International Journal of Earth Sciences

, Volume 107, Issue 3, pp 787–810 | Cite as

Earth’s evolving subcontinental lithospheric mantle: inferences from LIP continental flood basalt geochemistry

  • John D. GreenoughEmail author
  • Jordan A. McDivitt
Original Paper


Archean and Proterozoic subcontinental lithospheric mantle (SLM) is compared using 83 similarly incompatible element ratios (SIER; minimally affected by % melting or differentiation, e.g., Rb/Ba, Nb/Pb, Ti/Y) for >3700 basalts from ten continental flood basalt (CFB) provinces representing nine large igneous provinces (LIPs). Nine transition metals (TM; Fe, Mn, Sc, V, Cr, Co, Ni, Cu, Zn) in 102 primitive basalts (Mg# = 0.69–0.72) from nine provinces yield additional SLM information. An iterative evaluation of SIER values indicates that, regardless of age, CFB transecting Archean lithosphere are enriched in Rb, K, Pb, Th and heavy REE(?); whereas P, Ti, Nb, Ta and light REE(?) are higher in Proterozoic-and-younger SLM sources. This suggests efficient transfer of alkali metals and Pb to the continental lithosphere perhaps in association with melting of subducted ocean floor to form Archean tonalite–trondhjemite–granodiorite terranes. Titanium, Nb and Ta were not efficiently transferred, perhaps due to the stabilization of oxide phases (e.g., rutile or ilmenite) in down-going Archean slabs. CFB transecting Archean lithosphere have EM1-like SIER that are more extreme than seen in oceanic island basalts (OIB) suggesting an Archean SLM origin for OIB-enriched mantle 1 (EM1). In contrast, OIB high U/Pb (HIMU) sources have more extreme SIER than seen in CFB provinces. HIMU may represent subduction-processed ocean floor recycled directly to the convecting mantle, but to avoid convective homogenization and produce its unique Pb isotopic signature may require long-term isolation and incubation in SLM. Based on all TM, CFB transecting Proterozoic lithosphere are distinct from those cutting Archean lithosphere. There is a tendency for lower Sc, Cr, Ni and Cu, and higher Zn, in the sources for Archean-cutting CFB and EM1 OIB, than Proterozoic-cutting CFB and HIMU OIB. All CFB have SiO2 (pressure proxy)–Nb/Y (% melting proxy) relationships supporting low pressure, high % melting resembling OIB tholeiites, but TM concentrations do not correlate with % melting. Thus, the association of layered intrusion (plutonic CFB) TM deposits with Archean terranes does not appear related to higher metal concentrations or higher percentages of melting in Archean SLM. Other characteristics of these EM1-like magmas (e.g., S2 or O2 fugacity) may lead to element scavenging and concentration during differentiation to form ore deposits.


Continental flood basalts Subcontinental lithospheric mantle Mantle components Incompatible trace elements Transition metals Mantle evolution 



R. Corney prepared diagrams. Insightful discussions with J. Dostal improved the text. Constructive comments by journal reviewer R. Ernst, and an anonymous reviewer led to significant improvements in the manuscript. Early work was supported by a NSERC Discovery grant to JDG.

Supplementary material

531_2017_1493_MOESM1_ESM.xls (72 kb)
Supplementary material 1 (XLS 71 kb)
531_2017_1493_MOESM2_ESM.xls (39 kb)
Supplementary material 2 (XLS 39 kb)
531_2017_1493_MOESM3_ESM.doc (162 kb)
Supplementary material 3 (DOC 162 kb)


