International Journal of Earth Sciences

, Volume 107, Issue 2, pp 387–407 | Cite as

The age of volcanic tuffs from the Upper Freshwater Molasse (North Alpine Foreland Basin) and their possible use for tephrostratigraphic correlations across Europe for the Middle Miocene

  • Alexander RochollEmail author
  • Urs Schaltegger
  • H. Albert Gilg
  • Jan Wijbrans
  • Madelaine Böhme
Original Paper


The Middle Miocene Upper Freshwater Molasse sediments represent the last cycle of clastic sedimentation during the evolution of the North Alpine Foreland Basin. They are characterized by small-scale lateral and temporal facies changes that make intra-basin stratigraphic correlations at regional scale difficult. This study provides new U–Pb zircon ages as well as revised 40Ar/39Ar data of volcanic ash horizons in the Upper Freshwater Molasse sediments from southern Germany and Switzerland. In a first and preliminary attempt, we propose their possible correlation to other European tephra deposits. The U–Pb zircon data of one Swiss (Bischofszell) and seven southern German (Zahling, Hachelstuhl, Laimering, Unterneul, Krumbad, Ponholz) tuff horizons indicate eruption ages between roughly 13.0 and 15.5 Ma. The stratigraphic position of the Unterneul and Laimering tuffs, bracketing the ejecta of the Ries impact (Brockhorizon), suggests that the Ries impact occurred between 14.93 and 15.00 Ma, thus assigning the event to the reversed chron C5Bn1r (15.032–14.870 Ma) which is in accordance with paleomagnetic evidence. We combine our data with published ages of tuff horizons from Italy, Switzerland, Bavaria, Styria, Hungary, and Romania to derive a preliminary tephrochronological scheme for the Middle Miocene in Central Europe in the age window from 13.2 to 15.5 Ma. The scheme is based on the current state of knowledge that the Carpathian–Pannonian volcanic field was the only area in the region producing explosive calc-alkaline felsic volcanism. This preliminary scheme will require verification by more high-quality ages complemented by isotopic, geochemical and paleomagnetic data.


Tephrochronology Middle Miocene Upper Freshwater Molasse Ries impact Bentonites 



All samples, except that from Ponholz, were provided by A. Ulbig. The analytical work of M. Ovtcharova (University of Geneva) in the laboratory at University of Geneva is highly appreciated. We are grateful for the very helpful comments and constructive criticism by Ioan Seghedi, Wilfried Winkler and Jörn-Frederik Wotzlaw and wish to acknowledge editorial handling by Christian Dullo. Initial financial support was provided by the German Science Foundation project BO1550/7.


  1. Aziz HA, Böhme M, Rocholl A, Zwing A, Prieto J, Wijbrans JR, Heissig K, Bachtadse V (2008) Integrated stratigraphy and 40Ar/39Ar chronology of the early to Middle Miocene upper freshwater Molasse in eastern Bavaria (Germany, Bavaria). Int J Earth Sci (Geol Rundsch) 97:115–134CrossRefGoogle Scholar
  2. Aziz HA, Böhme M, Rocholl A, Prieto J, Wijbran JR, Bachtadse V, Ulbig A (2010) Integrated stratigraphy and 40Ar/39Ar chronology of the early to middle Miocene Upper Freshwater Molasse in western Bavaria (Germany). Int J Earth Sci (Geol Rundsch) 99:1859–1886CrossRefGoogle Scholar
