Advertisement

International Journal of Earth Sciences

, Volume 107, Issue 4, pp 1231–1266 | Cite as

Failed Silurian continental rifting at the NW margin of Gondwana: evidence from basaltic volcanism of the Prague Basin (Teplá–Barrandian Unit, Bohemian Massif)

  • Zuzana TasáryováEmail author
  • Vojtěch Janoušek
  • Jiří Frýda
Original Paper

Abstract

The Silurian volcanic rocks of the Prague Basin represent within-plate, transitional alkali to tholeiitic basalts, which erupted in a continental rift setting through the thick Cadomian crust of the Teplá–Barrandian Unit (Bohemian Massif). Despite the variable, often intense alteration resulting in post-magmatic replacement of the basalt mass due to carbonatization, the geochemical signatures of Silurian basalts are still sufficiently preserved to constrain primary magmatic processes and geotectonic setting. The studied interval of Silurian volcanic activity ranges from Wenlock (Homerian, ~431 Ma) to late Ludlow (Gorstian, ~425 Ma) with a distinct peak at the Wenlock/Ludlow boundary (~428 Ma). Trace-element characteristics unambiguously indicate partial melting of a garnet peridotite mantle source. Wenlock basalts are similar to alkaline OIB with depleted radiogenic Nd signature compared to Ludlow basalts, which are rather tholeiitic, EMORB-like with enriched radiogenic Nd signature. The correlation of petrogenetically significant trace-element ratios with Nd isotopic compositions points to a mixing of partial melts of an isotopically heterogeneous, possibly two-component mantle source during the Wenlock–Ludlow melting. Lava eruptions were accompanied by intrusions of doleritic basalt and meimechite sills. The latter represent olivine-rich cumulates of basaltic magmas of probably predominantly Ludlow age. Meimechites with dolerites and, to a lesser extent, some lavas were subject to alteration due to wall-rock–fluid interaction. The trigger for the Wenlock-to-Ludlow (431–425 Ma) extension and related volcanism in the Prague Basin is related to far-field forces, namely slab-pull regime due to progressive closure of the Iapetus Ocean. The main stage of the Baltica–Laurentia collision then caused the Prague Basin rift failure at ca. 425 Ma that has never reached an oceanic stage.

Keywords

Bohemian Massif Teplá–Barrandian Unit Prague Basin Silurian volcanic rocks Geochemistry Nd isotopes Gondwana Continental rift 

Notes

Acknowledgements

We gratefully acknowledge Petr Štorch and Štěpán Manda for showing us some of the outcrops and providing biostratigraphic control on underlying and overlying strata. We also thank Milan Fišera for petrographic consultations on thin sections, Jitka Míková and Lenka Vondrovicová for Nd isotope sample decompositions, Vojtěch Erban and Jakub Trubač for Nd isotope analyses and help in field, Jana Danišová for sample pulverization in agate mill, and Věra Zoulková and Rosina Kašičková for whole-rock analyses. The senior author thanks Marek Awdankiewicz and Axel Renno for helpful reviews of her dissertation thesis (Silurian and Devonian volcanism in the Prague Basin). Listed analytical works were financed by the Grant Agency of the Czech Republic (GACR) through Grant no. P210/10/2351 (to Petr Pruner). Time capacity for manuscript completion was enabled by the Czech Geological Survey through Project no. 339900 and the Czech Ministry of Education, Youth and Sports project LK 11202 (ROPAKO to K. Schulmann). Finally, we gratefully acknowledge anonymous reviewers for their very constructive reviews, which helped to improve the original manuscript significantly.

References

  1. Aïfa T, Pruner P, Chadima M, Štorch P (2007) Structural evolution of the Prague Synform (Czech Republic) during Silurian times: an AMS, rock magnetism, and palaeomagnetic study of the Svatý Jan pod Skalou dikes. In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian–Cadomian active margin to Alleghenian–Variscan Collision. Geol Soc Amer Spec Pap, vol 423, pp 249–265Google Scholar
  2. Anderson DL (1995) Lithosphere, asthenosphere, and perisphere. Rev Geophys 33:125–149Google Scholar
  3. Babuška V, Plomerová J (2013) Boundaries of mantle-lithosphere domains in the Bohemian Massif as extinct exhumation channels for high-pressure rocks. Gondwana Res 23:973–987Google Scholar
  4. Bendl J, Vokurka K, Sundvoll B (1993) Strontium and neodymium isotope study of Bohemian basalts. Miner Petrol 48:35–45Google Scholar
  5. Berkyová S (2009) Lower-Middle Devonian (upper Emsian-Eifelian, serotinus–kockelianus zones) conodont faunas from the Prague Basin, the Czech Republic. Bull Geosci 84:667–686Google Scholar
