International Journal of Earth Sciences

, Volume 107, Issue 2, pp 505–515 | Cite as

Interhemispheric teleconnections: Late Pliocene change in Mediterranean outflow water linked to changes in Indonesian Through-Flow and Atlantic Meridional Overturning Circulation, a review and update

  • Michael SarntheinEmail author
  • Patrick Grunert
  • Nabil Khélifi
  • Martin Frank
  • Dirk Nürnberg
Original Paper


The ultimate, possibly geodynamic control and potential impact of changes in circulation activity and salt discharge of Mediterranean outflow waters (MOW) on Atlantic meridional overturning circulation have formed long-standing objectives in paleoceanography. Late Pliocene changes in the distal advection of MOW were reconstructed on orbital timescales for northeast Atlantic DSDP/ODP sites 548 and 982 off Brittany and on Rockall Plateau, supplemented by a proximal record from Site U1389 west off Gibraltar, and compared to Western Mediterranean surface and deep-water records of Alboran Sea Site 978. From ~3.43 to 3.3 Ma, MOW temperatures and salinities form a prominent rise by 2–4 °C and ~3 psu, induced by a preceding and coeval rise in sea surface and deep-water salinity and increased summer aridity in the Mediterranean Sea. We speculate that these changes triggered an increased MOW flow and were ultimately induced by a persistent 2.5 °C cooling of Indonesian Through-Flow waters. The temperature drop resulted from the northward drift of Australia that crossed a threshold value near 3.6–3.3 Ma and led to a large-scale cooling of the eastern subtropical Indian Ocean and in turn, to a reduction of African monsoon rains. Vice versa, we show that the distinct rise in Mediterranean salt export after ~3.4 Ma induced a unique long-term rise in the formation of Upper North Atlantic Deep Water, that followed with a phase lag of ~100 ky. In summary, we present evidence for an interhemispheric teleconnection of processes in the Indonesian Gateways, the Mediterranean and Labrador Seas, jointly affecting Pliocene climate.


Global climate change Paleoceanography Late Pliocene Atlantic salinity balance Shift of ocean gateway Mediterranean climate 



We are thankful to Ángela García Gallardo (University of Graz) for the acquisition of the Zr/Al data at the Bremen Core Repository and thank DiNezio (University of Texas) for providing an early version of his manuscript on GCM model results. We acknowledge two constructive reviews, in particular one of Peter Molnar, and M. Latif (Geomar Kiel) for valuable advise on different modes of ENSO. The study contributes to project P25831-N29 of the Austrian Science Fund (FWF).


