International Journal of Earth Sciences

, Volume 107, Issue 2, pp 481–504 | Cite as

Growth and demise of a Paleogene isolated carbonate platform of the Offshore Indus Basin, Pakistan: effects of regional and local controlling factors

  • Khurram Shahzad
  • Christian Betzler
  • Nadeem Ahmed
  • Farrukh Qayyum
  • Silvia Spezzaferri
  • Anwar Qadir
Original Paper


Based on high-resolution seismic and well datasets, this paper examines the evolution and drowning history of a Paleocene–Eocene carbonate platform in the Offshore Indus Basin of Pakistan. This study uses the internal seismic architecture, well log data as well as the microfauna to reconstruct factors that governed the carbonate platform growth and demise. Carbonates dominated by larger benthic foraminifera assemblages permit constraining the ages of the major evolutionary steps and show that the depositional environment was tropical within oligotrophic conditions. With the aid of seismic stratigraphy, the carbonate platform edifice is resolved into seven seismic units which in turn are grouped into three packages that reflect its evolution from platform initiation, aggradation with escarpment formation and platform drowning. The carbonate factory initiated as mounds and patches on a Cretaceous–Paleocene volcanic complex. Further, the growth history of the platform includes distinct phases of intraplatform progradation, aggradation, backstepping and partial drownings. The youngest succession as late-stage buildup records a shift from benthic to pelagic deposition and marks the final drowning in the Early Eocene. The depositional trend of the platform, controlled by the continuing thermal subsidence associated with the cooling of volcanic margin lithosphere, was the major contributor of the accommodation space which supported the vertical accumulation of shallow water carbonate succession. Other factors such as eustatic changes and changes in the carbonate producers as a response to the Paleogene climatic perturbations played secondary roles in the development and drowning of these buildups.


Paleogene carbonate platform Seismic sequence stratigraphy Drowning Offshore Indus Basin Larger benthic foraminifera Biostratigraphy 



The authors wish to express sincere thanks to the Directorate General of Petroleum Concession (DGPC), Pakistan and Hydrocarbon Development Institute of Pakistan (HDIP) for their permission to release and publish the analyzed dataset. We would like to acknowledge the assistance of Mr. Muhammad Zafar Iqbal and Mr. Faisal Mehmood (HDIP) in the preparation of well cutting samples and thin sections. We thank Schlumberger for providing the Petrel application and dGB Netherland for providing OpendTect software. Stephan J. Jorry and Wolfgang Schlager are thanked for providing constructive reviews that greatly improved this manuscript. The University of Hamburg is gratefully acknowledged for funding and scholarship.


  1. Afzal J, Williams M, Aldridge RJ (2009) Revised stratigraphy of the lower Cenozoic succession of the Greater Indus Basin in Pakistan. J Micropalaeontol 28:7–23. doi: 10.1144/jm.28.1.7 CrossRefGoogle Scholar
  2. Afzal J, Williams M, Leng MJ et al (2011) Evolution of Paleocene to Early Eocene larger benthic foraminifer assemblages of the Indus Basin, Pakistan. Lethaia 44:299–320. doi: 10.1111/j.1502-3931.2010.00247.x CrossRefGoogle Scholar