  6. Boynton WV (1984) Geochemistry of the rare elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114Google Scholar
  7. Brueckner HK, van Roermund HL (2004) Dunk tectonics: a multiple subduction/eduction model for the evolution of the Scandinavian Caledonides. Tectonics. doi: 10.1029/2003TC001502 Google Scholar
  8. Chaloupský J (1978) The Precambrian tectogenesis in the Bohemian Massif. Geol Rundsch 67:72–90Google Scholar
  9. Chlupáč I, Havlíček V, Kříž J, Kukal Z, Štorch P (1998) Palaeozoic of the Barrandian (Cambrian to Devonian). Czech Geological Survey, PragueGoogle Scholar
  10. Cocks LRM, Torsvik TH (2002) Earth geography from 500 to 400 million years ago: a faunal and paleomagnetic review. J Geol Soc Lond 159:631–644Google Scholar
  11. Cocks LRM, Torsvik TH (2006) European geography in a global context from the Vendian to the end of Palaeozoic. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geol Soc Lond Mem, vol 32, pp 83–95Google Scholar
  12. Cocks LRM, Torsvik TH (2013) New global palaeogeographical reconstructions for the Early Palaeozoic and their generation. In: Harper DAT, Servais T (eds) Early Palaeozoic biogeography and palaeogeography. Geol Soc Lond Mem, vol 38, pp 5–24Google Scholar
  13. Comin-Chiaramonti P, Cundari A, Ruberti E, De Min A, Gittins J, Gomes CB, Gwalani L (2009) Genesis of analcime and nepheline–potassium–feldspar–kalsilite intergrowths: a review. Acta Vulcanol 21:81–90Google Scholar
  14. Cramer BD, Condon DJ, Söderlund U, Marshall C, Worton GJ, Thomas AT, Calner M, Ray DC, Perrier V, Boomer I, Patchett PJ, Jeppsson L (2012) U-Pb (zircon) age constraints on the timing and duration of Wenlock (Silurian) paleocommunity collapse and recovery during the “Big Crisis”. Geol Soc Am Bull 124:1841–1857Google Scholar
  15. Cramer BD, Schmitz MD, Huff WD, Bergström SM (2015a) High-precision U-Pb zircon age constraints on the duration of rapid biogeochemical events during the Ludlow Epoch (Silurian Period). J Geol Soc Lond 172:157–160Google Scholar
  16. Cramer BD, Vandenbroucke TRA, Ludvigson GA (2015b) High-resolution event stratigraphy (HiRES) and the quantification of stratigraphic uncertainty: silurian examples of the quest for precision in stratigraphy. Earth-Sci Rev 141:136–153Google Scholar
  17. Crowley QG, Floyd PA, Winchester JA, Franke W, Holland JG (2000) Early Palaeozoic rift-related magmatism in Variscan Europe: fragmentation of the Armorican Terrane Assemblage. Terra Nova 12:171–180Google Scholar
  18. Dempírová L, Šikl J, Kašičková R, Zoulková V, Kříbek B (2010) The evaluation of precision and relative error of the main components of silicate analyses in Central Laboratory of the Czech Geological Survey. Geosci Res Rep 2009:326–330 (in Czech) Google Scholar
  19. DePaolo DJ (1988) Neodymium isotope geochemistry. Springer, BerlinGoogle Scholar
  20. Dewey JF, Strachan RA (2003) Changing Silurian–Devonian relative plate motion in the Caledonides: sinistral transpression to sinistral transtension. J Geol Soc Lond 160:219–229Google Scholar
  21. Dörr W, Zulauf G (2010) Elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: the role of the Bohemian shear zone. Geol Rundsch 99:299–325Google Scholar
  22. Dörr W, Zulauf G, Fiala J, Franke W, Vejnar Z (2002) Neoproterozoic to Early Cambrian history of an active plate margin in the Teplá–Barrandian Unit—a correlation of U-Pb isotopic-dilution-TIMS ages (Bohemia, Czech Republic). Tectonophysics 352:65–85Google Scholar
  23. Drost K (2008) Sources and geotectonic setting of Late Neoproterozoic-Early Paleozoic volcano-sedimentary successions of the Teplá–Barrandian Unit (Bohemian Massif): evidence from petrographical, geochemical, and isotope analyses. Geol Saxon 54:1–165Google Scholar
  24. Drost K, Linnemann U, McNaughton N, Fatka O, Kraft P, Gehmlich M, Tonk C, Marek J (2004) New data on the Neoproterozoic–Cambrian geotectonic setting of the Teplá–Barrandian volcano-sedimentary successions: geochemistry, U-Pb zircon ages, and provenance (Bohemian Massif, Czech Republic). Int J Earth Sci 93:742–757Google Scholar
  25. Drost K, Gerdes A, Jeffries T, Linnemann U, Storey C (2011) Provenance of Neoproterozoic and early Paleozoic siliciclastic rocks of the Teplá–Barrandian Unit (Bohemian Massif): evidence from U-Pb detrital zircon ages. Gondwana Res 19:213–231Google Scholar
  26. Ebbestad J, Ove R, Frýda J, Wagner PJ, Horný RJ, Isakar M, Stewart S, Percival IG, Bertero V, Rohr DM, Peel JS, Blodgett RB, Högström AES (2013) Biogeography of Ordovician and Silurian gastropods, monoplacophorans and mimospirids. Geol Soc Lond Mem 38:199–220Google Scholar