  3. Barboni M, Schoene B (2014) Short eruption window revealed by absolute crystal growth rates in a granitic magma. Nat Geosci 7:524–528CrossRefGoogle Scholar
  4. Bauer KK, Vennemann TW, Gilg HA (2016) Stable isotope composition of bentonites from the Swiss and Bavarian Freshwater Molasse as a proxy for paleoprecipitation. Palaeogeogr Palaeoclimatol Palaeoecol 455:53–64CrossRefGoogle Scholar
  5. Birzer F (1969) Molasse und Ries-Schutt im westlichen Teil der südlichen Frankenalb. Geologische Blätter Nordost-Bayern 19:1–28Google Scholar
  6. Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW et al (2004) Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chem Geol 205:115–140CrossRefGoogle Scholar
  7. Böhme M, Gregor H-J, Heissig K (2002) The Ries- and Steinheim meteorite impacts and their effect on environmental conditions in time and space. In: Buffetaut E, Koerbel C (eds) Geological and biological effects of impact events. Springer, Berlin, pp 215–235Google Scholar
  8. Bohor BF, Triplehorn DM (1993) Tonsteins: altered volcanic ash layers in coal-bearing sequences. Geol Soc Am Spec Pap 285:1–44Google Scholar
  9. Bolliger T (1992) Kleinsäugerstratigraphie in der lithologischen Abfolge der miozänen Hörnlischüttung (Ostschweiz) von MN3 bis MN7. Eclog Geol Helvet 85:961–1000Google Scholar
  10. Bolliger T (1994) Die Obere Süßwassermolasse in Bayern und der Ostschweiz: bio-und lithographische Korrelationen. Mitt Bayer St-Samml Paläont Hist Geol 34:109–144Google Scholar
  11. Bowring JF, Mclean NM, Bowring SA (2011) Engineering cyber infrastructure for U–Pb geochronology: Tripoli and U–Pb_Redux. Geochem Geophys Geosyst 12:Q0AA19CrossRefGoogle Scholar
  12. Brasier MD, Matthewman R, McMahon S, Wacey D (2011) Pumice as a remarkable substrate for the origin of life. Astrobiology 11(7):725–735CrossRefGoogle Scholar
  13. Buchner E, Schwarz WH, Schmieder M, Trieloff M (2010) Establishing a 14.6 ± 0.2 Ma age for the Nordlinger Ries impact (Germany)—a prime example for concordant isotopic ages from various dating materials. Meteorit Planet Sci 45:662–674CrossRefGoogle Scholar
  14. Buchner E, Schmieder M, Schwarz WH, Trieloff M (2013) Das Alter des Meteoritenkraters Nördlinger Ries - eine Übersicht und kurze Diskussion der neueren Datierungen des Riesimpakts. Z Dt Ges Geowiss (German J Geosci) 164(3):433–445Google Scholar
  15. Bürgisser HM (1980) Zur Mittel-Miozänen Sedimentation im nordalpinen Molassebecken: das ‘Appenzellergranit’- Leitniveau des Hörnli-Schuttfächers (OSM, Nordostschweiz). Mitt Geol Inst ETH Univ Zürich NF 232:1–196Google Scholar
  16. Cerling TE, Brown FH, Bowman JR (1985) Low-temperature alteration of volcanic glass: hydration, Na, K, 18O and Ar mobility. Chem Geol Isot Geosci Sect 52:281–293CrossRefGoogle Scholar
  17. Channell JET, Hodell DA, Singer BS, Xuan C (2010) Reconciling astrochronological and 40Ar/39Ar ages for the Matuyama–Brunhes boundary and late Matuyama Chron. Geochem Geophys Geosyst 11:1–21CrossRefGoogle Scholar
  18. Condon D, Mclean N, Schoene B, Bowring S, Parrish R, Noble SR (2008) Synthetic U–Pb ‘standard’ solutions for ID-TIMS geochronology. Geochim Cosmochim Acta 72:A175–A1751Google Scholar