  3. Agrawal A, Rogers JJW (1992) Structure and tectonic evolution of the western continental margin of India: Evidence from subsidence studies for a 25–20 Ma plate reorganization in the Indian Ocean. In: Bartholomew MJ, Hyndman DW, Mogk DW, Mason R (eds) Basement tectonics 8: characterization and comparison of ancient and Mesozoic Continental Margins. Springer, Dordrecht, pp 583–590CrossRefGoogle Scholar
  4. Ahmad A, Ahmad N (2005) Paleocene petroleum system and its significance for exploration in the southwest lower Indus basin and nearby offshore of Pakistan. In: Proceedings of annual technical conference, 2005. Islamabad, pp 1–22Google Scholar
  5. Akhter M, Butt AA (1999) Lower Tertiary biostratigraphy of the Kala Chitta Range, northern Pakistan. Revue de Paleobiologie 18:123–146Google Scholar
  6. Aubert O, Droxler AW (1996) Seismic stratigraphy and depositional signatures of the Maldive carbonate system (Indian Ocean). Mar Pet Geol 13:503–536. doi: 10.1016/0264-8172(96)00008-6 CrossRefGoogle Scholar
  7. Berggren WA (2005) A revised tropical to sub-tropical Paleogene planktonic foraminiferal zonation. J Foraminifer Res 35:279–298. doi: 10.2113/35.4.279 CrossRefGoogle Scholar
  8. Betzler C, Kroon D, Reijmer JJG (2000) Synchroneity of major Late Neogene sea level fluctuations and paleoceanographically controlled changes as recorded by two carbonate platforms. Paleoceanography 15:722–730. doi: 10.1029/1999PA000481 CrossRefGoogle Scholar
  9. Betzler C, Hübscher C, Lindhorst S et al (2009) Monsoon-induced partial carbonate platform drowning (Maldives, Indian Ocean). Geology 37:867–870CrossRefGoogle Scholar
  10. Betzler C, Fürstenau J, Lüdmann T et al (2013) Sea-level and ocean-current control on carbonate-platform growth, Maldives, Indian Ocean. Basin Res 25:172–196. doi: 10.1111/j.1365-2117.2012.00554.x CrossRefGoogle Scholar
  11. Betzler C, Eberli GP, Kroon D et al (2016) The abrupt onset of the modern South Asian Monsoon winds. Sci Rep 6:29383. doi: 10.1016/0031-0182(91)90075-3 CrossRefGoogle Scholar
  12. Calvès G, Clift PD, Inam A (2008) Anomalous subsidence on the rifted volcanic margin of Pakistan: no influence from Deccan plume. Earth Planet Sci Lett 272:231–239. doi: 10.1016/j.epsl.2008.04.042 CrossRefGoogle Scholar
  13. Calvès G, Schwab AM, Huuse M et al (2011) Seismic volcanostratigraphy of the western Indian rifted margin: the pre-Deccan igneous province. J Geophys Res Solid Earth 116:1–28. doi: 10.1029/2010JB000862 CrossRefGoogle Scholar
  14. Carmichael SM, Akhter S, Bennett JK et al (2009) Geology and hydrocarbon potential of the offshore Indus Basin, Pakistan. Pet Geosci 15:107–116. doi: 10.1144/1354-079309-826 CrossRefGoogle Scholar
  15. Chatterjee S, Goswami A, Scotese CR (2013) The longest voyage: tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Res 23:238–267. doi: 10.1016/ CrossRefGoogle Scholar
  16. Clift PD, Shimizu N, Layne GD et al (2001) Development of the Indus Fan and its significance for the erosional history of the Western Himalaya and Karakoram. Geol Soc Am Bull 113:1039–1051. doi: 10.1130/0016-7606(2001)113<1039:DOTIFA>2.0.CO;2 CrossRefGoogle Scholar
  17. Copley A, Avouac J-P, Royer J-Y (2010) India–Asia collision and the Cenozoic slowdown of the Indian plate: implications for the forces driving plate motions. J Geophys Res Solid Earth 115:B03410. doi: 10.1029/2009JB006634 CrossRefGoogle Scholar