  27. Edel JB, Schulmann K, Holub FV (2003) Anticlockwise and clockwise rotations of the Eastern Variscides accommodated by dextral lithospheric wrenching: palaeomagnetic and structural evidence. J Geol Soc Lond 170:785–804Google Scholar
  28. Elbra T, Schnabl P, Tasáryová Z, Čížková K, Pruner P (2015) New results for Palaeozoic volcanic phases in the Prague Basin—magnetic and geochemical studies of Lištice, Czech Republic. Est J Earth Sci 64:31–35Google Scholar
  29. Eriksson ME, Hints O, Paxton H, Tonarová P (2013) Ordovician and Silurian polychaete diversity and biogeography. Geol Soc Lond Mem 38:265–272Google Scholar
  30. Fatka O, Mergl M (2009) The ̒microcontinentʼ Perunica: status and story 15 years after conception. In: Basset MG (ed) Early Palaeozoic peri-Gondwana terranes: new insights from tectonics and biogeography. Geol Soc Lond Spec Publ, vol 325, pp 65–101Google Scholar
  31. Faure G, Mensing TM (2004) Isotopes: principles and applications. Wiley, New YorkGoogle Scholar
  32. Fiala F (1947) Diabasové pikrity v Barrandienu (Mořinka, Rovina, Sedlec). Věst Král Čes Společ nauk 19:1–55 (in Czech) Google Scholar
  33. Fiala F (1966) Silurské diabasové vulkanity úseku Loděnice-Bubovice. Geosci Res Reports 1964:94–96 (in Czech) Google Scholar
  34. Fiala F (1970) Silurian and Devonian diabases of the Barrandian Basin. J Geol Sci Geol 17:7–71 (in Czech) Google Scholar
  35. Fiala F (1971) Ordovician diabase volcanism and biotite lamprophyres of the Barrandian. J Geol Sci Geol 19:7–97 (in Czech) Google Scholar
  36. Fiala F (1976) The Silurian doleritic diabases and ultrabasic rocks of the Barrandian area. Krystalinikum 12:47–77 (in Czech) Google Scholar
  37. Filip J, Suchý V (2004) Thermal and tectonic history of the Barrandian Lower Palaeozoic, Czech Republic: is there a fission-track evidence for Carboniferous–Permian overburden and pre-Westphalian Alpinotype thrusting? B Geosci 79:107–112Google Scholar
  38. Floyd PA, Winchester JA, Seston R, Kryza R, Crowley QG (2000) Review of geochemical variation in Lower Palaeozoic metabasites from the NE Bohemian Massif: intracratonic rifting and plume-ridge interaction. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geol Soc Lond Spec Publ, vol 179, pp 155–174Google Scholar
  39. Foley S (1992) Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos 28:435–453Google Scholar
  40. Franke W (1989) Variscan plate tectonics in Central Europe—current ideas and open questions. Tectonophysics 169:221–228Google Scholar
  41. Franke W (2006) The Variscan orogeny in Central Europe: construction and collapse. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geol Soc Lond Mem, vol 32, pp 333–343Google Scholar
  42. Gill R (2010) Igneous rocks and processes: a practical guide. Wiley, ChichesterGoogle Scholar
  43. Goldman D, Maletz J, Melchin MJ, Fan JX (2013) Graptolite palaeobiogeography. Geol Soc Lond Mem 38:415–428Google Scholar
  44. Hajná J, Žák J, Kachlík V (2011) Structure and stratigraphy of the Teplá–Barrandian Neoproterozoic, Bohemian Massif: a new plate-tectonic reinterpretation. Gondwana Res 19:495–508Google Scholar
  45. Hajná J, Žák J, Kachlík V, Chadima M (2012) Deciphering the Variscan tectonothermal overprint and deformation partitioning in the Cadomian basement of the Teplá–Barrandian Unit, Bohemian Massif. Int J Earth Sci 101:1855–1873Google Scholar
  46. Hajná J, Žák J, Kachlík V, Dörr W, Gerdes A (2013) Neoproterozoic to early Cambrian Franciscan-type mélanges in the Teplá–Barrandian Unit, Bohemian Massif: evidence of modern-style accretionary processes along the Cadomian active margin of Gondwana? Precambrian Res 224:653–670Google Scholar
  47. Hajná J, Žák J, Kachlík V (2014) Growth of accretionary wedges and pulsed ophiolitic mélange formation by successive subduction of trench-parallel volcanic elevations. Terra Nova 26:322–329Google Scholar
  48. Halavínová M, Melichar R, Slobodník M (2008) Hydrothermal veins linked with the Variscan structure of the Prague Basin (Barrandien, Czech Republic): resolving fluid–wall rock interaction. Geol Q 52:309–320Google Scholar
  49. Halliday AN, Lee DC, Tomasini S, Davies GR, Paslick CR, Fitton JG, James DE (1995) Incompatible trace elements in OIB and MORB and source enrichment in the sub-oceanic mantle. Earth Planet Sci Lett 133:379–395Google Scholar
  50. Havlíček V (1981) Development of a linear sedimentary depression exemplified by the Prague Basin (Ordovician–Middle Devonian; Barrandian area—central Bohemia). J Geol Sci Geol 35:7–48Google Scholar
