International Journal of Earth Sciences

, Volume 107, Issue 2, pp 711–727 | Cite as

The radioisotopically constrained Viséan onset of turbidites in the Moravian-Silesian part of the Rhenohercynian foreland basin (Central European Variscides)

  • Jakub Jirásek
  • Jiří Otava
  • Dalibor Matýsek
  • Martin Sivek
  • Mark D. Schmitz
Original Paper


The Březina Formation represents the initiation of siliciclastic flysch turbidite sedimentation at the eastern margin of Bohemian Massif or within the Rhenohercynian foreland basin. Its deposition started after drowning of the Devonian carbonate platform during Viséan (Mississippian) times, resulting in a significant interval of black siliceous shale and variegated fossiliferous shale deposition in a starved basin. Near the top of the Březina Formation an acidic volcanoclastic layer (tuff) of rhyolitic composition has been dated with high precision U–Pb zircon chemical abrasion isotope dilution method at 337.73 ± 0.16 Ma. This new radiometric age correlates with the previously inferred stratigraphic age of the locality and the current calibration of the Early Carboniferous geologic time scale. Shales of the Březina Formation pass gradually upwards into the siliciclastics of the Rozstání Formation of the Drahany culm facies. Thus our new age offers one of the few available radioisotopic constraints on the time of onset of siliciclastic flysch turbidites in the Rhenohercynian foreland basin of the European Variscides.


Březina Formation Moravian Karst Viséan Mississippian Carboniferous Variscan orogeny Chronostratigraphy 



This study was made possible thanks to financial support within the grant project SGS SP2017/22 financed by the Ministry of Education, Youth and Sports. Some of the analytical work was performed using equipment that was financed by the project “Institute of Clean Technologies for Mining and Utilisation of Raw Materials for Energy”, reg. no. LO1406 and supported by the “Research and Development for Innovations Operational Programme”, which is financed by structural funds of the European Union and the state budget of the Czech Republic. The author also wants to acknowledge support from project Basic geological mapping of the Czech Republic, Brno area (No. 390003), supported by the Czech Geological Survey. Funding for the analytical infrastructure of the Boise State Isotope Geology Laboratory was provided by the US National Science Foundation (NSF) Major Research Instrumentation grants EAR-0521221 and EAR-1337887, and NSF Earth Sciences Division (EAR) Instrumentation and Facilities Program grant EAR-0824974. The authors are grateful to V. Kachlík and F. Finger, whose comments and suggestions helped to improve the scientific content of the paper.


  1. Bábek O, Tomek Č, Melichar R, Kalvoda J, Otava J (2006) Structure of unmetamorphosed Variscan tectonic units of the southern Moravo-Silesian zone, Bohemian Massif: a review. Neues Jahrb Geol Palaontol Abh 239:37–75. doi: 10.1127/njgpa/239/2006/37 Google Scholar
  2. Bábek O, Přikryl T, Hladil J (2007) Progressive drowning of carbonate platform in the Moravo-Silesian Basin (Czech Republic) before the Frasnian/Famennian event: facies, compositional variations and gamma-ray spectrometry. Facies 53:293–316. doi: 10.1007/s10347-006-0095-8 CrossRefGoogle Scholar
  3. Buriánek D, Gilíková H, Otava J (2013) Chemistry of rocks Březina and Podolí formations–dinantian–culmian transition facies of Drahany Upland Viséan. Acta Mus Moraviae Sci Geol 98:79–90 (in Czech with English summary) Google Scholar
  4. Cháb J (2010) Basement: Variscan orogen. In: Cháb J (ed) Outline of the geology of the Bohemian Massif: the basement rocks and their Carboniferous and Permian cover. Czech Geological Survey Publishing House, Prague, pp 27–113Google Scholar