  19. Condon DJ, Schoene B, McLean NM, Bowring S, Parrish RR (2015) Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochim Cosmochim Acta 164:464–680CrossRefGoogle Scholar
  20. Crowley JL, Schoene B, Bowring SA (2007) U-Pb dating of zircon in the Bishop Tuff at the millennial scale. Geology 35(12):1123CrossRefGoogle Scholar
  21. de Leeuw A, Filipescu S, Matenco L, Krijgsman W, Kuiper K, Stoica M (2013) Paleomagnetic and chronostratigraphic constraints on the Middle to Late Miocene evolution of the Transylvanian Basin (Romania): implications for Central Paratethys stratigraphy and emplacement of the Tisza–Dacia plate. Glob Planet Chang 103:82–98CrossRefGoogle Scholar
  22. Dehm R (1951) Zur Gliederung der jungtertiären Molasse in Süddeutschland nach Säugetieren. N Jb Geol Pal Mh 1951:140–152Google Scholar
  23. Doppler G (1989) Zur Stratigraphie der nördlichen Vorlandmolasse in Bayerisch-Schwaben. Geol Bavarica 94:83–133Google Scholar
  24. Doppler G, Heissig K, Reichenbacher B (2005) Die Gliederung des Tertiärs im süddeutschen Molassebecken. Newslett Stratigr 41:359–375CrossRefGoogle Scholar
  25. Fiest W (1989) Lithostratigraphie und Schwermineralgehalt der Mittleren und Jüngeren Serie der Oberen Süßwassermolasse Bayerns im Übergangsbereich zwischen Ost- und Westmolasse. Geol Bavarica 94:259–279Google Scholar
  26. Fischer H (1988) Isotopengeochemische Untersuchungen und Datierungen an Mineralien und Fossilien aus Sedimentationsgesteinen. Diss, ETH Zürich, p 8733Google Scholar
  27. Fülöp A, Kovacs M (2003) Petrology of Badenian ignimbrites, Gutâi Mts. (Eastern Carpathians) Studia Univ Babeş-Bolyai. Geol 48:17–28Google Scholar
  28. Gerstenberger H, Haase G (1997) A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem Geol 136:309–312CrossRefGoogle Scholar
  29. Gilg HA (2005) Eine geochemische Studie an Bentoniten und vulkanischen Gläsern des nordalpinen Molassebeckens (Deutschland, Schweiz). Ber DTTG 11:17–19Google Scholar
  30. Gilg HA, Ulbig A (2017) Bentonite, Kohlentonsteine und feuerfeste Tone in der Bayerischen Molasse und dem Urnaab-System (Exkursion F am 20. April 2017). Jber Mitt Oberrhein Geol Ver N.F. 99:191–214Google Scholar
  31. Gubler T (2009): Blatt 1111 Albis (mit Beitrag von P. Nagy). Geol. Atlas Schweiz 1: 25 000, Erläut: 134. Bundesamt für Landestopographie swisstopoGoogle Scholar
  32. Gubler T, Meier M, Oberli F (1992) Bentonites as time markers for sedimentation of the Upper Freshwater Molasse: geological observations corroborated by highresolution single-Zircon U–Pb ages. 172. Jv Schweiz Akad Naturwiss 12–13Google Scholar
  33. Handler R, Ebner F, Neubauer F, Bojar A-V, Hermann S (2006) 40Ar/39Ar dating of Miocene tuffs from the Styrian part of the Pannonian Basin: an attempt to refine the basin stratigraphy. Geol Carpathica Bratislava 57(6):483–494Google Scholar
  34. Harr K (1976) Mineralogisch-petrographische Untersuchungen an Bentoniten in der Süddeutschen Molasse. PhD thesis, University Tübingen, 135Google Scholar
  35. Heissig K (1989) Neue Ergebnisse zur Stratigraphie der Mittleren Serie der Oberen Süßwassermolasse Bayerns. Geol Bavarica 94:239–258Google Scholar