  51. Havlíček V, Kříž J (1973) Upper Llandovery and Lower Devonian near Hýskov (Barrandian). J Geol Sci Geol 48:103–107Google Scholar
  52. Havlíček V, Vaněk J, Fatka O (1994) Perunica microcontinent in the Ordovician (its position within the Mediterranean Province, series division, benthic and pelagic associations). J Geol Sci Geol 46:25–56Google Scholar
  53. Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229Google Scholar
  54. Hutchison CS (1975) The norm, its variations, their calculation and relationships. Schweiz Mineral Petrogr Mitt 55:243–256Google Scholar
  55. Jacobsen SB, Wasserburg GJ (1980) Sm–Nd isotopic evolution of chondrites. Earth Planet Sci Lett 50:139–1556Google Scholar
  56. Janoušek V, Farrow MC, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). J Petrol 47:1255–1259Google Scholar
  57. Johnson MRW, Harley SL (2012) Orogenesis: the making of mountains. Cambridge University Press, CambridgeGoogle Scholar
  58. Kachlík V, Patočka F (1998) Cambrian/Ordovician intracontinental rifting and Devonian closure of the rifting generated basins in the Bohemian Massif realms. Acta Univ Carol Geol 42:433–441Google Scholar
  59. Kamber BS, Collerson KD (2000) Zr/Nb systematics of Ocean Island Basalts reassessed—the cse for binary mixing. J Petrol 41:1007–1021Google Scholar
  60. Kletetschka G, Schnabl P, Šifnerová K, Tasáryová Z, Manda Š, Pruner P (2013) Magnetic scanning and interpretation of paleomagnetic data from Prague Synformʼs volcanics. Stud Geophys Geod 57:103–117Google Scholar
  61. Košler J, Konopásek J, Sláma J, Vrána S (2014) U-Pb zircon provenance of Moldanubian metasediments in the Bohemian Massif. J Geol Soc London 171:83–951Google Scholar
  62. Kotková J, O´Brien PJ, Ziemann MA (2011) Diamond and coesite discovered in Saxony-type granulite: solution to the Variscan garnet peridotite enigma. Geology 39:667–670Google Scholar
  63. Kozłowska-Dawidziuk A, Lenz A, Štorch P (2001) Upper Wenlock and Lower Ludlow (Silurian), post-extinction graptolites, Všeradice section, Barrandian area, Czech Republic. J Paleontol 75:147–164Google Scholar
  64. Kříbek B, Pouba Z, Skoček V, Waldhausrová J (2000) Neoproterozoic of the Teplá–Barrandian Unit as a part of the Cadomian orogenic belt: a review and correlation aspects. Bull Geosci 75:175–196Google Scholar
  65. Kříž J (1991) The Silurian of the Prague Basin (Bohemia)—tectonic, eustatic and volcanic controls on facies and faunal development. In: Basset MGJ, Lane PD, Edwards D (eds) The Murchison Symposium Proceedings of International Conference on the Silurian System. Spec Pap Palaeontol, vol 44, pp 179–203Google Scholar
  66. Kříž J (1992) Silurian Field Excursions. Prague Basin (Barrandian). Bohemia Geol Ser Nation Mus Wales 13:1–111Google Scholar
  67. Kříž J (1998) Silurian. In: Chlupáč I, Havlíček V, Kříž J, Kukal Z, Štorch P (eds) Palaeozoic of the Barrandian (Cambrian to Devonian). Czech Geological Survey, Prague, pp 79–101Google Scholar
  68. Kříž J, Degardin JM, Ferretti A, Hansch W, Gutiérrez Marco JC, Paris F, Piçarra D-Almeida JM, Robardet M, Schönlaub HP, Serpagli E (2003) Silurian stratigraphy and paleogeography of Gondwanan and Perunican Europe. In: Landing E, Johnson ME (eds) Silurian lands and seas: paleogeography outside the Laurentia. NY St Mus Bull, vol 493, pp 105–178Google Scholar
  69. Kröger B (2013) Cambrian-Ordovician cephalopod palaeogeography and diversity. Geol Soc Lond Mem 38:429–448Google Scholar
  70. Kroner U, Romer RL (2013) Two plates—many subduction zones: the Variscan orogeny reconsidered. Gondwana Res 24:298–329Google Scholar
  71. Kroner U, Mansy JL, Mazur S, Aleksandrowski P, Hann HP, Huckriede H, Lacquement F, Lamarche J, Ledru P, Pharao TC, Zedler H, Zeh A, Zulauf G (2008) Variscan Tectonics. In: McCann T (ed) Geology of Central Europe. Geological Society, London, pp 599–664Google Scholar
  72. Krs M, Pruner P (1995) Palaeomagnetism and palaeogeography of the Variscan formations of the Bohemian Massif, comparison with other European regions. J Czech Geol Soc 40:3–46Google Scholar
  73. Krs M, Pruner P (1999) To the paleomagnetic investigations of paleogeography of the Barrandian Terrane, Bohemian Massif. Acta Univ Carol Geol 43:519–522Google Scholar
  74. Krs M, Pruner P, Man O (2001) Tectonic and palaeogeographic interpretation of the paleomagnetism of Variscan and pre-Variscan formations of the Bohemian Massif, with special reference to the Barrandian Terrane. Tectonophysics 332:93–114Google Scholar
