Advertisement

International Journal of Earth Sciences

, Volume 107, Issue 3, pp 885–911 | Cite as

A ~565 Ma old glaciation in the Ediacaran of peri-Gondwanan West Africa

  • Ulf LinnemannEmail author
  • Agustín Pieren Pidal
  • Mandy Hofmann
  • Kerstin Drost
  • Cecilio Quesada
  • Axel Gerdes
  • Linda Marko
  • Andreas Gärtner
  • Johannes Zieger
  • Jens Ulrich
  • Rita Krause
  • Patricia Vickers-Rich
  • Jana Horak
Original Paper

Abstract

In the Cadomian orogen of the NE Bohemian Massif and of SW Iberia, a post-Gaskiers glacial event dated at c. 565 Ma has been detected. Such Ediacaran-aged glaciomarine deposits occur in the Weesenstein and Clanzschwitz groups of the Saxo-Thuringian zone (Bohemia) and in the Lower Alcudian group of the southern Central Iberian zone (Iberia). Both areas are parts of Cadomia situated in the Western and Central European Variscides. Glaciomarine sedimentary rocks are characterized by such features as dropstones, flat iron-shaped pebbles (“Bügeleisen-Geschiebe”), facetted pebbles, dreikanters, and zircon grains affected by ice abrasion. For age and provenance determination, LA–ICP–MS U–Pb ages (n = 1124) and Hf isotope (n = 446) analyses were performed. The maximum age of the glaciomarine deposits within a Cadomian back-arc basin based on U–Pb analytics resulted in the youngest detrital zircon populations showing ages of 562–565 Ma and of c. 566–576 Ma old zircon derived from granitoid pebbles within the diamictites. The youngest age recorded was 538–540 Ma based on zircon from the plutons which had intruded the previously deformed Ediacaran metasedimentary rocks. Previously described glaciomarine diamictites of Cadomia (Weesenstein, Clanzschwitz, and Orellana diamictites) are most definitely younger than the c. 579–581 Ma Gaskiers glaciation in Newfoundland (Gaskiers) and in SE New England (Squantum). We propose the term WeesensteinOrellana glaciation for this new Ediacaran glacial event, named after the most relevant regions of exposure. Palaeogeographically, these glaciomarine diamictites and related sedimentary deposits lie on the periphery of the West African Craton (western peri-Gondwana), and evidence has been provided by detrital zircon U–Pb ages and their Hf isotope composition. Correlation with similar glaciomarine deposits in the Anti-Atlas (Bou Azzer) and Saudi Arabia suggests a continued distribution of post-Gaskiers glacial deposits along the Gondwana margin of Northern Africa. The WeesensteinOrellana glaciation correlates in part with the Shuram–Wonoka δ13C anomaly.

Keywords

Glaciation Ediacaran Weesenstein–Orellana glaciation Neoproterozoic palaeoclimate peri-Gondwana West African craton Cadomian orogeny U–Pb zircon ages Hf isotopes 

Notes

Acknowledgements

This is a contribution to IGCP project 648 “Supercontinent Cycles and Global Geodynamics”. Gregory J. Retallack (Eugene) and an unknown reviewer are thanked for their helpful reviews. We thank the Australian IGCP Committee for their funding support for the work in Saudi Arabia as well as the UNESCO IGCP Board for project IGCP587. Special thanks go to Fayek Kattan and his team from the Saudi Geological Survey for facilitating our work in Saudi Arabia.

Supplementary material

531_2017_1520_MOESM1_ESM.doc (4.3 mb)
Supplementary material 1 (DOC 4355 kb)
531_2017_1520_MOESM2_ESM.doc (1.5 mb)
Supplementary material 2 (DOC 1504 kb)