  36. Heissig K (1997) Mammal faunas intermediate between the reference faunas of MN4 and MN6 from the Upper Freshwater Molasse of Bavaria. In: Aguilar JP, Legendre S, Michaux J (eds), Actes du Congrès BiochroM’97–Mémoires et Travaux 21. Montpellier: de l’Ecole Pratique des Hautes Etudes, Institute de Montpellier, 537–546Google Scholar
  37. Heissig K (2006) Biostratigraphy of the “main bentonite horizon” of the upper freshwater molasses in Bavaria. Palaeontogr A 277:93–102Google Scholar
  38. Hildreth W, Wilson JN (2007) Compositional zoning of the Bishop Tuff. J Petrol 48:951–999CrossRefGoogle Scholar
  39. Hilgen FJ, Aziz HA, Krijgsman W, Raffi I, Turco E (2003) Integrated stratigraphy and astronomical tuning of the Serravallian and lower Tortonian at Monte dei Corvi (Middle-Upper Miocene, northern Italy). Palaeogeogr Palaeoclimatol Palaeoecol 199(3–4):229–264CrossRefGoogle Scholar
  40. Hilgen FJ, Lourens LJ, Van Dam JA (2012) The Neogene period. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geological time scale 2012. Elsevier, Amsterdam, pp 923–978CrossRefGoogle Scholar
  41. Hofmann F (1956) Sedimentpetrographische und tonmineralogische Untersuchungen an Bentoniten der Schweiz und Südwestdeutschlands. Eclog Geol Helvet 49:113–133Google Scholar
  42. Hofmann F (1958) Vulkanische Tuffhorizonte in der Oberen Süsswassermolasse des Randen und Reiat, Kanton Schaffhausen. Eclog Geol Helvet 51:371–377Google Scholar
  43. Hofmann F (1973) Horizonte fremdartiger Auswürfling in der ostschweizerischen Oberen Süsswassermolasse und Versuch einer Deutung ihrer Entstehung als Impakt phänomen. Eclog Geol Helvet 66:83–100Google Scholar
  44. Hofmann F, Büchi UP, Iberg R, Peters TJ (1975) Vorkommen, petrographische, tonmineralogische und technologische Eigenschaften von Bentoniten im schweizerischen Molassebecken. Beitr Geol Karte der Schweiz, Geotechn Serie 54:1–51Google Scholar
  45. Homewood P, Allen PA, Williams GD (1986) Dynamics of the Molasse Basin of Western Switzerland. In: Allen PA, Homewood P (eds), Foreland basins vol. 8. Spec Publ Int Assoc Sedimentol, Blackwell Pub, Oxford, pp 199–217Google Scholar
  46. Hüsing SK, Dekkers MJ, Franke C, Krijgsman W (2009) The Tortonian reference section at Monte dei Corvi (Italy): evidence for early remanence acquisition in greigite-bearing sediments. Geophys J Int 179(1):125–143CrossRefGoogle Scholar
  47. Hüsing SK, Cascella A, Hilgen FJ, Krijgsman W, Kuiper KF, Turco E, Wilson D (2010) Astrochronology of the Mediterranean Langhian between 15.29 and 14.17 Ma. Earth Planet Sci Lett 290:254–269CrossRefGoogle Scholar
  48. Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurement of half-lives and specific activities of 235 U and 238 U. Phys Rev 4:1889–1906Google Scholar
  49. Jicha BR, Singer BS, Sobol P (2016) Re-evaluation of the ages of 40Ar/39Ar sanidine standards and supereruptions in the western US using a Noblesse multi-collector mass spectrometer. Chem Geol 431:54–66CrossRefGoogle Scholar
  50. Jordan F, Matzel JP, Renne PR (2007) 39Ar and 37Ar recoil loss during neutron irradiation of sanidine and plagioclase. Geochim Cosmochim Acta 71:2791–2808CrossRefGoogle Scholar