  1. Allègre CJ, Schiano P, Lewin E (1995) Differences between oceanic basalts by multitrace element ratio topology. Earth Planet Sci Lett 129:1–12CrossRefGoogle Scholar
  2. Balta JB, Asimow PD, Mosenfelder JL (2011) Manganese partitioning during hydrous melting of peridotite. Geochim Cosmochim Acta 75:5819–5833. doi: 10.1016/j.gca.2011.05.026 CrossRefGoogle Scholar
  3. Basaltic Volcanism Study Project (1981) Basaltic volcanism on the terrestrial planets. Pergamon Press Inc., New York, p 1286Google Scholar
  4. Begg GC, Hronsky JAM, Arndt NT, Griffin WL, O’Reilly SY, Hayward N (2010) Lithospheric, cratonic, and geodynamic setting of Ni–Cu–PGE sulfide deposits. Econ Geol 105:1057–1070CrossRefGoogle Scholar
  5. Bennett V (2003) Compositional evolution of the mantle. In: Carlson RW (ed) The mantle and core, treatise on geochemistry, vol 2. Elsevier-Pergamon, Oxford, pp 493–519. doi: 10.1016/B0-08-043751-6/02013-2 CrossRefGoogle Scholar
  6. Best MG (2003) Igneous and metamorphic petrology, 2nd edn. Blackwell, MaldenGoogle Scholar
  7. Bevier ML (1983) Regional stratigraphy and age of Chilcotin Group basalts, south-central British Columbia. Can J Earth Sci 20:515–524. doi: 10.1139/e83-049 CrossRefGoogle Scholar
  8. Bizimis M, Sen G, Salters VJM, Keshav S (2005) Hf-Nd-Sr isotope systematics of garnet pyroxenites from Salt Lake Crater, Oahu, Hawaii: evidence for a depleted component in Hawaiian volcanism. Geochim Cosmochim Acta 69:2629–2646CrossRefGoogle Scholar
  9. Bizimis M, Griselin M, Lassiter JC, Salters VJM, Sen G (2007) Ancient recycled mantle lithosphere in the Hawaiian plume: Osmium-Hafnium isotopic evidence for peridotite mantle xenoliths. Earth Planet Sci Let 257:259–273CrossRefGoogle Scholar
  10. Borg I, Groenen P (1997) Modern multidimensional scaling, theory and applications. Springer, New York, p 472. doi: 10.1007/978-1-4757-2711-1 CrossRefGoogle Scholar
  11. Brandon AD, Walker RJ (2005) The debate over core-mantle interaction. Earth Planet Sci Lett 232:211–225. doi: 10.1016/j.epsl.2005.01.034 CrossRefGoogle Scholar
  12. Bryan SE, Riley TR, Jerram DA, Stephens CJ, Leat PT (2002) Silicic volcanism: an undervalued component of large igneous provinces and volcanic rifted margins. Geol Soc Am Spec Pap 362:99–120Google Scholar
  13. Carlson RW, Pearson DG, James DE (2005) Physical, chemical and chronological characteristics of continental mantle. Rev Geophys 43:1–24 (paper number 2004RG000156) CrossRefGoogle Scholar
  14. Coffin MF, Eldholm O (1994) Large igneous provinces, crustal structure, dimensions, and external consequences. Rev Geophys 32:1–36CrossRefGoogle Scholar
  15. Coltorti M, Bonadiman C, O’Reilly SY, Griffin WL, Pearson NJ (2010) Buoyant ancient continental mantle embedded in oceanic lithosphere (Sal Island, Cape Verde Archipelago). Lithos 120:223–233CrossRefGoogle Scholar
  16. Dhuime B, Bosch D, Bodinier J-L, Garrido CJ, Bruguier O, Hussain SS, Dawood H (2007) Multistage evolution of the Jijal ultramafic-mafic complex (Kohistan, N Pakistan): implications for building the roots of island arcs. Earth Planet Sci Lett 261:179–200CrossRefGoogle Scholar
  17. Drummond MS, Defant MJ (1990) A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J Geophys Res 95:21503–21521CrossRefGoogle Scholar
  18. Eales HV, Cawthorn RG (1996) The Bushveld complex. In: Cawthorn RG (ed) Layered intrusions. Elsevier Science, Amsterdam, pp 181–229CrossRefGoogle Scholar