  75. Kryza R, Pin C (2010) The Central-Sudetic ophiolites (SW Poland): petrogenetic issues, geochronology and palaeotectonic implications. Gondwana Res 17:292–305Google Scholar
  76. Le Bas MJ (2000) IUGS reclassification of the high-Mg and picritic volcanic rocks. J Petrol 41:1467–1470Google Scholar
  77. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali–silica diagram. J Petrol 27:745–750Google Scholar
  78. Le Maitre RW (2005) Igneous rocks—a classification and glossary of terms. Recommendations of the IUGS subcommission on the systematics of igneous rocks. Cambridge University Press, CambridgeGoogle Scholar
  79. Liew TC, Hofmann AW (1988) Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of Central Europe: indications from a Nd and Sr isotopic study. Contrib Mineral Petrol 98:129–138Google Scholar
  80. Linnemann U, Romer RL, Gehmlich M, Drost K (2004) Paläogeographic und Provenance des Saxothuringikums unter besonderer Beachtung der Geochronologie von prävariszischen Zirkonen und der Nd-Isotopie von Sedimenten. In: Linnemann U (ed) Das Saxothuringikum: Abriss der präkambrischen und paläozoischen Geologie von Sachsen and Thüringen. Geol Saxon, vol 48/49, pp 121–132Google Scholar
  81. Linnemann U, Gerdes A, Drost K, Buschmann B (2007) The continuum between Cadomian orogenesis and opening of the Rheic Ocean: constraints from LA-ICP-MS U–Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, northeastern Bohemian Massif, Germany). In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The Evolution of the Rheic Ocean: From Avalonian–Cadomian Active Margin to Alleghenian–Variscan Collision. Geol Soc Amer Spec Pap, vol 423, pp 61–97Google Scholar
  82. Linnemann U, DʼLemos RS, Drost K, Jeffries T, Gerdes A, Romer RL, Samson SD, Strachan RA (2008) Cadomian tectonics. In: McCann T (ed) The geology of Central Europe. Geol Soc Lond, pp 345–383Google Scholar
  83. Linnemann U, Hofmann M, Romer RL, Gerdes A (2010) Transitional stages between the Cadomian and Variscan orogenies: basin development and tectono-magmatic evolution of the southern margin of the Rheic Ocean in the Saxo-Thuringian Zone (North Gondwana shelf). In: Linnemann U, Romer RL (eds) Pre-Mesozoic geology of Saxo-Thuringia—from the Cadomian Active Margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 59–98Google Scholar
  84. Loeschke J (1989) Lower Palaeozoic volcanism of the Eastern Alps and its geodynamic implications. Geol Rundsch 78:599–616Google Scholar
  85. Lugmair GW, Marti K (1978) Lunar initial 143Nd/144Nd: differential evolution line of the lunar crust and mantle. Earth Planet Sci Lett 39:349–357Google Scholar
  86. Manda Š, Štorch P, Slavík L, Frýda J, Kříž J, Tasáryová Z (2012) The graptolite, conodont and sedimentary record through the late Ludlow Kozlowskii Event (Silurian) in the shale-dominated succession of Bohemia. Geol Mag 149:507–534Google Scholar
  87. Matte P (1986) Tectonics and plate-tectonics model for the Variscan belt of Europe. Tectonophysics 126:329–374Google Scholar
  88. Matte P (2001) The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova 13:122–128Google Scholar
  89. Matte P, Maluski H, Rajlich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: result of large-scale Variscan shearing. Tectonophysics 177:151–170Google Scholar
  90. McKenzie D, O’Nions RK (1998) Melt production beneath oceanic islands. Phys Earth Planet In 107:143–182Google Scholar
  91. Meidla T, Tinn O, Salas MJ, Williams M, Siveter D, Vandenbroucke TRA, Sabbe K (2013) Biogeographical patterns of Ordovician ostracods Geol Soc Lond Mem 38:337–354Google Scholar
  92. Melchin MJ, Sadler PM, Cramer BD (2012) The Silurian period. In: Gradstein FM, Ogg JG, Schmitz M, Ogg G (eds) The geologic time scale 2012. Elsevier, New York, pp 525–558Google Scholar
  93. Meschede M (1986) A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb–Zr–Y diagram. Chem Geol 56:207–218Google Scholar
  94. Míková J, Denková P (2007) Modified chromatographic separation scheme for Sr and Nd isotope analysis in geological silicate samples. J Geosci 52:221–226Google Scholar
  95. Molyneux SG, Delabroye A, Wicander R, Servais T (2013) Biogeography of early to mid Palaeozoic (Cambrian–Devonian) marine phytoplankton. Geol Soc Lond Mem 38:365–397Google Scholar
  96. Murphy JB, Gutiérrez-Alonso G, Nance RD, Fernandez-Suarez J, Keppie JD, Quesada C, Strachan RA, Dostal J (2006) Origin of the Rheic Ocean: rifting along a Neoproterozoic suture? Geology 34:325–328Google Scholar