  18. Courgeon S, Jorry SJ, Camoin GF et al (2016) Growth and demise of Cenozoic isolated carbonate platforms: new insights from the Mozambique Channel seamounts (SW Indian Ocean). Mar Geol 380:90–105. doi: 10.1016/j.margeo.2016.07.006 CrossRefGoogle Scholar
  19. de Groot P, Huck A, de Bruin G et al (2010) The horizon cube: a step change in seismic interpretation. Lead Edge 29:1048–1055. doi: 10.1190/1.3485765 CrossRefGoogle Scholar
  20. Duncan RA (1990) The volcanic record of the Reunion hotspot. In: Backman J, Peterson L, Duncan RA (eds) Proceedings of the Ocean Drilling Program, Scientific Results, vol 115, pp 3–10Google Scholar
  21. Edwards RA, Minshull TA, White RS (2000) Extension across the Indian–Arabian plate boundary: the Murray Ridge. Geophys J Int 142:461–477. doi: 10.1046/j.1365-246x.2000.00163.x CrossRefGoogle Scholar
  22. Embry AF (1993) Transgressive–regressive (T–R) sequence analysis of the Jurassic succession of the Sverdrup Basin, Canadian Arctic Archipelago. Can J Earth Sci 30:301–320. doi: 10.1139/e93-024 CrossRefGoogle Scholar
  23. Fontaine JM, Cussey R, Lacaze J et al (1987) Seismic interpretation of carbonate depositional environments. AAPG Bull 71:281–297Google Scholar
  24. Fürstenau J, Lindhorst S, Betzler C, Hübscher C (2010) Submerged reef terraces of the Maldives (Indian Ocean). Geo-Mar Lett 30:511–515. doi: 10.1007/s00367-009-0174-2 CrossRefGoogle Scholar
  25. Gaedicke C, Schlüter H-U, Roeser HA et al (2002) Origin of the northern Indus Fan and Murray Ridge, Northern Arabian Sea: interpretation from seismic and magnetic imaging. Tectonophysics 355:127–143. doi: 10.1016/S0040-1951(02)00137-3 CrossRefGoogle Scholar
  26. Hallock P (1987) Fluctuations in the trophic resource continuum: a factor in global diversity cycles? Paleoceanography 2:457–471. doi: 10.1029/PA002i005p00457 CrossRefGoogle Scholar
  27. Hallock P, Glenn EC (1986) Larger foraminifera: a tool for paleoenvironmental analysis of Cenozoic carbonate depositional facies. Palaios 1:55. doi: 10.2307/3514459 CrossRefGoogle Scholar
  28. Hallock P, Schlager W (1986) Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1:389. doi: 10.2307/3514476 CrossRefGoogle Scholar
  29. Hallock P, Premoli Silva I, Boersma A (1991) Similarities between planktonic and larger foraminiferal evolutionary trends through Paleogene paleoceanographic changes. Palaeogeogr Palaeoclimatol Palaeoecol 83:49–64. doi: 10.1016/0031-0182(91)90075-3 CrossRefGoogle Scholar
  30. Haq B (1981) Paleogene paleoceanography: Early Cenozoic oceans revisited. Oceanol Acta Special Issue 4:71–82Google Scholar
  31. Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167. doi: 10.1126/science.235.4793.1156 CrossRefGoogle Scholar
  32. Höntzsch S, Scheibner C, Kuss J et al (2011) Tectonically driven carbonate ramp evolution at the southern Tethyan shelf: the Lower Eocene succession of the Galala Mountains, Egypt. Facies 57:51–72. doi: 10.1007/s10347-010-0229-x CrossRefGoogle Scholar
  33. Höntzsch S, Scheibner C, Brock JP, Kuss J (2013) Circum-Tethyan carbonate platform evolution during the Palaeogene: the Prebetic platform as a test for climatically controlled facies shifts. Turk J Earth Sci 22:891–918. doi: 10.3906/yer-1207-8 CrossRefGoogle Scholar
  34. Hottinger L (1971) Larger foraminifera common to Mediterranean and Indian Paleocene and Eocene formations. Ann Hung Geol Inst 54:143–150Google Scholar