  19. Emeleus CH, Cheadle MJ, Hunter RH, Upton BGJ, Wadsworth WJ (1996) The rum layered suite. In: Cawthorn RG (ed) Layered intrusions. Elsevier Science, Amsterdam, pp 403–439CrossRefGoogle Scholar
  20. Ernst RE (2014) Large igneous provinces. Cambridge University Press, Cambridge, UK, p 653Google Scholar
  21. Ernst RE, Buchan KL (2001) Large mafic magmatic events through time and links to mantle-plume heads. In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time. Geological Society of America special paper 352, pp 483–575Google Scholar
  22. Ernst RE, Jowitt SM (2013) Large igneous provinces (LIPs) and metallogeny. In: Colpron, M, Bissig T, Rusk BG, Thomspon JFH (eds) Tectonics, metallogeny, and discovery: the North American Cordillera and similar accretionary settings. Society of Economic Geologists Special Publication 17, pp 17–51Google Scholar
  23. Ernst RE, Buchan KL, Campbell IH (2005) Frontiers in large igneous province research. Lithos 79:271–297CrossRefGoogle Scholar
  24. Fraser KJ, Hawkesworth CJ, Erlank AJ, Mitchell RH, Scott-Smith BH (1985) Sr, Nd, and Pb isotope and minor element geochemistry of lamproites and kimberlites. Earth Planet Sci Lett 76:57–70CrossRefGoogle Scholar
  25. Friedman E, Polat A, Thorkelson DJ, Frei R (2016) Lithospheric mantle xenoliths sampled by melts from upwelling asthenosphere: the Quaternary Tasse alkaline basalts of southeastern British Columbia, Canada. Gondwana Res 33:200–230CrossRefGoogle Scholar
  26. Gast PW, Tilton GR, Hedge C (1964) Isotopic composition of lead and strontium from Ascension and Gough Islands. Science 145:1181–1185CrossRefGoogle Scholar
  27. Greenough JD, Kyser TK (2003) Contrasting Archean and Proterozoic lithospheric mantle: isotopic evidence from the Shonkin Sag sill (Montana). Contrib Mineral Petrol 145:169–181CrossRefGoogle Scholar
  28. Greenough JD, MacKenzie K (2015) Transition metals in oceanic island basalt: relationships with the mantle components. Geosci Can 42:351–367CrossRefGoogle Scholar
  29. Greenough JD, Ya’acoby A (2013) A comparative geochemical study of Mars and Earth basalt petrogenesis. Can J Earth Sci (Spec Issue Planet Geol) 50:78–93Google Scholar
  30. Greenough JD, Dostal J, Mallory-Greenough LM (2005) Oceanic island volcanism II: mantle processes. Geosci Can 32:77–90Google Scholar
  31. Greenough JD, Dostal J, Mallory-Greenough LM (2007) Incompatible element ratios in French Polynesia basalts: describing mantle component fingerprints. Aust J Earth Sci 54:947–958CrossRefGoogle Scholar
  32. Greenough JD, Kamo SL, Theny L, Crowe SA, Fipke C (2011) High precision U–Pb age and geochemistry of the mineralized (Ni–Cu–Co) Suwar intrusion, Yemen. Can J Earth Sci 48:495–514CrossRefGoogle Scholar
  33. Gurenko AA, Sobolev AV, Hoernle KA, Hauff F, Schmincke H-U (2009) Enriched, HIMU-type peridotite and depleted recycled pyroxenite in the Canary plume: a mixed-up mantle. Earth Planet Sci Lett 277:514–524. doi: 10.1016/j.epsl.2008.11.013 CrossRefGoogle Scholar
  34. Hall RP, Hughes DJ (1990) Noritic magmatism. In: Hall RP, Hughes DJ (eds) Early precambrian basic magmatism. Blackie, London, pp 83–108CrossRefGoogle Scholar
  35. Hastie AR, Fitton JG, Bromiley GD, Butler IB, Odling NWA (2016) The origin of Earth’s first continents and the onset of plate tectonics. Geology 44:855–858CrossRefGoogle Scholar