  97. Nance RD, Murphy JB (1994) Constraining basement isotopic signatures and the palinspastic restoration of peripheral orogens: example from the Neoproterozoic Avalonian–Cadomian belt. Geology 22:617–620Google Scholar
  98. Nance RD, Murphy JB, Strachan RA, DʼLemos RS, Taylor GK (1991) Late Proterozoic tectonostratigraphic evolution of the Avalonian and Cadomian terranes. Precambrian Res 53:41–78Google Scholar
  99. Nance RD, Gutiérrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, Strachan RA, Woodcock NH (2010) Evolution of the Rheic Ocean. Gondwana Res 17:194–222Google Scholar
  100. O’Hara MJ (1977) Geochemical evolution during fractional crystallization of a periodically refilled magma chamber. Nature 266:503–507Google Scholar
  101. Patočka F, Vlašímský P, Blechová K (1993) Geochemistry of Early Paleozoic volcanics of the Barrandian Basin (Bohemian Massif, Czech Republic): implications for paleotectonic reconstructions. Jb Geol B-A 136:873–896Google Scholar
  102. Patočka F, Pruner P, Štorch P (2003) Palaeomagnetism and geochemistry of Early Palaeozoic rocks of the Barrandian (Teplá–Barrandian Unit, Bohemian Massif): palaeotectonic implications. Phys Chem Earth 28:735–749Google Scholar
  103. Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites, orogenic andesites and related rocks. Wiley, Chichester, pp 525–548Google Scholar
  104. Pearce JA (1996) A user’s guide to basalt discrimination diagrams. In: Wyman D (ed) Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Geol Assoc Canada Short Course Notes, vol 12, pp 79–113Google Scholar
  105. Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with application to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48Google Scholar
  106. Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib Miner Petr 69:33–47Google Scholar
  107. Pharaoh TC (1999) Palaeozoic terranes and their lithospheric boundaries within the Trans-European Suture Zone (TESZ): a review. Tectonophysics 314:17–41Google Scholar
  108. Pin C, Majerowicz Wojciechowska I (1988) Upper Paleozoic oceanic-crust in the Polish Sudetes—Nd–Sr isotope and trace-element evidence. Lithos 21:195–209Google Scholar
  109. Pin C, Waldhausrová J (2007) Sm–Nd isotope and trace element study of Late Proterozoic metabasalts (“spilites”) from the Central Barrandian Domain (Bohemian Massif, Czech Republic). In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian–Cadomian Active Margin to Alleghenian–Variscan Collision. Geol Soc Amer Spec Pap, vol 423, pp 231–247Google Scholar
  110. Pin C, Zalduegui JFS (1997) Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Anal Chim Acta 339:79–89Google Scholar
  111. Pin C, Briot D, Bassin C, Poitrasson F (1994) Concomitant separation of strontium and samarium–neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography. Anal Chim Acta 298:209–217Google Scholar
  112. Pin V, Kryza R, Oberc-Dziedzic T, Mazur S, Turniak K, Waldhausrová J (2007) The diversity and geodynamic significance of Late Cambrian (ca. 500 Ma) felsic anorogenic magmatism in the northern part of the Bohemian Massif: a review based on Sm–Nd isotope and geochemical data. In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: From Avalonian–Cadomian Active Margin to Alleghenian–Variscan Collision. Geol Soc Amer Spec Pap, vol 423, pp 209–229Google Scholar
  113. Prytulak J, Elliott T (2007) TiO2 enrichment in ocean island basalts. Earth Planet Sci Lett 263:388–403Google Scholar
  114. Robardet M (2003) The Armorica ̒microplateʼ: fact or fiction? Critical review of the concept and contradictory palaeobiogeographical data. Palaeogeogr Palaeocl 195:25–148Google Scholar
  115. Rozkošný I, Machovič V, Pavlíková H, Hemelíková B (1994) Chemical structure of megabitumens from Silurian Crinoidea, Prague Basin, Barrandian (Bohemia). Org Geochem 21:1131–1140Google Scholar
  116. Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux JM, Edel JB, Štípská P, Ulrich S (2009) An Andean type Palaeozoic convergence in the Bohemian Massif. Compt Rendus Geosci 341:266–286Google Scholar
  117. Schulmann K, Lexa O, Janoušek V, Lardeaux JM, Edel JN (2014) Anatomy of a diffuse cryptic suture zone: an example from the Bohemian Massif, European Variscides. Geology 42:275–278Google Scholar
  118. Shervais JW (1982) Ti–V plots and the petrogenesis of modern ophiolitic lavas. Earth Planet Sc Lett 59:101–118Google Scholar
  119. Sitenský I (1975) A contribution to geology of volcanites in the area between Jinonice and Řeporyje. Master thesis, Charles University in Prague (in Czech)Google Scholar