  35. Jerram DA, Single RT, Hobbs RW, Nelson CE (2009) Understanding the offshore flood basalt sequence using onshore volcanic facies analogues: an example from the Faroe–Shetland basin. Geol Mag 146:353. doi: 10.1017/S0016756809005974 CrossRefGoogle Scholar
  36. Jones B, Desrochers A (1992) Shallow platform carbonates. In: Walker R, James N (eds) Facies models—response to sealevel changes. Geological Association of Canada, St. John’s, pp 277–301Google Scholar
  37. Jorry S, Davaud E, Caline B (2003) Controls on the distribution of Nummulite facies: a case study from the Late Ypresian El Garia Formation (Kesra Plateau, Central Tunisia). J Pet Geol 26:283–306. doi: 10.1111/j.1747-5457.2003.tb00031.x CrossRefGoogle Scholar
  38. Jorry SJ, Hasler C-A, Davaud E (2006) Hydrodynamic behaviour of Nummulites: implications for depositional models. Facies 52:221–235. doi: 10.1007/s10347-005-0035-z CrossRefGoogle Scholar
  39. Kent DV, Muttoni G (2008) Equatorial convergence of India and Early Cenozoic climate trends. Proc Natl Acad Sci USA 105:16065–16070CrossRefGoogle Scholar
  40. Kim W, Fouke BW, Petter AL et al (2012) Sea-level rise, depth-dependent carbonate sedimentation and the paradox of drowned platforms: slowly drowned platforms. Sedimentology 59:1677–1694. doi: 10.1111/j.1365-3091.2012.01321.x CrossRefGoogle Scholar
  41. Lucia FJ (2007) Carbonate reservoir characterization. Springer, BerlinGoogle Scholar
  42. Malod JA, Droz L, Kemal BM, Patriat P (1997) Early spreading and continental to oceanic basement transition beneath the Indus deep-sea fan: northeastern Arabian Sea. Mar Geol 141:221–235. doi: 10.1016/S0025-3227(97)00074-1 CrossRefGoogle Scholar
  43. Miller K, Mountain G, Wright J, Browning J (2011) A 180-million-year record of sea level and ice volume variations from continental margin and deep-sea isotopic records. Oceanography 24:40–53. doi: 10.5670/oceanog.2011.26 CrossRefGoogle Scholar
  44. Mitchum RM, Vail PR, Sangree JB (1977) Seismic stratigraphy and global changes of sea level: Part 6. Stratigraphic interpretation of seismic reflection patterns in depositional sequences. In: Payton CE (eds) Seismic stratigraphy—applications to hydrocarbon exploration, vol 26. American Association of Petroleum Geologists, Tulsa, pp 117–134Google Scholar
  45. Mohan M (1985) Geohistory analysis of Bombay High region. Mar Pet Geol 2:350–360. doi: 10.1016/0264-8172(85)90030-3 CrossRefGoogle Scholar
  46. Mresah MH (1993) Facies patterns and stratal geometries: clues to the nature of the platform margin during the Paleocene, northeast Sirte Basin, Libya. Sediment Geol 84:149–167. doi: 10.1016/0037-0738(93)90052-7 CrossRefGoogle Scholar
  47. Naini BR, Talwani M (1982) Structural framework and the evolutionary history of the continental margin of Western India: rifted margins: field investigations of margin structure and stratigraphy. In: Warkins JS, Drake CL (eds) Studies in continental margin geology, vol 34. American Association of Petroleum Geologists, Tulsa, pp 167–191Google Scholar
  48. Paumard V, Zuckmeyer E, Boichard R et al (2017) Evolution of Late Oligocene–Early Miocene attached and isolated carbonate platforms in a volcanic ridge context (Maldives type), Yadana field, offshore Myanmar. Mar Pet Geol 81:361–387. doi: 10.1016/j.marpetgeo.2016.12.012 CrossRefGoogle Scholar
  49. Purdy EG, Betram GT (1993) Carbonate concepts from the Maldives, Indian Ocean. American Association of Petroleum Geologists, Studies in Geology 34:1–57Google Scholar