  5. Chlupáč I (1956) Nález spodnokarbonské fauny u Hranic na Moravě. Věst Ústř Úst Geol 31:268–273 (in Czech) Google Scholar
  6. Chlupáč I (1957) The new lower Carboniferous fauna from the vicinity of Hranice in Moravia. Sbor Ústř Úst Geol Odd Paleont 24:279–312 (in Czech with English summary) Google Scholar
  7. Chlupáč I (1966) The upper Devonian and lower Carboniferous trilobites of the Moravian karst. Sbor Geol Věd Ř Paleont 7:1–144Google Scholar
  8. Chlupáč I (1969) Lower Carboniferous fauna from Čelechovice (Moravia) and its significance. Čas Mineral Geol 14:211–218Google Scholar
  9. Condon DJ, Schoene B, McLean NM, Bowring SA, Parrish RR (2015) Metrology and traceability of U-Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochim Cosmochim Ac 164:464–480. doi: 10.1016/j.gca.2015.05.026 CrossRefGoogle Scholar
  10. Davydov VI, Crowley JL, Schmitz MD, Poletaev VI (2010) High-precision U–Pb zircon age calibration of the global Carboniferous time scale and Milankovitch-band cyclicity in the Donets Basin, eastern Ukraine. Geochem Geophys Geosyst 11:Q0AA04. doi: 10.1029/2009GC002736 CrossRefGoogle Scholar
  11. Dvořák J (1963) Devon, spodní karbon. In: Kalášek J, Buday T, Cicha I, Czudek T, Demek J, Dvořák J, Chmelík F, Jaroš J, Malkovský M, Matějka A, Novotný M, Paulík J, Polák A, Řezáč B, Weiss J, Zrůstek V (eds) Vysvětlivky k přehledné geologické mapě ČSSR 1: 200 000–M–33–XXIX Brno. Ústřední ústav geologický, Praha (in Czech) Google Scholar
  12. Dvořák J (1986) K problému příkrovové stavby v evropských variscidách, zvláště na Moravě. Čas Mineral Geol 31:93–98 (in Czech) Google Scholar
  13. Dvořák J (1994) Variscan flysch development in the Nízký Jeseník Mts. in Moravia and Silesia. Czech Geological Survey, Prague (in Czech with English summary) Google Scholar
  14. Dvořák J (1997) Geology of Palaeozoic sediments in the surroundings of Ostrov u Macochy (Moravian Karst, Moravia). J Czech Geol Soc 42:401–416 (in Czech with English summary) Google Scholar
  15. Dvořák J, Štelcl O, Demek J, Musil R (1993) Geologie a geomorfologie Moravského krasu. In: Musil R (ed) Moravský kras – labyrinty poznání. GEO program, Adamov, pp 32–75 (in Czech) Google Scholar
  16. EDAX (2003) Genesis spectrum user’s manual. Edax Inc., MahwahGoogle Scholar
  17. Francu E, Francu J, Kalvoda J, Poelchau HS, Otava J (2002) Burial and uplift history of the Palaeozoic Flysch in the Variscan foreland basin (SE Bohemian Massif, Czech Republic). EGU Mueller Spec Publ Ser 1:167–179. doi: 10.5194/smsps-1-167-2002 CrossRefGoogle Scholar
  18. Franke W (1989) Tectonostratigraphic units in the Variscan belt of central Europe. GSA Spec Pap 230:67–90. doi: 10.1130/SPE230-p67 Google Scholar
  19. Franke W, Engel W (1988) Tectonic settings of synorogenic sedimentation in the Variscan Belt of Europe. In: Besly BM, Kelling G (eds) Sedimentation in a synorogenic basin complex. Blackie, Glasgow, pp 8–17Google Scholar
  20. Gilíková H, Hladil J, Bubík M, Černý J, Hrdličková K, Kunceová E, Melichar R, Otava J, Tomanová Petrová P, Vít J (2010) Základní geologická mapa České republiky 1:25,000, list 24–413 Mokrá-Horákov. Česká geologická služba, Brno (in Czech) Google Scholar
  21. Hartley AJ, Otava J (2001) Sediment provenance and dispersal in a deep marine foreland basin: the lower Carboniferous Culm Basin, Czech Republic. J Geol Soc 158:137–150. doi: 10.1144/jgs.158.1.137 CrossRefGoogle Scholar
  22. Hladil J (1983) Cyklická sedimentace v devonských karbonátech macošského souvrství. Zemní Plyn Nafta 28:1–14 (in Czech) Google Scholar
  23. Hladil J (ed) (1987) Základní geologická mapa ČSFR 1:25,000, list Horákov-Mokrá 24-413 s textovými vysvětlivkami. Ústřední ústav geologický, Brno (in Czech) Google Scholar
