatschal G (2004) New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps. Int J Earth Sci (Geol Rundsch) 93 doi: 10.1007/s00531-004-0394-7
  63. Manatschal G, Froitzheim N, Rubenach M, Turrin BD (2001) The role of detachment faulting in the formation of an ocean–continent transition: insights from the Iberia Abyssal Plain. Geolo Soc Lond Spec Publ 187:405–428 doi: 10.1144/gsl.sp.2001.187.01.20 CrossRefGoogle Scholar
  64. Meert JG, Torsvik TH, Eide EA, Dahlgren S (1998) Tectonic significance of the Fen Province, S. Norway constraints from geochronology and paleomagnetism. J Geol 106:553–564CrossRefGoogle Scholar
  65. Melezhik VA, Heldal T, Roberts D, Gorokhov IM, Fallick AE (2000) Depositional environment and apparent age of the Fauske carbonate conglomerate, North Norwegian Caledonides. Geol Sur Nor Bull 436:147–168Google Scholar
  66. Melezhik VA, Gorokhov IM, Fallick AE, Roberts D, Kuznetsov AB, Zwaan KB, Pokrovsky BG (2002a) Isotopic stratigraphy suggests Neoproterozoic ages and Laurentian ancestry for high-grade marbles from the North-Central Norwegian Caledonides. Geol Mag 139:375–393. doi: 10.1017/S0016756802006726 CrossRefGoogle Scholar
  67. Melezhik VA, Roberts D, Gorokhov IM, Fallick AE, Zwaan KB, Kuznetsov AB, Pokrovsky BG (2002b) Isotopic evidence for a complex Neoproterozoic to Silurian rock assemblage in the North-Central Norwegian Caledonides. Precambrian Res 114:55–86. doi:  10.1016/S0301-9268(01)00218-2 CrossRefGoogle Scholar
  68. Meresse F, Lagabrielle Y, Malavieille J, Ildefonse B (2012) A fossil ocean–continent transition of the Mesozoic Tethys preserved in the Schistes Lustrés nappe of northern Corsica. Tectonophysics 579:4–16. doi: 10.1016/j.tecto.2012.06.013 CrossRefGoogle Scholar
  69. Mohn G, Manatschal G, Beltrando M, Masini E, Kusznir N (2012) Necking of continental crust in magma-poor rifted margins: evidence from the fossil Alpine Tethys margins. Tectonics 31. doi: 10.1029/2011tc002961
  70. Nystuen JP, Andresen A, Kumpulainen RA, Siedlecka A (2008) Neoproterozoic basin evolution in Fennoscandia, East Greenland and Svalbard. Episodes 31:35–43Google Scholar
  71. Osmundsen PT, Bakke B, Svendby AK, Andersen TB (2000) Architecture of the Middle Devonian Kvamshesten Group, western Norway sedimentary response to deformation above a ramp-flat extensional fault. Geol Soc Lond Spec Publ 180:503–535. doi:  10.1144/Gsl.Sp.2000.180.01.27 CrossRefGoogle Scholar
  72. Péron-Pinvidic G, Manatschal G (2009) The final rifting evolution at deep magma-poor passive margins from Iberia-Newfoundland: a new point of view. Int J Earth Sci (Geol Rundsch) 98:1581–1597. doi: 10.1007/s00531-008-0337-9)CrossRefGoogle Scholar
  73. Péron-Pinvidic G, Manatschal G (2010) From microcontinents to extensional allochthons: witnesses of how continents rift and break apart? Pet Geosci 16:189–197. doi: 10.1144/1354-079309-903 CrossRefGoogle Scholar
  74. Péron-Pinvidic G, Manatschal G, Osmundsen PT (2013) Structural comparison of archetypal Atlantic rifted margins: a review of observations and concepts. Mar Petrol Geol 43:21–47. doi: 10.1016/j.marpetgeo.2013.02.002 CrossRefGoogle Scholar
  75. Qvale H, Stigh J (1985) Ultramafic rocks in the Scandinavian Caledonides. In: Gee DG, Sturt BA (eds) The Caledonide Orogen—Scandinavia and related areas. Wiley, Chichester, pp 693–715Google Scholar
  76. Robinson P, Hollocher K, Roberts D, Harper DAT (2016) Bruton DL Caledonian speed test for mid Norway and New England. In: Geological Society of America, Annual General Meeting, ColoradoGoogle Scholar
  77. Root D, Corfu F (2011) U–Pb geochronology of two discrete Ordovician high-pressure metamorphic events in the seve nappe complex, Scandinavian Caledonides. Contrib Mineral Petrol 163:769–788. doi: 10.1007/s00410-011-0698-0 CrossRefGoogle Scholar
  78. Rosenbaum J, Sheppard SMF (1986) An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochim Cosmochim Acta 50:1147–1150. doi:  10.1016/0016-7037(86)90396-0 CrossRefGoogle Scholar