  1. Alhammoud B, Meijer PT, Dijkstra HA (2010) Sensitivity of Mediterranean thermohaline circulation to gateway depth: a model investigation. Paleoceanography 25(PA2220):20. doi:  10.1029/2009PA001823 Google Scholar
  2. Bahr A, Klaboth S, Jiménez FJ, Sierro FJ, Völker AHL, Lourens L et al (2015) Persistent monsoonal forcing of Mediterranean outflow water dynamics during the Pleistocene. Geology 43(11):951–954. doi: 10.1130/G37013.1 CrossRefGoogle Scholar
  3. Bigg GR (1995) Aridity of the Mediterranean Sea at the last glacial maximum: a reinterpretation of the deep-sea δ18O record. Paleoceanography 10(2):283–290. doi: 10.1029/94PA03165 CrossRefGoogle Scholar
  4. Cane MA, Molnar P (2001) Closing of the Indonesian seaway as precursor to east African aridification around 3–4 million years ago. Nature 411:157–162CrossRefGoogle Scholar
  5. De Schepper S, Head MJ, Groeneveld J (2009) North Atlantic Current variability through marine isotope stage M2 (circa 3.3 Ma) during the mid-Pliocene. Paleoceanography 24(4):25. doi: 10.1029/2008PA001725 CrossRefGoogle Scholar
  6. De Schepper S, Groeneveld J, Naafs BDA, van Renterghem C, Hennissen J, Head MJ, Louwye S, Fabian K (2013) Northern hemisphere glaciation during the globally warm early late Pliocene. PLoS One 8(12):e81508. doi: 10.1371/journal.pone.0081508 CrossRefGoogle Scholar
  7. deMenocal PB (2004) African climate change and faunal evolution during the Pliocene–Pleistocene. Earth Planet Sci Lett 220:3–24CrossRefGoogle Scholar
  8. DiNezio PN, Timmermann A, Tierney JE, Jin F-F, Otto-Bliesner B, Rosenbloom N, Mapes B, Neale R, Ivanovic RF, Montenegro A (2016a) The climate response of the Indo-Pacific warm pool to glacial sea level. Paleoceanography 31:866–894. doi: 10.1002/2015PA002890 CrossRefGoogle Scholar
  9. DiNezio PN, Tierney JE, Otto-Bliesner B, Timmermann A, Bhattacharya T (2016b) Glacial changes in warm pool hydroclimate driven by ice sheets via decreased sea level and northern hemisphere cooling. Manuscript submGoogle Scholar
  10. Dolan AM, Haywood AM, Hunter SJ et al (2015) Modelling the enigmatic Late Pliocene glacial event—Marine Isotope Stage M2. Glacial Planet Change 128:47–60CrossRefGoogle Scholar
  11. Fauquette S, Guiot J, Suc J-P (1998) A method for climatic reconstruction of the Mediterranean Pliocene using pollen data. Palaeogeogr Palaeoclimatol Palaeoecol 144:183–201CrossRefGoogle Scholar
  12. Gallagher SJ, Fullthorpe CS, Bogus H, the Expedition 356 Scientists (2017) Expedition 356 summary. In: Proceedings of the international ocean discovery program, vol 356. doi: 10.14379/iodp.proc.356.101.2017
  13. Goddard L, Graham NE (1999) Importance of the Indian Ocean for simulating rainfall anomalies over eastern and southern Africa. J Geophys Res 104:19099–19116CrossRefGoogle Scholar
  14. Gordon AL (1986) Interocean exchange of thermocline water. J Geophys Res 91(C4):5037–5046CrossRefGoogle Scholar
  15. Gradstein FM, Ogg JG, Schmitz M, Ogg G (eds) (2012) The geologic time scale 2012. Elsevier. eBook ISBN: 9780444594488Google Scholar
  16. Grunert P, Balestra B, Richter C, Flores J-A, Auer G, García Gallardo A, Piller WE (2017) Revised and refined age model for the upper Pliocene of IODP Site U1389 (IODP Expedition 339. Newsletters on Stratigraphy, Gulf of Cádiz) (in press) Google Scholar
  17. Hernández-Molina FJ, Stow DAV, Carlos A et al (2014) Onset of Mediterranean outflow into the North Atlantic. Science 344:1244–1250CrossRefGoogle Scholar
  18. Ivanovic RF, Valdes PJ, Gregoire L, Flecker R, Gutjahr M (2014) Sensitivity of modern climate to the presence, strength and salinity of Mediterranean-Atlantic exchange in a global general circulation model. Clim Dyn 42:859–877CrossRefGoogle Scholar
  19. Karas K, Nürnberg D, Gupta AK, Tiedemann R, Mohan K, Bickert T (2009) Mid-Pliocene climate change amplified by a switch in Indonesian subsurface throughflow. Nat Geosci 2:434–438. doi: 10.1038/ngeo520 CrossRefGoogle Scholar
  20. Karas K, Nürnberg D, Tiedemann R, Garbe-Schönberg D (2011) Pliocene Indonesian throughflow and Leeuwin current dynamics: implications for Indian Ocean polar heat flux. Paleoceanography 26(PA2217):9. doi: 10.1029/2010PA001949 Google Scholar
  21. Karas K, Nürnberg D, Bahr A, Groeneveld J, Herrle JO, Tiedemann R, deMenocal PB (2017) Pliocene oceanic seaways and global climate. Sci Rep 7:39842. doi: 10.1038/srep39842 CrossRefGoogle Scholar
  22. Khélifi N, Sarnthein M, Andersen N, Blanz T, Frank M, Garbe-Schönberg D, Haley BA, Stumpf R, Weinelt M (2009) A major and long-term Pliocene rise in the Mediterranean Outflow (3.4-3.3 Ma). Geology 37(9):811–814CrossRefGoogle Scholar
  23. Khélifi N, Sarnthein M, Frank M, Andersen N, Garbe-Schönberg D (2014) Late Pliocene variations of the Mediterranean outflow. Mar Geol 357:182–194CrossRefGoogle Scholar
  24. Kleiven HF, Jansen E, Fronval T, Smith TM (2002) Intensification of Northern Hemisphere glaciations in the circum Atlantic region (3.5–2.4 Ma)—ice-rafted detritus evidence. Palaeogeogr Palaeoclimatol Palaeoecol 184:213–223CrossRefGoogle Scholar