  24. Hladil J (1994) Moravian middle and late Devonian buildups: evolution in time and space with respect to Laurussian shelf. Cour Forsch Senckenberg 172:111–125Google Scholar
  25. Hladil J, Krejci Z, Kalvoda J, Ginter M, Galle A, Berousek P (1991) Carbonate ramp environment of Kellwasser time-interval (Lesni lom, Moravia, Czechoslovakia). Bull Soc Belg Geol 100:57–119Google Scholar
  26. Hladil J, Melichar R, Otava J, Galle A, Krs M, Man O, Pruner P, Čejchan P, Orel P (1999) The Devonian in the easternmost Variscides, Moravia: a holistic analysis directed towards comprehension of the original context. Abh Geol B A 54:27–47Google Scholar
  27. Hladil J, Koptíková L, Galle A, Sedláček V, Pruner P, Schnabl P, Langrová A, Bábek O, Frána J, Hladíková J, Otava J, Geršl M (2009) Early middle Frasnian platform reef strata in the Moravian Karst interpreted as recording the atmospheric dust changes: the key to understanding perturbations in the punctata conodont zone. Bull Geosci 84:75–106. doi: 10.3140/bull.geosci.1113 CrossRefGoogle Scholar
  28. Isaacson PE, Chlupáč I (1984) Significance of a Tropidoleptus assemblage from the Devonian of the Moravo-Silesian region, Czechoslovakia. Čas Mineral Geol 29:141–154Google Scholar
  29. Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurements of half-lives and specific activities of 235U and 238U. Phys Rev C 4:1889–1906. doi: 10.1103/PhysRevC.4.1889 CrossRefGoogle Scholar
  30. Janoušek V, Aichler J, Hanžl P, Gerdes A, Erban V, Žáček V, Pecina V, Pudilová M, Hrdličková K, Mixa P, Žáčková E (2014) Constraining genesis and geotectonic setting of metavolcanic complexes: a multidisciplinary study of the Devonian Vrbno Group (Hrubý Jeseník Mts., Czech Republic). Int J Earth Sci 103:455–483. doi: 10.1007/s00531-013-0975-4 CrossRefGoogle Scholar
  31. Jirásek J, Hýlová L, Sivek M, Jureczka J, Martínek K, Sýkorová I, Schmitz M (2013) Major Mississippian volcaniclastic unit of the Upper Silesian Basin, the Main Ostrava Whetstone: composition, sedimentary processes, palaeogeography and geochronology. Int J Earth Sci 102:989–1006. doi: 10.1007/s00531-012-0853-5 CrossRefGoogle Scholar
  32. Jirásek J, Wlosok J, Sivek M, Matýsek D, Schmitz M, Sýkorová I, Vašíček Z (2014) U-Pb zircon age of the Krásné Loučky tuffite: the dating of Visean flysch in the Moravo-Silesian Paleozoic Basin (Rhenohercynian Zone, Czech Republic). Geol Q 58:659–672. doi: 10.7306/gq.1201 Google Scholar
  33. Jirásek J, Matýsek D, Sivek M (2017) Albitized volcanoclastic complex from Padochov near Oslavany (Boskovice Graben). Geosci Res Rep 50:39–44 (in Czech with English summary) Google Scholar
  34. Kalvoda J (2001) Upper Devonian–lower Carboniferous foraminiferal paleobiogeography and Perigondwana terranes at the Baltica-Gondwana interface: zonations, evolutionary events, paleobiogeography and tectonic implications. Geol Carpath 52:205–215Google Scholar
  35. Kalvoda J (2002) Late Devonian-Early Carboniferous foraminiferal fauna: zonations, evolutionary events, paleobiogeography and tectonic implications. Folia Fac Sci Nat Univ Masaryk Brun Geol 39:1–213Google Scholar
  36. Kalvoda J, Bábek O, Fatka O, Leichmann J, Melichar R, Nehyba S, Špaček P (2008) Brunovistulian terrane (Bohemian Massif, Central Europe) from late Proterozoic to late Paleozoic: a review. Int J Earth Sci 97:497–518. doi: 10.1007/s00531-007-0183-1 CrossRefGoogle Scholar
  37. Kalvoda J, Kumpan T, Bábek O (2015) Upper Famennian and lower Tournaisian sections of the Moravian Karst (Moravo-Silesian Zone, Czech Republic): a proposed key area for correlation of the conodont and foraminiferal zonations. Geol J 50:17–38. doi: 10.1002/gj.2523 CrossRefGoogle Scholar