  120. Skácelová Z, Mlčoch B, Tasáryová Z (2009) Digital elevation model of the crystalline basement and Permo-Carboniferous surface (Bohemian Massif, NE part of the Czech Republic). Acta Geodyn Geomater 6:265–272Google Scholar
  121. Skácelová Z, Mlčoch B, Tasáryová Z (2011) Digital model of the crystalline basement and Permo-Carboniferous volcano-sedimentary strata in the Mnichovo Hradiště Basin and correlation with the geophysical fields (Czech Republic, northern Bohemia). Acta Geodyn Geomater 8:225–235Google Scholar
  122. Sláma J, Dunkley DJ, Kachlík V, Kusiak MA (2008) Transition from island-arc to passive setting on the continental margin of Gondwana: U-Pb zircon dating of Neoproterozoic metaconglomerates from the SE margin of the Teplá–Barrandian Unit, Bohemian Massif. Tectonophysics 461:44–59Google Scholar
  123. Stampfli GM, Raumer J von, Borel GD (2002) Paleozoic evolution of pre-Variscan terranes: from Gondwana to the Variscan collision. In: Martínez Catalán JR, Hatcher RD Jr., Arenas R, Díaz García F (eds) Variscan–Appalachian dynamics: the building of the Late Paleozoic basement. Geol Soc Am Spec Pap, vol 364, pp 263–280Google Scholar
  124. Stampfli GM, Raumer J von, Wilhem C (2011) The Distribution of Gondwana-derived terranes in the Early Paleozoic. In: Gutiérrez-Marco C, Rábano I, García-Bellido D (eds) Ordovician of the World. Cuadernos del Museo Geominero, vol 14, pp 567–574Google Scholar
  125. Štorch P (1994) Graptolite biostratigraphy of the Lower Silurian (Llandovery and Wenlock) of Bohemia. Geol J 29:137–165Google Scholar
  126. Štorch P (1998) Volcanism. In: Chlupáč I, Havlíček V, Kříž J, Kukal Z, Štorch P (eds) Palaeozoic of the Barrandian (Cambrian to Devonian). Czech Geological Survey, Prague, pp 149–168Google Scholar
  127. Štorch P (2000) Graptolites, stratigraphy and depositional setting of the middle Llandovery (Silurian) volcanic-carbonate facies at Hýskov (Barrandian area, Czech Republic). Bull Geosci 76:55–76Google Scholar
  128. Štorch P, Manda Š, Loydell DK (2014) The early Ludfordian leintwardinensis graptolite event and the Gorstian–Ludfordian boundary in Bohemia (Silurian, Czech Republic). Palaeontology 57:1003–1043Google Scholar
  129. Strnad L, Mihaljevič M (2005) Sedimentary provenance of Mid-Devonian clastic sediments in the Teplá–Barrandian Unit (Bohemian Massif): U-Pb and Pb–Pb geochronology of detrital zircons by laser ablation ICP-MS. Miner Petrol 84:47–68Google Scholar
  130. Suchý V, Dobeš P, Filip J, Stejskal M, Zeman A (2002) Conditions for veining in the Barrandian Basin (Lower Palaeozoic), Czech Republic: evidence from fluid inclusion and apatite fission track analysis. Tectonophysics 348:25–50Google Scholar
  131. Suchý V, Sýkorová I, Melka K, Filip J, Machovič V (2007) Illite ̒crystallinityʼ, maturation of organic matter and microstructural development associated with lowest-grade metamorphism of Neoproterozoic sediments in the Teplá–Barrandian Unit, Czech Republic. Clay Miner 42:503–526Google Scholar
  132. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry M (eds) Magmatism in the Ocean Basins. Geol Soc Lond Spec Publ, vol 42, pp 313–345Google Scholar
  133. Svoboda J, Prantl F (1948) O stratigrafii a tektonice staršího paleozoika v okolí Chýnice. Sbor Stát Geol Úst 15:1–40 (in Czech) Google Scholar
  134. Tait J, Bachtadse V, Soffel HC (1994) Silurian palaeogeography of Armorica—new palaeomagnetic data from Central Bohemia. J Geophys Res B 99:2897–2907Google Scholar
  135. Tait J, Bachtadse V, Soffel HC (1995) Upper Ordovician palaeogeography of the Bohemian Massif—implications for Armorica. Geophys J Int 122:211–218Google Scholar
  136. Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihashi Y, Yoneda S, Shimizu H, Kunimaru T, Takahashi K, Yanagi T, Nakano T, Fujimaki H, Shinjo R, Asahara Y, Tanimizu M, Dragusanu C (2000) JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem Geol 168:279–281Google Scholar
  137. Tasáryová Z, Janoušek V, Frýda J (2010) Whole-rock geochemistry of the Sv. Jan diabase sills and dykes in the Loděnice–Bubovice area. Geosci Res Reports 2009:256–258 (in Czech) Google Scholar
  138. Tasáryová Z, Hroch T, Manda Š (2012) Spodnoordovický vulkanismus strašického/komárovského komplexu a vulkanismus svatojánského vulkanického centra. Sbor Západočes Muz (Plzeň). Přír 116:41–52 (in Czech) Google Scholar
  139. Tasáryová Z, Schnabl P, Čížková K, Pruner P, Janoušek V, Rapprich V, Štorch P, Manda Š, Frýda J, Trubač J (2014a) Gorstian palaeoposition and geotectonic setting of Suchomasty Volcanic Centre (Silurian, Prague Basin, Teplá–Barrandian Unit, Bohemian Massif). GFF 136:262–265Google Scholar