References

  1. Abati J, Aghzer AM, Gerdes A, Ennih N (2010) Detrital zircon ages of Neoproterozoic sequences of the Moroccan anti-atlas belt. Precambr Res 181(1–4):115–128CrossRefGoogle Scholar
  2. Abati J, Aghzer AM, Gerdes A, Ennih N (2012) Insights on the crustal evolution of the West African Craton from Hf isotopes in detrital zircons from the Anti-Atlas belt. Precambr Res 212–213:263–274CrossRefGoogle Scholar
  3. Álvarez-Nava Oñate H, García Casquero JL, Gil Toja A, Hernández Urroz J, Lorenzo Álvarez S, López Díaz F, Mira López M, Monteserín López V, Nozal Martín F, Pardo Alonso MV, Picart Boira J, Robles Casas R, Santamaría Casanovas J, Solé FJ (1988) Unidades litoestratigráficas de los materiales Precámbrico-Cámbricos en la mitad suroriental de la zona Centro-Ibérica. II Congreso Geológico de España, Comunicaciones 1:19–22Google Scholar
  4. Bao H, Lyons JR, Zhou C (2008) Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation. Nature 453(7194):504–506CrossRefGoogle Scholar
  5. Bingen B, Griffin WL, Torsvik TH, Saeed A (2005) Timing of Late Neoproterozoic glaciation on Baltica constrained by detrital zircon geochronology in the Hedmark Group, south-east Norway. Terra Nova 17:250–258CrossRefGoogle Scholar
  6. Black R, Latouche L, Liégeois JP, Caby R, Bertrand JM (1994) Pan-African displaced terranes of the Tuareg Shield (central Sahara). Geology 22:641–644CrossRefGoogle Scholar
  7. Bouvier A, Vervoort JD, Patchet PJ (2008) The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273(1–2):48–57CrossRefGoogle Scholar
  8. Bowring SA, Landing E, Myrow P, Ramezani J (2002) Abstract #13045: geochronological constraints on terminal Neoproterozoic events and the rise of metazoans. Astrobiology 2:457–458Google Scholar
  9. Chauvel C, Levin E, Carpentier M, Arndt NT, Marini JC (2008) Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array. Nat Geosci 1:64–67CrossRefGoogle Scholar
  10. Clariana García MP, Rubio Pascual F, Montes Santiago MJ, González Clavijo EJ (2017) Continuous digital Geologic Map E1:50,000, Zona Centroibérica. Dominio esquisto-grauváquico y Cuenca del Guadiana (Zona-1400) in GEODE. Mapa Geológico Digital continuo de España (online). http://igme.maps.arcgis.com/home/webmap/viewer.html?webmap=44df600f5c6241b59edb596f54388ae4. Accessed 9 Aug 2017
  11. Condon DJ, Bowring SA (2011) A user’s guide to Neoproterozoic geochronology. Geol Soc Lond Mem 36(1):135–149CrossRefGoogle Scholar
  12. Dhuime B, Hawkesworth C, Cawood P (2011) When continents formed. Science 331:154–155CrossRefGoogle Scholar
  13. Drost K, Gerdes A, Jeffries T, Linnemann U, Storey C (2011) Provenance of Neoproterozoic and early siliciclastic rocks of the Teplá-Barrandian unit (Bohemian Massif): evidence from U-Pb detrital zircon ages. Gondwana Res 19:213–231CrossRefGoogle Scholar
  14. Fuenlabrada JM, Pieren AP, Díez Fernández R, Sánchez Martínez S, Arenas A (2016) Geochemistry of the Ediacaran–Early Cambrian transition in Central Iberia: tectonic setting and isotopic sources. Tectonophysics 681:15–30CrossRefGoogle Scholar
  15. García-Hidalgo JF, Pieren Pidal AP, Olivé Davó A, Carbajal Menéndez A, de la Fuente Krauss JV, Moreno F, Cantos Robles R, Liñán E (1993) Memoria de la Hoja 779 “Villanueva de La Serena”. Mapa Geológico de España 1:50.000 (2ª Serie). IGME, MadridGoogle Scholar
  16. Gärtner A, Villeneuve M, Linnemann U, El Archi A, Bellon H (2013) An exotic terrane of Laurussian affinity in the Mauritanides and Souttoufides (Moroccan Sahara). Gondwana Res 24(2):687–699CrossRefGoogle Scholar
  17. Gehmlich M (2003) Die Cadomiden und Varisziden des Saxothuringischen Terranes—Geochronologie magmatischer Ereignisse. Freib Forsch C500:1–129Google Scholar
  18. Gerdes A, Zeh A (2006) Combined U-Pb and Hf isotope LA-(MC-) ICP-MS analysis of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci Lett 249:47–61CrossRefGoogle Scholar