  51. Kälin D, Kempf O (2009) High-resolution stratigraphy from the continental record of the Middle Miocene Northern Alpine Foreland Basin of Switzerland. N Jb Geol Paläont Abh 254:177–235CrossRefGoogle Scholar
  52. Karner DB, Juvigne E, Brancaccio L, Cinque A, Ermolli ER, Santangelo N, Bernasconi S, Lirer L (1999) A potential early middle Pleistocene tephrostratotype for the Mediterranean basin: the Vallo Di Diano, Campania, Italy. Glob Planet Chang 21:1–15CrossRefGoogle Scholar
  53. Köster MH, Gilg HA (2015) Pedogenic, palustrine and groundwater dolomite formation in non-marine bentonites (Bavaria, Germany). Clay Miner 50:163–183CrossRefGoogle Scholar
  54. Kromer H (1980) Tertiary clays in northeastern Bavaria (Oberpfalz). Geol Jb D 39:25–45Google Scholar
  55. Kuhlemann J, Kempf O (2002) Post-Eocene evolution of the North Alpine Foreland Basin and its response to Alpine tectonics. Sediment Geol 152:45–78CrossRefGoogle Scholar
  56. Kuiper KF, Deino A, Hilgen FJ, Krijgsman W, Renne PR, Wijbrans JR (2008) Synchronizing Rock Clocks of Earth History. Science 320(5875):500–504CrossRefGoogle Scholar
  57. Lourens LJ, Hilgen FJ, Laskar J, Shackleton NJ, Wilson D (2004) The Neogene Period. In: Gradstein FM, Ogg JG, Smith AG (eds) Geologic Time Scale 2004. Cambridge University Press, pp 409–440Google Scholar
  58. Lukács R, Harangi S, Bachmann O, Guillong M, Danišík M, Buret Y, von Quadt A, Dunkl I, Fodor L, Sliwinski J, Soós I, Szepesi J (2015) Zircon geochronology and geochemistry to constrain the youngest eruption events and magma evolution of the Mid-Miocene ignimbrite flare-up in the Pannonian Basin, eastern central Europe. Contributions Miner Petrol 170:52CrossRefGoogle Scholar
  59. Márton E, Péskay Z (1998) Complex evaluation of paleomagnetic and K/Ar isotope data of the Miocene ignimbritic volcanics in the Bükk Foreland, Hungary. Acta Geol Hung 41:467–476Google Scholar
  60. Mattinson J (2005) Zircon U–Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem Geol 220:47–66CrossRefGoogle Scholar
  61. Min K, Mundil R, Renne PR, Ludwig KR (2000) A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite. Geochim Cosmochim Acta 64:73–98CrossRefGoogle Scholar
  62. Morgan LE, Renne PR, Taylor RE, WoldeGabriel G (2009) Archaeological age constraints from eruption ages of obsidian: examples from the Middle Awash, Ethiopia. Quat Geochron 4:193–203CrossRefGoogle Scholar
  63. Nagra (2008) Radiometrische Altersbestimmung an Bentonitproben der Oberen Süsswassermolasse (OSM), Zwischenbericht mit provisorischen Daten. Nagra int. Ber. NIB 08-07Google Scholar
  64. Pavoni N, Schindler C (1981) Bentonitvorkommen in der Oberen Süsswassermolasse des Kantons Zürich und damit zusammenhängende Probleme. Eclog Geol Helvet 74:53–64Google Scholar
  65. Pécskay Z, Lexa J, Szakás A, Seghedi I, Balogh K, Konečný V, Zelenka T, Kovacs M, Póka T, Fülöp A, Márton E, Panaiotu C, Cvetković V (2006) Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geol Carpathica Bratislava 57:511–530Google Scholar
  66. Phillips D, Matchan E (2013) Ultra-high precision 40Ar/39Ar ages for Fish Canyon Tuff and Alder Creek Rhyolite sanidine: new dating standards required? Geochim Cosmochim Acta 121:229–239CrossRefGoogle Scholar