  50. Qayyum F, de Paul G, Hemstra N (2012) Using 3D Wheeler diagrams in seismic interpretation—the HorizonCube method. First Break 30:103–109Google Scholar
  51. Qayyum F, Hemstra N, Singh R (2013) A modern approach to build 3D sequence stratigraphic framework. Oil Gas J 111:46–65Google Scholar
  52. Robinson SA (2011) Shallow-water carbonate record of the Paleocene–Eocene Thermal Maximum from a Pacific Ocean guyot. Geology 39:51–54. doi: 10.1130/G31422.1 CrossRefGoogle Scholar
  53. Ryan WBF, Carbotte SM, Coplan JO et al (2009) Global multi-resolution topography synthesis. Geochem Geophys Geosyst 10:Q03014. doi: 10.1029/2008GC002332 CrossRefGoogle Scholar
  54. Sandwell DT, Muller RD, Smith WHF et al (2014) New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346:65–67. doi: 10.1126/science.1258213 CrossRefGoogle Scholar
  55. Sarg JF (1988) Carbonate sequence stratigraphy. In: Wilgus CK, Hastings BS, Posamentier H, van Wagnor J, Ross CA, Kendall CGSC (eds) Sea-level changes: an integrated approach. SEPM (Society of Sedimentary Geology) Special Publication No. 42, Tulsa, pp 155–182Google Scholar
  56. Sarg JF, Markello J, Weber LJ (1999) The second-order cycle, carbonate-platform growth, and reservoir, source, and trap prediction. In: Harris PM, Saller AH, Simo JA (eds) Advances in carbonate sequence stratigraphy. SEPM (Society for Sedimentary Geology), Tulsa, pp 11–34CrossRefGoogle Scholar
  57. Scheibner C, Speijer RP (2008a) Decline of coral reefs during Late Paleocene to Early Eocene global warming. eEarth 3:19–26. doi: 10.5194/ee-3-19-2008 CrossRefGoogle Scholar
  58. Scheibner C, Speijer RP (2008b) Late Paleocene–Early Eocene Tethyan carbonate platform evolution—a response to long- and short-term paleoclimatic change. Earth Sci Rev 90:71–102. doi: 10.1016/j.earscirev.2008.07.002 CrossRefGoogle Scholar
  59. Scheibner C, Speijer RP (2009) Recalibration of the Tethyan shallow-benthic zonation across the Paleocene–Eocene boundary: the Egyptian record. Geol Acta 7:195–214. doi: 10.1344/105.000000267 CrossRefGoogle Scholar
  60. Scheibner C, Speijer RP, Marzouk AM (2005) Turnover of larger foraminifera during the Paleocene–Eocene Thermal Maximum and paleoclimatic control on the evolution of platform ecosystems. Geology 33:493. doi: 10.1130/G21237.1 CrossRefGoogle Scholar
  61. Scheibner C, Rasser MW, Mutti M (2007) The Campo section (Pyrenees, Spain) revisited: implications for changing benthic carbonate assemblages across the Paleocene–Eocene boundary. Palaeogeogr Palaeoclimatol Palaeoecol 248:145–168. doi: 10.1016/j.palaeo.2006.12.007 CrossRefGoogle Scholar
  62. Schlager W (1981) The paradox of drowned reefs and carbonate platforms. Geol Soc Am Bull 92:197. doi: 10.1130/0016-7606(1981)92<197:TPODRA>2.0.CO;2 CrossRefGoogle Scholar
  63. Schlager W (2005) Carbonate sedimentology and sequence stratigraphy. SEPM (Society for Sedimentary Geology), TulsaCrossRefGoogle Scholar
  64. Schlager W, Camber O (1986) Submarine slope angles, drowning unconformities, and self-erosion of limestone escarpments. Geology 14:762. doi: 10.1130/0091-7613(1986)14<762:SSADUA>2.0.CO;2 CrossRefGoogle Scholar
  65. Scotese CR (2001) Atlas of Earth history, vol 1. Paleogeography. PALEOMAP Project, Arlington, TexasGoogle Scholar
  66. Scotese CR, Summerhayes CP (1986) Computer model of palaeoclimate predicts coastal upwelling in the Mesozoic and Cenozoic. Geobyte 1:28–42Google Scholar