  19. Gerdes A, Zeh A (2009) Zircon formation versus zircon alteration—new insights from combined U-Pb and Lu-Hf in situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chem Geol 261(3–4):230–243CrossRefGoogle Scholar
  20. Graindor MJ (1957) Le Briovérian dans le Nord-East du massif Armoricain. Mém. Carte Géol. Dét., France, pp 1–111Google Scholar
  21. Gutiérrez-Alonso G, Fernández-Suárez J, Jeffries TE, Jenner GA, Tubret MN, Cox R, Jackson SE (2003) Terrane accretion and dispersal in the northern Gondwana margin. An Early Palaeozoic analogue of a long-lived active margin. Tectonophysics 365:221–232CrossRefGoogle Scholar
  22. Halverson GP, Hoffman PF, Schrag DP, Maloof AC, Rice AHN (2005) Toward a Neoproterozoic composite carbon isotope record. GSA Bulletin 117:1181–1207CrossRefGoogle Scholar
  23. Hebert CL, Kaufman AJ, Penniston-Dorland SC, Martin AJ (2010) Radiometric and stratigraphic constraints on terminal Ediacaran (post-Gaskiers) glaciation and metazoan evolution. Precambr Res 182:402–414CrossRefGoogle Scholar
  24. Hoffman PF (2009) Pan-glacial—a third state in the climate system. Geol Today 25(3):100–107CrossRefGoogle Scholar
  25. Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A neoproterozoic snowball Earth. Sci N Ser 281(5381):1342–1346CrossRefGoogle Scholar
  26. Hoffmann KH, Condon DJ, Bowring SA, Crowley JL (2004) U-Pb zircon date from the Neoproterozoic Ghaub Formation Namibia: constraints on Marinoan glaciation. Geology 32(9):817–820CrossRefGoogle Scholar
  27. Hofmann M, Linnemann U, Gerdes A, Ullrich B, Schauer M (2009) Timing of dextral strike-slip processes and basement exhumation in the Elbe Zone (Saxo-Thuringian Zone): the final pulse of the Variscan Orogeny in the Bohemian Massif constrained by LA-SF-ICP-MS U–Pb zircon data. In: Murphy JB, Keppie JD, Hynes AJ (eds) Ancient orogens and modern analogues, vol 327. The Geological Society, London, pp 197–214Google Scholar
  28. Horstwood MSA, Košler J, Gehrels G, Jackson SE, McLean NM, Paton C, Pearson NJ, Sircombe K, Sylvester P, Vermeesch P, Bowring JF, Condon DJ, Schoene B (2016) Community-derived standards for LA-ICP-MS U-Th-Pb geochronology—uncertainty propagation, age interpretation and data reporting. Geostand Geoanal Res 40:311–332CrossRefGoogle Scholar
  29. Immonen N (2013) Surface microtextures of ice-rafted quartz grains revealing glacial ice in the Cenozoic Arctic. Oalaeogeogr Palaeoclimatol Palaeoecol 374:293–302CrossRefGoogle Scholar
  30. Julivert M, Fontboté JM, Ribeiro A, Conde LS (1972/1974) Mapa Tectónico de la Península Ibérica y Baleares a escala 1:1.000.000 y Memoria Explicativa. IGME, MadridGoogle Scholar
  31. Karaoui B, Breitkreuz C, Mahmoudi A, Youbi N, Hofmann M, Gärtner A, Linnemann U (2015) U–Pb zircon ages from volcanic and sedimentary rocks of the Ediacaran Bas Draâ inlier (Anti-Atlas Morocco): chronostratigraphic and provenance implications. Precambr Res 263:43–58CrossRefGoogle Scholar
  32. Kirschvink JL (1992) Late Proterozoic low-latitude global glaciation: the Snowball Earth. In: Schopf JW, Klein C (eds) The Proterozoic Biosphere. A multidisciplinary study. Cambridge University Press, Cambridge, pp 51–52Google Scholar
  33. Kirschvink JL, Gaidos EJ, Bertani LE, Beukes NJ, Gutzmer J, Maepa LN, Steinberger RE (2000) Paleoproterozoic snowball earth: extreme climatic and geochemical global change and its biological consequences. Proc Natl Acad Sci USA 97(4):1400–1405CrossRefGoogle Scholar
  34. Le Guerroue E, Allen PA, Cozzi A, Etienne JL, Fanning M (2006) 50 Myr recovery from the largest negative δ13C excursion in the Ediacaran Ocean. Terra Nova 18:147–153CrossRefGoogle Scholar