  67. Pohl J (1965) Die Magnetisierung der Suevite des Rieses. N Jb Miner Mh 9–11:288–2766Google Scholar
  68. Pohl J (1977) Paläomagnetische und gesteinsmagnetische Untersuchungen an den Kernen der Forschungsbohrung Nördlingen 1973. Geol Bavarica 75:329–348Google Scholar
  69. Pohl J, Poschlod K, Reimold WU, Meyer C, Jacob J (2010) Ries Crater, Germany: the Enkingen magnetic anomaly and associated drill core SUBO 18. Geol Soc Am Spec Pap 465:141–163Google Scholar
  70. Prieto J, Böhme M, Maurer H, Heissig K, Aziz HA (2009) Sedimentology, biostratigraphy and environments of the Untere Fluviatile Serie (Lower and Middle Miocene) in the central part of the North Alpine Foreland Basin—implications for basin evolution. Int J Earth Sci 98:1767–1791CrossRefGoogle Scholar
  71. Reichenbacher B, Böttcher R, Bracher H, Doppler G, Von Engelhardt W, Gregor H-J, Heissig K, Heizmann EPJ, Hofmann F, Kälin D, Lemcke K, Luterbacher H, Martini E, Pfeil F, Reiff W, Schreiner A, Steininger FF (1998) Graupensandrinne–Ries-Impakt: Zur Stratigraphie der Grimmelfinger Schichten, Kirchberger Schichten und Oberen Süßwassermolasse (nördliche Vorlandmolasse, Süddeutschland). Z deutsch geol Gesell 149:127–161Google Scholar
  72. Reichenbacher B, Krijgsman W, Lataster Y, Pippèrr M, Van Baak CGC, Chang L, Kälin D, Jost J, Doppler G, Jung D, Prieto J, Aziz HA, Böhme M, Garnish J, Kirscher U, Bachtadse V (2013) An alternative magnetostratigraphic framework for the Lower Miocene (Ottnangian, Karpatian) in the North Alpine Foreland Basin. Swiss J Geosci 106:309–334CrossRefGoogle Scholar
  73. Reid MR, Coath CD, Harrison TM, McKeegan KD (1997) Prolonged residence times for the youngest rhyolites associated with Long Valley Caldera: 230Th/238U microprobe dating of young zircons. Earth Planet Sci Lett 150:27–39CrossRefGoogle Scholar
  74. Renne PR, Swisher CC, Deino AL, Karner DB, Owens TL, De Paolo DJ (1998) Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem Geol 145:117–152CrossRefGoogle Scholar
  75. Renne PR, Mundil R, Balco G, Min K, Ludwig KR (2010) Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochim Cosmochim Acta 74:5349–5367CrossRefGoogle Scholar
  76. Renne PR, Balco G, Ludwig KR, Mundil R, Min K (2011) Response to the comment by W.H. Schwarz, on “Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by Renne et al. (2010). Geochim Cosmochim Acta 75:5097–5100CrossRefGoogle Scholar
  77. Reuter L (1925) Die Verbreitung jurassischer Kalkblöcke aus dem Ries im südbayerischen Diluvialgebiet (Ein Beitrag zur Lösung des Riesproblems). Jber Mitt oberrh geol Ver 14:191–218Google Scholar
  78. Rögl F (1998) Paleogeographic considerations for Mediterranean and Paratethys Seaways (Oligocene to Miocene). Ann Naturhist Mus Wien 99A:279–310Google Scholar
  79. Rummel M (2000) Die Cricetodontini aus dem Miozän von Petersbuch bei Eichstätt. Die Gattung Cricetodon Lartet 1851. Senckenb Lethaea 80:149–171CrossRefGoogle Scholar
  80. Sawatzki G, Schreiner A (1991) Bentonit und Deckentuffe am Hohenstoffeln/Hegau. Jh geol Landesamt Baden-Würtemberg 33:59–73Google Scholar