  38. Kroll H (1983) Lattice parameters and determinative methods for plagioclase and ternary feldspars. In: Ribbe PH (ed) Feldspar mineralogy, vol 2, 2nd edn. Mineralogical Society of America, Washington, pp 101–119Google Scholar
  39. Kroner U, Mansy J-L, Mazur S, Aleksandrowski P, Hann HP, Huckriede H, Lacquement F, Lamarche J, Ledru P, Pharaoh TC, Zedler H, Zeh A, Zulauf G (2008) Variscan tectonics. In: McCann T (ed) The geology of Central Europe, volume 1: Precambrian and palaeozoic. The Geological Society, London, pp 599–664Google Scholar
  40. Kumpera O (1983) Geology of the early Carboniferous of the Jeseníky Mts. Block. Ústřední ústav geologický, Praha (in Czech) Google Scholar
  41. Kumpera O (1990) Outline of the Paleozoic sediments below the upper Carboniferous coal-bearing molasse in upper Silesian Basin. Sbor Věd Pr Vys Šk Báň Ř Horn Geol 36:91–106 (in Czech with English and Russian summary) Google Scholar
  42. Kumpera O, Dvořák J (1961) The oldest known lower Carboniferous goniatite fauna of the Moravo-Silesian Unit of the Czech Massif. Sbor Věd Pr Vys Šk Báň 7:431–439 (in Czech with English and Russian summary) Google Scholar
  43. Kumpera O, Martinec P (1995) The development of the Carboniferous accretionary wedge in the Moravian-Silesian Paleozoic Basin. J Czech Geol Soc 40:47–64Google Scholar
  44. Le Maitre RW (ed) (2002) Igneous rocks. A classification and glossary of terms. Recommendations of the International Union of Geological Sciences subcommission on the systematics of igneous rocks, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  45. Mattinson JM (2005) Zircon U-Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem Geol 220:47–66. doi: 10.1016/j.chemgeo.2005.03.011 CrossRefGoogle Scholar
  46. McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–253. doi: 10.1016/0009-2541(94)00140-4 CrossRefGoogle Scholar
  47. McLean NM, Condon DJ, Schoene B, Bowring SA (2015) Evaluating uncertainties in the calibration of isotopic reference materials and multi-element isotopic tracers (EARTHTIME Tracer Calibration Part II). Geochim Cosmochim Ac 164:481–501. doi: 10.1016/j.gca.2015.02.040 CrossRefGoogle Scholar
  48. Migaszewski Z (1995) Occurence of pyroclastic rocks in the lower Carboniferous of the Holy Cross Mts (Central Poland). Prz Geol 43:7–10 (in Polish with English summary) Google Scholar
  49. Monecke T, Kempe U, Monecke J, Sala M, Wolf D (2002) Tetrad effect in rare earth element distribution patterns: a method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochim Cosmochim Acta 66:1185–1196. doi: 10.1016/S0016-7037(01)00849-3 CrossRefGoogle Scholar
  50. Opluštil S, Schmitz M, Kachlík V, Štamberg S (2016) Re-assesmant of lithostratigraphy, biostratigraphy, and volcanic activity of the Late Paleozoic Intra-Sudetic, Krkonoše-Piedmont and Mnichovo Hradiště basins (Czech republic) based on new U-Pb CA-ID-TIMS ages. Bull Geosci 91:399–432. doi: 10.3140/bull.geosci.1603 CrossRefGoogle Scholar
  51. Otava J, Černý J (2012) Paleokras nebo tektonika? Březina-Vysoká, Moravský kras. Zprávy VMO 303:118–121 (in Czech) Google Scholar
  52. Otava J, Gilíková H (2011) Podolské souvrství—Raison d´etre. In: Sborník 2. otevřeného kongresu ČGS, Česká geologická společnost, pp 68. (in Czech)Google Scholar
  53. Otava J, Hladil J, Galle A (1993) The age of the Andělská Hora formation: new facts and their possible interpretation. Geol Výzk Mor Slez (Brno) 1:52–56 (in Czech) Google Scholar
  54. Otava J, Balák I, Baldík V, Bubík M, Buriánek D, Čáp P, Černý J, Franců J, Fürychová P, Gilíková H, Havlín A, Hladil J, Janderková J, Kociánová L, Kolejka V, Konečný F, Kryštofová E, Kumpan T, Melichar R, Müller P, Paleček M, Pecina V, Pecka T, Sedláček J, Sedláčková I, Šrámek J, Tomanová Petrová P, Večeřa J, Vít J (2013) Vysvětlivky k Základní geologické mapě České republiky 1:25 000, list 24-411 Jedovnice. Česká geologická služba, Brno (in Czech) Google Scholar