  35. Linnemann U (1990) Lithostratigraphische und sedimentologische Untersuchung präsudetischer Sedimentabfolgen der südlichen Elbezone unter besonderer Berücksichtigung der Weesensteiner Gruppe (Jungproterozoikum) und der Mühlbach/Häselich-Nossener Gruppe (Kambro-Ordovizium). PhD Thesis, Bergakademie Freiberg, pp 1–120Google Scholar
  36. Linnemann U (1991) Glazioeustatisch kontrollierte Sedimentationsprozesse im Oberen Proterozoikum der Elbezone (Weesensteiner Gruppe/Sachsen). Zbl Geol Paläontol 12(1):2907–2934Google Scholar
  37. Linnemann U (1994) Geologischer Bau und Strukturentwicklung der südlichen Elbezone. Abh. Staatl Mus Min Geol zu Dresden 40:7–36Google Scholar
  38. Linnemann U (2007) Ediacaran rocks from the Cadomian basement of the Saxo-Thuringian Zone (NE Bohemian Massif, Germany): age constraints, geotectonic setting and basin development. In: Vickers-Rich P, Komarower P (eds) the rise and fall of the Ediacaran Biota, vol 286. The Geological Society, London, pp 35–51Google Scholar
  39. Linnemann U, Gehmlich M, Tichomirowa M, Buschmann B, Nasdala L, Jonas P, Lützner H, Bombach K (2000) From Cadomian subduction to Early Paleozoic rifting: the evolution of Saxo-Thuringia at the margin of Gondwana in the light of single zircon geochronology and basin development (Central European Variscides, Germany). Geol Soc Lond Spec Publ 179:131–153CrossRefGoogle Scholar
  40. Linnemann U, Drost K, Gerdes A, Jeffries T, Romer RL (2008) The Bohemian Massif (Chapter 3: “The Cadomian Orogeny”). In: McCann T (ed) The geology of Central Europe. The Geological Society of London, London, pp 121–147Google Scholar
  41. Linnemann U, Romer RL, Gerdes A, Jeffries TE, Drost K, Ulrich J (2010a) The cadomian orogeny in the Saxo-Thuringian zone. In: Linnemann U, Romer RL (eds) Pre-mesozoic geology of Saxo-Thuringia—from the cadomian active margin to the Variscan orogen. Schweizerbart Science, Stuttgart, pp 37–58Google Scholar
  42. Linnemann U, Hofmann M, Romer RL, Gerdes A (2010b) Transitional stages between the Cadomian and Variscan Orogenies: Basin development and tectonomagmatic evolution of the southern margin of the Rheic Ocean in the Saxo-Thuringian Zone (North Gondwana shelf). In: Linnemann U, Romer RL (eds) Pre-mesozoic geology of Saxo-Thuringia—from the cadomian active margin to the Variscan orogen. Schweizerbart Science, Stuttgart, pp 59–98Google Scholar
  43. Linnemann U, Ouzegane K, Drareni A, Hofmann M, Becker S, Gärtner A, Sagawe A (2011) Sands of West Gondwana: an archive of secular magmatism and plate interactions—a case study from the Cambro-Ordovician section of the Tassili Ouan Ahaggar (Algerian Sahara) using U-Pb-LA-ICP-MS detrital zircon ages. Lithos 123(1–4):188–203CrossRefGoogle Scholar
  44. Linnemann U, Gerdes A, Hofmann M, Marko L (2014) The Cadomian Orogen: neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton—Constraints from U–Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambr Res 244:236–278CrossRefGoogle Scholar
  45. Lotze F (1945) Zur Gliederung des Varisciden der Iberischen Meseta. Geotekt Forsch 6:78–92Google Scholar
  46. Ludwig KR (2001) Users Manual for Isoplot/Ex rev. 2.49: Berkeley Geochronology Center Special Publication No. 1a, pp 1–56Google Scholar
  47. Macdonald FA, Schmitz MD, Crowley JL, Roots CF, Jones DS, Maloof AC, Strauss JV, Cohen PA, Johnston DT, Schrag DP (2010) Calibrating the cryogenian. Science 327(5970):1241–1243CrossRefGoogle Scholar
  48. Narbonne GM, Gehling JG (2003) Life after snowball: the oldest complex Ediacaran fossils. Geology 31(1):27–30CrossRefGoogle Scholar
  49. Narbonne GM, Xiao S, Shields G (2012) Ediacaran Period (Chapter 18) In: Gradstein FM, Ogg JG, Schmidt MD, Ogg GM (eds) Geologic Time Scale 2012. Elsevier, pp 427–449Google Scholar
  50. Narbonne GM, Laflamme M, Trusler PW, Dalrymple RW, Greentree C (2014) Deep-water Ediacaran fossils from northwestern Canada: taphonomy, ecology, and evolution. J Paleontol 86:207–223CrossRefGoogle Scholar