  36. Hawkesworth CJ, Mantovani MSM, Taylor PN, Palacz Z (1986) Evidence from the Parana of south Brazil for a continental contribution to Dupal basalts. Nature 322:356–359. doi: 10.1038/322356a0 CrossRefGoogle Scholar
  37. Herzberg C (2011) Identification of source lithology in the Hawaiian and Canary Islands: implications for origins. J Petrol 52:113–146. doi: 10.1093/petrology/egq075 CrossRefGoogle Scholar
  38. Hoffman PF (1988) United Plates of America, the birth of a craton—early Proterozoic assembly and growth of Laurentia. Ann Rev Earth Planet Sci 16:543–603CrossRefGoogle Scholar
  39. Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314CrossRefGoogle Scholar
  40. Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229CrossRefGoogle Scholar
  41. Hofmann AW (2003) Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. In: Carlson RW (ed) The mantle and core, treatise on geochemistry, vol 2. Elsevier-Pergamon, Oxford, pp 61–101Google Scholar
  42. Hofmann AW (2008) Chemical geodynamics; the enduring lead paradox. Nat Geosci 1:812–813CrossRefGoogle Scholar
  43. Jowitt SM, Ernst RE (2013) Geochemical assessment of the metallogenic potential of Proterozoic LIPs of Canada. Lithos 174:291–307CrossRefGoogle Scholar
  44. Kay RW, Gast PW (1973) The rare earth content and origin of alkali-rich basalts. J Geol 81:653–682. doi: 10.1086/627919 CrossRefGoogle Scholar
  45. Kellogg LH, Turcotte DL (1990) Mixing and the distribution of heterogeneities in a chaotically convecting mantle. J Geophys Res 95:421–432CrossRefGoogle Scholar
  46. Kerrich R, Goldfarb RJ, Richards JP (2005) Metallogenic provinces in an evolving geodynamic framework. Econ Geol 100:1097–1136CrossRefGoogle Scholar
  47. Keshav S, Bizimis M, Gudfinnsson GH, Sen G, Fei Y et al (2006) Response to the comment by M. Lustrino on “High-pressure melting experiments on garnet clinopyroxenite and the alkalic–tholeiitic transition in ocean-island basalts” by Keshav et al. [Earth and Planetary Science Letters, v. 223, p. 365–379 (2004)]. Earth Planet Sci Lett Earth Planet Sci Lett 241:997–999. doi: 10.1016/j.epsl.2005.10.023 CrossRefGoogle Scholar
  48. Kogiso T, Hirschmann MM, Frost DJ (2003) High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts. Earth Planet Sci Lett 216:603–617. doi: 10.1016/S0012-821X(03)00538-7 CrossRefGoogle Scholar
  49. Kusky TM (2005) Encyclopedia of Earth science. Facts on File, New York, p 511Google Scholar
  50. Lee CA (1996) A review of mineralization in the bushveld complex and some other layered intrusions. In: Cawthorn RG (ed) layered intrusions. Elsevier Science, Amsterdam, pp 103–145. doi: 10.1016/S0167-2894(96)80006-6 CrossRefGoogle Scholar
  51. Lee C-TA, Luffi P, Plank T, Dalton H, Leeman WP (2009) Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth Planet Sci Lett 279:20–33CrossRefGoogle Scholar
  52. Lum CL, Leeman WP, Foland KA, Kargel JA, Fitton JG (1989) Isotopic variations in continental basaltic lavas as indicators of mantle heterogeneity: examples from the western U.S. Cordillera. J Geophys Res 94:7871–7884CrossRefGoogle Scholar
  53. Lustrino M et al (2006) Comment on “High-pressure melting experiments on garnet clinopyroxenite and the alkalic to tholeiitic transition in ocean-island basalts” by Keshav et al. [Earth and Planetary Science Letters, v. 223 (2004), p. 365–379]. Earth Planet Sci Lett 241:993–996. doi: 10.1016/j.epsl.2005.10.024 CrossRefGoogle Scholar