  140. Tasáryová Z, Frýda J, Janoušek V, Racek M (2014b) Slawsonite–celsian–hyalophane assemblage from a picrite sill (Prague Basin, Czech Republic). Am Miner 99:2272–2279Google Scholar
  141. Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265Google Scholar
  142. Timmermann H (2008) Paleozoic magmatism. In: McCann T (ed) Geology of Central Europe. Geological Society, London, pp 665–748Google Scholar
  143. Tomek F, Žák J, Chadima M (2015) Granitic magma emplacement and deformation during early-orogenic synconvergent transtension: the Staré Sedlo Complex, Bohemian Massif. J Geodyn 87:50–66Google Scholar
  144. Torsvik TH, Rehnström EF (2003) The Tornquist Sea and Baltica-Avalonia docking. Tectonophysics 362:67–82Google Scholar
  145. Torsvik TH, Smethurst MA, Meert JG, Van der Voo R, McKerrow WS, Brasier MD, Sturt BA, Walderhaug HJ (1996) Continental break-up and collision in the Neoproterozoic and Palaeozoic—a tale of Baltica and Laurentia. Earth Sci Rev 40:229–258Google Scholar
  146. Vallance TG (1974) Spilitic degradation of a tholeiitic basalt. J Petrol 15:79–96Google Scholar
  147. Vokurka K, Frýda J (1997) The neodymium isotopes in Lower Paleozoic basalts from the Barrandian (Teplá–Barrandian Unit, Bohemian Massif). Geosci Res Rep 1996:87 (in Czech) Google Scholar
  148. von Raumer J, Stampfli GM (2008) The birth of the Rheic Ocean—Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics 461:9–20Google Scholar
  149. von Raumer J, Stampfli GM, Borel G, Bussy F (2002) Organization of pre-Variscan basement areas at the north-Gondwanan margin. Int J Earth Sci 91:35–52Google Scholar
  150. von Raumer J, Finger F, Veselá P, Stampfli GM (2013) Durbachites-Vaugnerites—a geodynamic marker in the central European Variscan orogen. Terra Nova 26:85–95Google Scholar
  151. Waldhausrová J (1971) The chemistry of the Cambrian volcanics in the Barrandian area. Krystalinikum 8:45–75Google Scholar
  152. Wasserburg GJ, Jacobsen SB, DePaolo DJ, McCulloch MT, Wen T (1981) Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochim Cosmochim Acta 45:2311–2324Google Scholar
  153. Wilkinson JFG, Le Maitre RW (1987) Upper mantle amphiboles and micas and TiO2, K2O, and P2O5 abundances and 100 Mg(Mg + Fe2+) ratios for common basalts and andesites: implications for modal mantle metasomatism and undepleted mantle compositions. J Petrol 28:37–73Google Scholar
  154. Wilson MB (2007) Igneous petrogenesis: a global tectonic approach. Springer, DordrechtGoogle Scholar
  155. Winchester JA (2002) Palaeozoic amalgamation of Central Europe: new results from recent geological and geophysical investigations. Tectonophysics 360:5–21Google Scholar
  156. Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343Google Scholar
  157. Wood DA (1980) The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet Sci Lett 50:11–30Google Scholar
  158. Žák J, Kraft P, Hajná J (2013) Timing, styles, and kinematics of Cambro-Ordovician extension in the Teplá–Barrandian Unit, Bohemian Massif, and its bearing on the opening of the Rheic Ocean. Int J Earth Sci 102:415–433Google Scholar
  159. Žák J, Verner K, Janoušek V, Holub FV, Kachlík V, Finger F, Hajná J, Tomek F, Vondrovic L, Trubač J (2014) A plate-kinematic model for assembly of the Bohemian Massif constrained by structural relationships around granitoid plutons. In: Schulmann K, Martínez Catalán JR, Lardeaux JM, Janoušek V, Oggiano G (eds) The Variscan Orogeny: Extent, Timescale and the Formation of the European Crust. Geol Soc Lond Spec Publ, vol 405, pp 169–196Google Scholar
  160. Zindler A, Hart SR (1986) Chemical geodynamics. Ann Rev Earth Planet Sci 14:493–571Google Scholar
  161. Zulauf G (1997) Von der Anchizone bis zur Eklogitfazies Angekippte Krustenprofile als Folge der cadomischen und variscischen Orogenese im Teplá–Barrandium (Böhmische Masse). Geotekt Forsch 89:1–302Google Scholar
  162. Zulauf G, Dörr W, Fiala J, Vejnar Z (1997) Late Cadomian crustal tilting and Cambrian transtension in the Teplá–Barrandian Unit (Bohemian Massif, Central European Variscides). Geol Rundsch 86:571–584Google Scholar
  163. Zulauf G, Schitter F, Riegler G, Finger F, Fiala J, Vejnar Z (1999) Age constraints on the Cadomian evolution of the Teplá–Barrandian Unit (Bohemian Massif) through electron microprobe dating of metamorphic monazite. Zeitschr deutsch geol Gesellsch 150:627–639Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Czech Geological SurveyPrague 1Czech Republic

Personalised recommendations