  81. Schaltegger U, Schmitt A, Horstwood M (2015) U–Th–Pb zircon geochronology by ID-TIMS, SIMS and laser ablation ICP-MS: recipes, interpretations and opportunities. Chem Geol 402:89–110CrossRefGoogle Scholar
  82. Schärer U (1984) The effect of initial 230Th disequilibrium on young U–Pb ages: the Makalu case, Himalaya. Earth Planet Sci Lett 67:191–204CrossRefGoogle Scholar
  83. Scheuenpflug L (1980) Neue Funde ortsfremder Weißjuragesteine in Horizonten der südbayerischen miozänen Oberen Süßwassermolasse um Augsburg. Jber Mitt oberrh-geol Ver NF 62:131–142Google Scholar
  84. Schlunegger F, Jordan TE, Klaper EM (1997) Controls of erosional denudation in the orogen on foreland basin evolution: the Oligocene central Swiss Molasse Basin as an example. Tectonics 16:823–840CrossRefGoogle Scholar
  85. Schmid W (1995) Lithofazielle Untersuchungen im tertiären Hügelland nördlich von Dasing (Landkreis Aichach-Friedberg) einschließlich Erläuterungen zur geologischen Karte. Unpubl Dipl thesis, Ludwig-Maximilians-University, MunichGoogle Scholar
  86. Schmitz MD, Schoene B (2007) Derivation of isotope ratios, errors, and error correlations for U–Pb geochronology using Pb-205–U-235–(U-233)-spiked isotope dilution thermal ionization mass spectrometric data. Geochem Geophys Geosyst 8:Q08006CrossRefGoogle Scholar
  87. Schoene B, Crowley J, Condon D, Schmitz M, Bowring S (2006) Reassessing the uranium decay constants for geochronology using ID-TIMS U–Pb data. Geochim Cosmochim Acta 70:426–445CrossRefGoogle Scholar
  88. Schoene B, Schaltegger U, Brack P, Latkoczy C, Stracke A, Günther D, Samperton K (2012) Rates of magma differentiation and emplacement in a ballooning pluton recorded by U–Pb TIMS-TEA, Adamello batholith, Italy. Earth Planet Sci Lett 355–356:162–173CrossRefGoogle Scholar
  89. Schreiner A (2008) Hegau und westlicher Bodensee. Sammlung geologischer Führer, vol 62, 3rd edn. Schweitzerbart Sci Pub, StuttgartGoogle Scholar
  90. Seghedi I, Downes H, Szakács A, Mason PRD, Thirwall MF, Rosu E, Pécskay Z, Márton E, Panaiotu C (2004) Neogene–quaternary magmatism and geodynamics in the Carpathian–Pannonian region: a synthesis. Lithos 72:117–146CrossRefGoogle Scholar
  91. Steiger RH, Jäger E (1977) Subcommission on geochemistry: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362CrossRefGoogle Scholar
  92. Stephan W (1952) Ein tortoner Brockhorizont in der Oberen Süßwassermolasse Bayerns. Geol Bavarica 14:6–85Google Scholar
  93. Szakács A, Zelenka T, Márton E, Pécskay Z, Póka T, Seghedi I (1998) Miocene acidic explosive volcanism in the Bükk Foreland, Hungry: identifying eruptive sequences and searching for source locations. Acta Geol Hung 41:413–435Google Scholar
  94. Szakács A, Vlad D, Andriessen PAM, Fülöp A, Pécskay Z (2000) Eruptions of the “Dej Tuff”: when, where and how many? Vijesti Hrv. Geol. Društva 37, 3, PANCARDI 2000 Spec. Issue, Abstract Vol. 1: 122Google Scholar
  95. Szakács A, Pécskay Z, Silye L, Balogh K, Vlad D, Fülöp A (2012) On the age of the Dej Tuff, Transylvanian Basin (Romania). Geol Carpathica 63:139–148CrossRefGoogle Scholar
  96. Turco E, Hüsing S, Hilgen F, Cascella A, Gennari R, Iaccarino SM, Sagnotti L (2017) Astronomical tuning of the La Vedova section between 16.3 and 15.0 Ma. Implications for the origin of megabeds and the Langhian GSSP. Newsl Stratigr 50:1–29CrossRefGoogle Scholar