  51. Ogg JG, Ogg GM, Gradstein FM (2016) A concise geologic time scale. Elsevier, pp 1–234Google Scholar
  52. Ovtracht A, Tamain G (1970) Essai tectonique en Sierra Morena (Espagne). Congrès national des sociétés savantes. Sciences, Reims. C 95 T1, pp 305–327Google Scholar
  53. Pieren AP (2000) Las sucesiones anteordovícicas de la región oriental de la provincia de Badajoz y área contigua de la de Ciudad Real. PhD Thesis, Universidad Complutense Madrid, pp 1–620Google Scholar
  54. Pietzsch K (1917) Das Elbtalschiefergebiet südwestlich von Pirna. Zeitschrift der Deutschen Geologischen Gesellschaft 69:178–286Google Scholar
  55. Pietzsch K (1927) Der Bau des erzgebirgisch-lausitzer Grenzgebietes. Abhandlungen des Sächsischen Geologischen Landesamts 2:1–28Google Scholar
  56. Pietzsch K (1962) Geologie von Sachsen. VEB Deutscher Verlag der Wissenschaften Berlin, pp 1–870Google Scholar
  57. Potrel A, Peucat JJ, Fanning CM, Auvray B, Burg J-P, Caruba C (1996) 3.5 Ga old terranes in the West African Craton, Mauritania. J Geol Soc 153(4):507–510CrossRefGoogle Scholar
  58. Potrel A, Peucat JJ, Fanning CM (1998) Archean crustal evolution of the West African Craton: example of the Amsaga Area (Reguibat Rise) U–Pb and Sm–Nd evidence for crustal growth and recycling. Precambr Res 90:107–117CrossRefGoogle Scholar
  59. Prave AR, Condon DJ, Hoffmann KH, Tapster S, Fallick AE (2016) Duration and nature of the end-Cryogenian (Marinoan) glaciation. Geology 44(8):631–634CrossRefGoogle Scholar
  60. Pu JP, Bowring SA, Ramezani J, Myrow P, Raub TD, Landing E, Mills A, Hodgin E, Macdonald FA (2016) Dodging snowballs: geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota. Geology 44(11):955–958CrossRefGoogle Scholar
  61. Quesada C (1990) Precambrian successions in SW Iberia: their relationship to ´Cadomian´ orogenic events. In: D´Lemos RS, STrachan, RA, Topley, CG (eds) The Cadomian orogeny, vol 51. The Geological Society, London, pp 353–362Google Scholar
  62. Quesada C (1991) Geological constraints on the Paleozoic tectonic evolution of tectonostratigraphic terranes in the Iberian Massif. Tectonophysics 185:225–245CrossRefGoogle Scholar
  63. Quesada C (1996) Evolución geodinámica de la zona Ossa-Morena durante el ciclo Cadomiense. In: Livro de Homenagem aõ Prof. Francisco Gonçalves, Uniniversidade de Évora, pp 205–230Google Scholar
  64. Quesada C (2006) The Ossa-Morena Zone of the Iberian Massif: a tectonostratigraphic approach to its evolution. Z Dtsch Ges Geowiss 157(4):585–595Google Scholar
  65. Retallack GJ, Marconato A, Osterhout JT, Watts KE, Bindeman IN (2014) Revised Wonoka isotopic anomaly in South Australia and Late Ediacaran mass extinction. J Geol Soc 171:709–722CrossRefGoogle Scholar
  66. Rocci G, Bronner G, Deschamps M (1991) Crystalline basement of the West African Craton. The West African Orogens and Circum-Atlantic Correlatives. Springer, Berlin, pp 31–61CrossRefGoogle Scholar
  67. Rooney AD, Strauss JV, Brandon AD, Macdonald FA (2015) A Cryogenian chronology: two long-lasting synchronous neoproterozoic glaciations. Geology 43(5):459–462CrossRefGoogle Scholar
  68. San José MA, Pieren Pidal AP, García-Hidalgo JF, Vilas Minondo L, Herranz Araújo P, Peláez Pruneda JR, Perejón A (1990) Ante-Ordovician stratigraphy. In: Dallmeyer RD, Martínez García E (eds) Pre-mesozoic geology of Iberia. Springer, pp 147–159Google Scholar
  69. Sánchez-García T, Bellido F, Quesada C (2003) Geodynamic setting and geochemical signatures of Cambrian-Ordovician rift-related igneous rocks (Ossa-Morena Zone, SW Iberia). Tectonophysics 365:233–255CrossRefGoogle Scholar