  25. Krebs U, Park W, Schneider B (2011) Pliocene aridification of Australia caused by tectonically induced weakening of the Indonesian throughflow. Palaeogeogr Palaeoclimatol Palaeoecol 309:111–117CrossRefGoogle Scholar
  26. Latif, M., personal oral communication, April 2017Google Scholar
  27. Li H, Durbin R (2011) Inference of human population history from individual whole-genome sequences. Nature 475:494–496Google Scholar
  28. Lisiecki LE, Raymo ME (2005) A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20(PA1003):17Google Scholar
  29. Lourens LJ, Antonarakou A, Hilgen FJ, Van Hoof AAM, Vergnaud-Grazzini C, Zachariasse WJ (1996) Evaluation of the Plio-Pleistocene astronomical timescale. Paleoceanography 11:391–413CrossRefGoogle Scholar
  30. Lozier MS, Stewart NM (2008) On the temporally varying northward penetration of Mediterranean outflow water and eastward penetration of Labrador Sea Water. J Phys Oceanogr 38:2097–2103CrossRefGoogle Scholar
  31. Marlow JR, Lange CB, Wefer G, Rosell-Melé A (2000) Upwelling intensification as part of the Pliocene–Pleistocene climate transition. Science 290:2288–2291Google Scholar
  32. McCartney MS, Mauritzen C (2001) On the origin of the warm inflow to the Nordic Seas. Prog Oceanogr 51:125–214CrossRefGoogle Scholar
  33. NODC (2001) National Oceanographic and Data Center, World Ocean Atlas 2001, objective analyses, data statistics, and figures. CD-ROM documentation.
  34. O’Neill-Baringer M, Price JF (1997) Mixing and spreading of the Mediterranean outflow. J Phys Oceanogr 27:1654–1677CrossRefGoogle Scholar
  35. Rahmstorf S (1998) Influence of Mediterranean outflow on climate. Eos 79(24):281–282CrossRefGoogle Scholar
  36. Reid J (1979) On the contribution of the Mediterranean Sea outflow to the Norwegian-Greenland Sea. Deep Sea Res I 26:1199–1223CrossRefGoogle Scholar
  37. Rodgers KB, Latif M, Legutke S (2000) Sensitivity of equatorial Pacific and Indian Ocean water masses to the position of the Indonesian throughflow. Geophys Res Lett 27:2941–2945CrossRefGoogle Scholar
  38. Rogerson M, Rohling E, Bogg GR, Ramirez J (2012) Paleoceanography of the Atlantic-Mediterranean exchange: overview and first quantitative assessment of climatic forcing. Rev Geophys 50(RG 2003):32Google Scholar
  39. Rohling EJ, Bigg GR (1998) Paleosalinity and δ18O: a critical assessment. J Geophys Res 103:1307–1318. doi: 10.1029/97JC01047 CrossRefGoogle Scholar
  40. Sarnthein M, Bartoli G, Prange M, Schmittner A, Schneider B, Weinelt M (2009) Mid-Pliocene shifts in ocean overturning circulation and the onset of quaternary-style climates. Climate of the Past 5:265–283CrossRefGoogle Scholar
  41. Schlitzer R (2013) Ocean data view. Accessed 20 May 2014
  42. Shackleton NJ, Crowhurst S, Hagelberg T, Pisias NG, Schneider DA (1995) A new late Neogene time scale: application to ODP Leg 138 sites. In: Pisias NG, Mayer LA, Janecek TR, Palmer-Julson A, Van Andel TH (eds) Proc. ODP, Sci. Results, Ocean Drilling Program - Texas A&M University, College Station TXGoogle Scholar
  43. Steph S, Tiedemann R, Prange M, Groeneveld J, Schulz M, Timmermann A, Nürnberg D, Rühlemann C, Saukel C, Haug GH (2010) Early Pliocene increase in thermohaline overturning: a precondition for the development of the modern equatorial Pacific cold tongue. Paleoceanography 25(PA2202):17. doi: 10.1029/2008PA001645 Google Scholar
  44. Tachikawa K, Roy-Barman M, Michard A, Thouron D, Yeghicheyan D, Jeandel C (2004) Neodymium isotopes in the Mediterranean Sea: comparison between seawater and sediment signals. Geochim Cosmochim Acta 68:3095–3106CrossRefGoogle Scholar
  45. Tiedemann R, Sarnthein M, Shackleton NJ (1994) Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program Site 659. Paleoceanography 9:619–638CrossRefGoogle Scholar
  46. Weng H, Behera SK, Yamagata T (2009) Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Clim Dyn 32:663–674CrossRefGoogle Scholar
  47. Weyl PK (1968) The role of oceans in climatic change: a theory of the ice ages. Meteorol Monogr 8:37–62Google Scholar
  48. WOA (2005) Volume 1: temperature. Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, and H. E. Garcia, 2006. World Ocean Atlas 2005, S. Levitus, Ed. NOAA Atlas NESDIS 61, U.S. Government Printing Office, Washington, D.C., 182 pp. Volume 2: Salinity: Antonov, J. I., R. A. Locarnini, T. P. Boyer, A. V. Mishonov, and H. E. Garcia, 2006. World Ocean Atlas 2005, S. Levitus, Ed. NOAA Atlas NESDIS 62, U.S. Government Printing Office, Washington, D.C., 182 ppGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Michael Sarnthein
    • 1
    Email author
  • Patrick Grunert
    • 2
  • Nabil Khélifi
    • 1
    • 3
    • 4
  • Martin Frank
    • 4
  • Dirk Nürnberg
    • 4
  1. 1.Institute for GeosciencesUniversity of KielKielGermany
  2. 2.Institute of Earth Science, NAWI Graz GeocenterUniversity of GrazGrazAustria
  3. 3.Springer VerlagHeidelbergGermany
  4. 4.GEOMAR Helmholtz Centre for Ocean ResearchKielGermany

Personalised recommendations