  55. Pupin JP (1980) Zircon and granite petrology. Contrib Miner Petrol 73:207–220. doi: 10.1007/BF00381441 CrossRefGoogle Scholar
  56. Racki G, Racka M, Matyja H, Devleeschouwer X (2002) The Frasnian/Famennian boundary interval in the South Polish–Moravian shelf basins: integrated event-stratigraphical approach. Palaeogeogr Palaeoclimatol 181:251–297. doi: 10.1016/S0031-0182(01)00481-3 CrossRefGoogle Scholar
  57. Rak Š, Kalvoda J, Devuyst F-X (2012) New Mississippian trilobite association from the Brno vicinity and its significance (Moravian Karst, Czech Republic). Geol Carpath 63:181–190. doi: 10.2478/v10096-012-0015-5 CrossRefGoogle Scholar
  58. Rak Š, Viktorýn T, Otava J (2014) Revision of an atheloptic Visean trilobite association in the Moravian Karst (Czech Republic). Geol Carpath 65:411–417. doi: 10.1515/geoca-2015-0002 Google Scholar
  59. Rudnick RL, Gao S (2003) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol. 3: The crust. Elsevier, New York, pp 1–64Google Scholar
  60. Schandl ES, Gorton MP (2002) Application of high field strength elements to discriminate tectonic settings in VMS environments. Econ Geol 97:629–642. doi: 10.2113/gsecongeo.97.3.629 CrossRefGoogle Scholar
  61. Schmitz MD, Schoene B (2007) Derivation of isotope ratios, errors and error correlations for U-Pb geochronology using 205Pb-235U-(233U)-spiked isotope dilution thermal ionization mass spectrometric data. Geochem Geophys Geosyst 8:Q08006. doi: 10.1029/2006GC001492 CrossRefGoogle Scholar
  62. Schulmann K, Gayer R (2000) A model for a continental accretionary wedge developed by oblique collision: the NE Bohemian Massif. J Geol Soc Lond 157:401–416. doi: 10.1144/jgs.157.2.401 CrossRefGoogle Scholar
  63. Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux J-M, Edel J-B, Štípská P, Ulrych S (2009) An Andean type Palaeozoic convergence in the Bohemian Massif. C R Geosci 341:266–286. doi: 10.1016/j.crte.2008.12.006 CrossRefGoogle Scholar
  64. Szulczewski M, Belka Z, Skompski S (1996) The drowning of a carbonate platform: an example from the Devonian–Carboniferous of the southwestern Holy Cross Mountains, Poland. Sediment Geol 106:21–49. doi: 10.1016/0037-0738(95)00145-X CrossRefGoogle Scholar
  65. Unrug R (1966) L´évolution sédimentaire et tectonique du bassin hercynien de Moravie - Haute-Silésie. Bull Soc Geol Fr 7:537–547. doi: 10.2113/gssgfbull.S7-VIII.4.537 Google Scholar
  66. Unrug R, Dembowski Z (1971) Diastrophic and sedimentary evolution of the Moravia–Silesia Basin. Ann Soc Geol Pol 41:118–168 (in Polish with English summary) Google Scholar
  67. Weiner T, Brauskmann C, Poukarová H, Rak Š, Kalvoda J (2012) Preliminary report on the new findings of Mississippian trilobites in the Březina Formation (Moravian Karst, Czech Republic). Geol Výzk Mor Slez (Brno) 19:125–129. doi: 10.5817/GVMS2012-1-2-125 Google Scholar
  68. Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343. doi: 10.1016/0009-2541(77)90057-2 CrossRefGoogle Scholar
  69. Zapletal J, Dvořák J, Kumpera O (1989) Stratigrafická klasifikace kulmu Nízkého Jeseníku. Věst Ústř Úst Geol 64:243–250 (in Czech) Google Scholar
  70. Zhou Y, Bohor BF, Ren Y (2000) Trace element geochemistry of altered ash layers (tonsteins) in Late Permian coal-bearing formations of eastern Yunnan and western Guizhou Provinces, China. Int J Coal Geol 44:305–324. doi: 10.1016/S0166-5162(00)00017-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Faculty of Mining and GeologyVŠB- Technical University of OstravaOstravaCzech Republic
  2. 2.Czech Geological Survey, Branch BrnoBrnoCzech Republic
  3. 3.Department of GeosciencesBoise State UniversityBoiseUSA

Personalised recommendations