  70. Sánchez-García T, Quesada C, Bellido F, Dunning G, González de Tánago J (2008) Two-step magma flooding of the upper crust during rifting: the Early Paleozoic of the Ossa-Morena Zone (SW Iberia). Tectonophysics 461:72–90CrossRefGoogle Scholar
  71. Sánchez-García T, Bellido F, Pereira MF, Chichorro M, Quesada C, Pin C, Silva JB (2010) Rift-related volcanism predating the birth of the Rheic Ocean (Ossa-Morena zone, SW Iberia). Gondwana Res 17:392–407CrossRefGoogle Scholar
  72. Scherer E, Münker C, Mezger K (2001) Calibration of the Lutetium-Hafnium clock. Science 293:683–687CrossRefGoogle Scholar
  73. Schmidt K (1960) Die Geröllführung algonkisch-kambrischer Grauwacken des Westlausitzer Zuges. Freiberger Forschungsheft C 91:1–79Google Scholar
  74. Sebastian U (2013) Die Geologie des Erzgebirges. Springer, pp 1–268Google Scholar
  75. Sircombe KN (2004) AGE DISPLAY: an EXCEL workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions. Comput Geosci 30:21–31CrossRefGoogle Scholar
  76. Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubret MN, Whitehouse MJ (2008) Plešovice zircon-a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 249:1–35CrossRefGoogle Scholar
  77. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221CrossRefGoogle Scholar
  78. Talavera C, Martínez Poyatos D, González Lodeiro F (2015) SHRIMP U-Pb geochronological constraints on the timing of the intra-Alcudian (Cadomian) angular unconformity in the Central Iberian Zone (Iberian Massif, Spain). Int J Earth Sci 104:1739–1757CrossRefGoogle Scholar
  79. Thompson MD, Ramezani J, Crowley JL (2014) U-pb zircon geochronology of roxbury conglomerate, boston basin, massachusetts: tectono-stratigraphic implications for avalonia in and beyond SE New England. Am J Sci 314(6):1009–1040CrossRefGoogle Scholar
  80. Vernhet E, Youbi N, Chellai EH, Villeneuve M, El Archi A (2012) The Bou-Azzer glaciation: evidence for an Ediacaran glaciation on the West African Craton (Anti-Atlas, Morocco). Precambr Res 196–197:106–112CrossRefGoogle Scholar
  81. Vickers-Rich P, Fedonkin MA (2007) The proterozoic (2.5 billion to 542 million years ago). In: Fedonkin MA, Gehling JG, Grey K, Narbonne GM, Vickers-Rich P (eds) The rise of animals. The Johns Hopkins University Press, Baltimore, pp 29–51Google Scholar
  82. Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178CrossRefGoogle Scholar
  83. Zieger J (2015) U–Pb-Datierung an magmatischen und detritischen Zirkonen des Döhlener Beckens. Master Thesis, Technische Universität Dresden, pp 1–141Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Ulf Linnemann
    • 1
    Email author
  • Agustín Pieren Pidal
    • 2
  • Mandy Hofmann
    • 1
  • Kerstin Drost
    • 3
  • Cecilio Quesada
    • 4
  • Axel Gerdes
    • 5
  • Linda Marko
    • 5
  • Andreas Gärtner
    • 1
  • Johannes Zieger
    • 1
  • Jens Ulrich
    • 6
  • Rita Krause
    • 1
  • Patricia Vickers-Rich
    • 7
    • 8
    • 9
    • 10
  • Jana Horak
    • 11
  1. 1.Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, GeoPlasmaLabDresdenGermany
  2. 2.Departmento de EstratigrafíaUniversidad ComplutenseMadridSpain
  3. 3.Department of Geology, School of Natural SciencesTrinity College DublinDublin 2Ireland
  4. 4.Instituto Geológico y Minero de EspañaMadridSpain
  5. 5.Institut für Geowissenschaften, MineralogieGoethe-Universität FrankfurtFrankfurt am MainGermany
  6. 6.G.U.B. Ingenieur AG, Niederlassung FreibergFreibergGermany
  7. 7.Department of Chemistry and Biotechnology, Faculty of ScienceSwinburne University of TechnologyMelbourne (Hawthorn)Australia
  8. 8.School of Earth, Atmosphere and EnvironmentMonash UniversityMelbourne (Clayton)Australia
  9. 9.School of Environmental SciencesDeakin UniversityMelbourne (Burwood)Australia
  10. 10.Palaeontology DepartmentMuseum VictoriaMelbourneAustralia
  11. 11.National Museum Cardiff, Mineralogy and PetrologyCardiffUK

Personalised recommendations