  97. Ulbig A (1994) Vergleichende Untersuchungen an Bentoniten, Tuffen und sandig-tonigen Einschaltungen in den Bentonitlagerstätten der Oberen Süßwassermolasse Bayerns. Dissertation thesis, TUM, Munich, 245 pGoogle Scholar
  98. Ulbig A (1999) Untersuchungen zur Entstehung der Bentonite in der bayerischen Oberen Süßwassermolasse—Investigations on the origin of the bentonite deposits in the Bavarian Upper Freshwater Molasse. N Jb Geol Paläont Abh 214:497–508CrossRefGoogle Scholar
  99. Unger HJ, Niemeyer A (1985a) Bentonitlagerstätten zwischen Mainburg und Landshut und ihre zeitliche Einstufung. Geol Jb D71:59–93Google Scholar
  100. Unger HJ, Niemeyer A (1985b) Bentonite in Ostniederbayern—Entstehung, Lagerung, Verbreitung. Geol Jb D71:3–58Google Scholar
  101. Unger HJ, Fiest W, Niemeyer A (1990) Die Bentonite der ostbayerischen Molasse und ihre Beziehung zu den Vulkaniten des Pannonischen Beckens. Geol Jb D96:67–112Google Scholar
  102. Viertel C (1995) Palynologisch stratigraphische Untersuchungen Miozäner Kohlen und Tone der Grube Rohrhof II bei Ponholz/Oberpfalz. Doctoral Dissertation, Ludwig Maximilians University MunichGoogle Scholar
  103. Villa IM (1997) Direct determination of 39Ar recoil distance. Geochim Cosmochim Acta 61(3):689–691CrossRefGoogle Scholar
  104. Vogt K (1980) Bentonite deposits in Lower Bavaria. Geol Jb D39:47–68Google Scholar
  105. Wappenschmidt I (1936) Zur Geologie der Oberpfälzer Braunkohle. Abh Geol Landesuntersuchung am Bayer Oberbergamt 25:1–68Google Scholar
  106. Wendt I, Carl C (1991) The statistical distribution of the mean squared weighted deviation. Chem Geol Isot Geosci Sect 86:275–285CrossRefGoogle Scholar
  107. Wotzlaw JF, Schaltegger U, Frick DA, Dungan MA, Gerdes A, Günther D (2013) Tracking the evolution of large volume silicic magma reservoirs from assembly to supereruption. Geology 41:867–870CrossRefGoogle Scholar
  108. Wotzlaw JF, Bindeman IN, Watts KE, Schmitt AK, Caricchi L, Schaltegger U (2014a) Linking rapid magma reservoir assembly and eruption trigger mechanisms at evolved Yellowstone-type supervolcanoes. Geology 42:807–810CrossRefGoogle Scholar
  109. Wotzlaw JF, Hüsing SK, Hilgen FJ, Schaltegger U (2014b) High-precision U–Pb geochronology of astronomically dated volcanic ash beds from the Mediterranean Miocene. Earth Planet Sci Lett 407:19–34CrossRefGoogle Scholar
  110. Zeeden C, Rivera TA, Storey M (2014) An astronomical age for the Bishop Tuff and concordance with radioisotopic dates. Geophys Res Lett 41:3478–3484CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Helmholtz Centre Potsdam, German Research Centre for Geosciences (GFZ)PotsdamGermany
  2. 2.Department of Earth SciencesUniversity of GenevaGenevaSwitzerland
  3. 3.Lehrstuhl für IngenieurgeologieTechnische Universität MünchenMunichGermany
  4. 4.Faculty of Earth and Life SciencesVU University AmsterdamAmsterdamThe Netherlands
  5. 5.Terrestrische PaläoklimatologieSenckenberg Center for Human Evolution and Palaeoenvironment, HEP TübingenTübingenGermany
  6. 6.Department of GeoscienceUniversity of TübingenTübingenGermany

Personalised recommendations