  79. Skelton ADL, Valley JW (2000) The relative timing of serpentinisation and mantle exhumation at the ocean-continent transition, Iberia: constraints from oxygen isotopes. Earth Planet Sci Lett 178:327–338. doi:  10.1016/S0012-821x(00)00087-X CrossRefGoogle Scholar
  80. Slagstad T et al. (2014) Tectonomagmatic evolution of the Early Ordovician suprasubduction-zone ophiolites of the Trondheim Region, Mid-Norwegian Caledonides. Geoll Soc Lond Spec Publ 390:541–561. doi:  10.1144/sp390.11 CrossRefGoogle Scholar
  81. Slama J, Pedersen R-BS (2015) Zircon provenance of SW Caledonian phyllites reveals a distant Timanian sediment source. J Geol Soc 172:465–478. doi: 10.1144/jgs2014-143 CrossRefGoogle Scholar
  82. Strand T (1951) The Sel and Vågå map areas –Geology and Petrology of a part of the Caledonides of central southern Norway. Geol Sur Nor Bull 178:116Google Scholar
  83. Sturt BA, Ramsay DM, Neuman RB (1991) The Otta Conglomerate, the Vågåmo Ophiolite—further indications of early Ordovician Orogenesis in the Scandinavian Caledonides. Nor J Geol 71:107–115Google Scholar
  84. Sutra E, Manatschal G, Mohn G, Unternehr P (2013) Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins. Geochem Geophys Geosyst 14:2575–2597. doi: 10.1002/ggge.20135 CrossRefGoogle Scholar
  85. Svenningsen OM (2001) Onset of seafloor spreading in the Iapetus ocean at 608 Ma Precise age of the Sarek Dyke Swarm, northern Swedish Caledonides. Precambrian Res 110:241–254. doi:  10.1016/S0301-9268(01)00189-9 CrossRefGoogle Scholar
  86. Taylor HJ, Frechen J, Degens ET (1967) Oxygen and carbon isotope studies of carbonatites from the Laacher see District, West Germany and the Alnö District, Sweden. Geochim Cosmochim Acta 31:407–480CrossRefGoogle Scholar
  87. Tegner C, Andersen TB, Corfu F, Planke S, Kjøll HJ Torsvik TH (2016) The pre-Caledonian Large Igneous Province and the North Atlantic Wilson Cycle. In: European Geoscience Union General Assembly, Vienna, Austria, 17–22 April 2016Google Scholar
  88. Torsvik TH, Cocks LRM (2005) Norway in space and time: a Centennial cavalcade. Nor J Geol 85:73-86wGoogle Scholar
  89. Torsvik TH, Rehnström EF (2003) The Tornquist Sea and Baltica–Avalonia docking. Tectonophysics 362:67–82. doi: 10.1016/s0040-1951(02)00631-5 CrossRefGoogle Scholar
  90. Torsvik TH et al (1996) Continental break-up and collision in the Neoproterozoic and Palaeozoic—a tale of Baltica and Laurentia. Earth Sci Rev 40:229–258. doi:  10.1016/0012-8252(96)00008-6 CrossRefGoogle Scholar
  91. Trønnes RG, Sundvoll B (1995) Isotopic composition, deposition ages and environments of Central Norwegian Caledonian marbles. Geol Surv Nor Bull 427:44–47Google Scholar
  92. Tullborg E-L, Larson SÅ, Björklund L, Samuelsson L, Stigh J (1995) Thermal evidence of Caledonide foreland, molasse sedimentation in Fennoscandia. Swedish Nuclear Fuel and Waste Managment Co., GråboGoogle Scholar
  93. Valley JW (1986) Stable isotope geochemistry of metamorphic rocks. In: O'Neil JR, Taylor HP Jr., Valley JW (eds) Stable isotopes in high temperature geological processes, reviews in mineralogy, vol 16, chapt 13. pp 445–490Google Scholar
  94. Veizer J et al (1999) 87Sr/86Sr, d13C and d18O evolution of Phanerozoic seawater. Chem Geol 161:59–88. doi: 10.1016/s0009-2541(99)00081-9 CrossRefGoogle Scholar
  95. Vitale Brovarone A, Picatto M, Beyssac O, Lagabrielle Y, Castelli D (2014) The blueschist–eclogite transition in the Alpine chain: P–T paths and the role of slow-spreading extensional structures in the evolution of HP–LT mountain belts. Tectonophysics 615–616:96–121. doi: 10.1016/j.tecto.2014.01.001 CrossRefGoogle Scholar
  96. Whitmarsh RB, Manatschal G, Minshull TA (2001) Evolution of magma-poor continental margins from rifting to seafloor spreading. Nature 413:150–154. doi: 10.1038/35093085 CrossRefGoogle Scholar
  97. Wicks FJ, Whittaker EJW (1977) Serpentine textures and serpentinization. Can Mineral 15:459–488Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.The Centre for Earth Evolution and Dynamics (CEED)University of OsloOsloNorway
  2. 2.Géosciences RennesUniversité de Rennes 1, UMR CNRS 6118Rennes CedexFrance

Personalised recommendations