  67. Serra-Kiel J, Hottinger L, Caus E et al (1998) Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Bulletin de la Société Géologique de France 169:281–299Google Scholar
  68. Speijer RP, Wagner T (2002) Sea-level changes and black shales associated with the late Paleocene thermal maximum: organic-geochemical and micropaleontologic evidence from the southern Tethyan margin (Egypt–Israel). In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond. Geological Society of America Special Paper 356, pp 533–549Google Scholar
  69. Talwani M, Reif C (1998) Laxmi Ridge—a continental sliver in the Arabian Sea. Mar Geophys Res 20:259–271. doi: 10.1023/A:1004674909280 CrossRefGoogle Scholar
  70. Todal A, Edholm O (1998) Continental margin off Western India and Deccan large igneous province. Mar Geophys Res 20:273–291. doi: 10.1023/A:1004640508371 CrossRefGoogle Scholar
  71. Torsvik TH, Amundsen H, Hartz EH et al (2013) A Precambrian microcontinent in the Indian Ocean. Nat Geosci 6:223–227. doi: 10.1038/ngeo1736 CrossRefGoogle Scholar
  72. Wade BS, Pearson PN, Berggren WA, Pälike H (2011) Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci Rev 104:111–142. doi: 10.1016/j.earscirev.2010.09.003 CrossRefGoogle Scholar
  73. Wandrey C, Law B, Shah HA (2004) Sembar-Goru/Ghazij composite total petroleum system, Indus and Sulaiman-Kirthar Geologic Provinces, Pakistan and India. U.S. Geological Survey Bulletin 2208-C 1:1–23Google Scholar
  74. Ward WB (1999) Tectonic control on backstepping sequences revealed by mapping of Frasnian backstepped platforms, Devonian reef complexes, Napier Range, Canning Basin, Western Australia. In: Harris PM, Saller AH, Simo JA (eds) Advances in carbonate sequence stratigraphy. SEPM (Society for Sedimentary Geology) Special Publication No. 63, Tulsa, pp 47–74Google Scholar
  75. White R, McKenzie D (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geophys Res Solid Earth 94:7685–7729. doi: 10.1029/JB094iB06p07685 CrossRefGoogle Scholar
  76. Whiting BM, Karner GD, Driscoll NW (1994) Flexural and stratigraphic development of the west Indian continental margin. J Geophys Res Solid Earth 99:13791–13811. doi: 10.1029/94JB00502 CrossRefGoogle Scholar
  77. Zachos J (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693. doi: 10.1126/science.1059412 CrossRefGoogle Scholar
  78. Zamagni J, Mutti M, Košir A (2008) Evolution of shallow benthic communities during the Late Paleocene–earliest Eocene transition in the Northern Tethys (SW Slovenia). Facies 54:25–43. doi: 10.1007/s10347-007-0123-3 CrossRefGoogle Scholar
  79. Zampetti V, Schlager W, van Konijnenburg J-H, Everts A-J (2004) Architecture and growth history of a Miocene carbonate platform from 3D seismic reflection data; Luconia province, offshore Sarawak, Malaysia. Mar Pet Geol 21:517–534. doi: 10.1016/j.marpetgeo.2004.01.006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Khurram Shahzad
    • 1
  • Christian Betzler
    • 1
  • Nadeem Ahmed
    • 2
  • Farrukh Qayyum
    • 1
  • Silvia Spezzaferri
    • 3
  • Anwar Qadir
    • 4
  1. 1.Institut für Geologie Universität HamburgHamburgGermany
  2. 2.MOL Pakistan Oil and Gas Co, B.VIslamabadPakistan
  3. 3.Department of GeosciencesUniversity of FribourgFribourgSwitzerland
  4. 4.Department of GeologyUniversity of HaripurHaripurPakistan

Personalised recommendations