  54. Manikyamba C, Kerrich R (2011) Geochemistry of alkaline basalts and associated High-Mg basalts from the 2.7 Ga Penakacherla Terrane, Dharwar Craton, India: an Archean depleted mantle-OIB array. Precambr Res 188:104–122CrossRefGoogle Scholar
  55. Matzen AK, Baker MB, Beckett JR, Stolper EM (2011) Fe–Mg partitioning between olivine and high-magnesian melts and the nature of Hawaiian parental liquids. J Petrol 52:1243–1263. doi: 10.1093/petrology/egq089 CrossRefGoogle Scholar
  56. McDivitt J (2011) Source region analysis of the subcontinental lithospheric Mantle using continental flood basalts: Implications for the generation of fertile layered mafic intrusions. Dissertation B.Sc. Honours thesis, University of British Columbia, OkanaganGoogle Scholar
  57. McDonough WF (1990) Constraints on the composition of the continental lithospheric mantle. Earth Planet Sci Lett 101:1–18CrossRefGoogle Scholar
  58. Meen JK, Eggler DH (1987) Petrology and geochemistry of the Cretaceous Independence volcanic suite, Absaroka Mountains, Montana: clues to the composition of the Archean sub-Montanan mantle. Geol Soc Am Bull 98:238–247CrossRefGoogle Scholar
  59. Meibom A, Anderson DL (2003) The statistical upper mantle assemblage. Earth Planet Sci Lett 217:123–139CrossRefGoogle Scholar
  60. Menzies MA, Hawkesworth CJ (1987) Mantle metasomatism. Elsevier, New YorkGoogle Scholar
  61. Milner SC, le Roex AP (1996) Isotope characteristics of the Okenyenya igneous complex, northwestern Namibia; constraints on the composition of the early Tristan Plume and the origin of the EM 1 mantle component. Earth Planet Sci Lett 141(277):291Google Scholar
  62. Mungall JE, Naldrett AJ (2008) Ore deposits of the Platinum-group elements. Elements 4:253–258. doi: 10.2113/GSELEMENTS.4.4.253 CrossRefGoogle Scholar
  63. Naldrett AJ (2005) A history of our understanding of magmatic Ni–Cu sulphide deposits. Can Miner 43:2069–2098. doi: 10.2113/gscanmin.43.6.2069 CrossRefGoogle Scholar
  64. Nebel O, Vroon PZ, Wiggers de Vries DF, Jenner FE, Mavrogenes JA (2010) Tungsten isotopes as tracers of core–mantle interactions: the influence of subducted sediments. Geochim Cosmochim Acta 74:751–762. doi: 10.1016/j.gca.2009.10.017 CrossRefGoogle Scholar
  65. Nielsen SG, Rehkämaper M, Norman MD, Halliday AN, Harrison D (2006) Thallium isotopic evidence for ferromanganese sediments in the mantle source of Hawaiian basalts. Nature 439:314–317. doi: 10.1038/nature04450 CrossRefGoogle Scholar
  66. O’Reilly SY, Griffin WL, Djomani YHP, Morgan P (2001) Are lithospheres forever? Tracking changes in subcontinental lithospheric mantle through time. GSA Today, April 2001, pp 1–10Google Scholar
  67. Panter KS, Blusztaj J, Hart SR, Kyle PR, Esser R, McIntosh WC (2006) The origin of HIMU in the SW Pacific: evidence from intraplate volcanism in Southern New Zealand and Subantarctic Islands. J Petrol 47:1673–1704. doi: 10.1093/petrology/egl024 CrossRefGoogle Scholar
  68. Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48CrossRefGoogle Scholar
  69. Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet Sci Lett 19:290–300. doi: 10.1016/0012-821X(73)90129-5 CrossRefGoogle Scholar
  70. Polat A, Fryer B, Appel PWU, Kalvig P, Kerrich R, Dilek Y, Yang Z (2011) Geochemistry of anorthositic differentiated sills in the Archean (~2970 Ma) Fiskenæsset Complex, SW Greenland: implications for parental magma compositions, geodynamic setting, and secular heat flow in arcs. Lithos 123:50–72CrossRefGoogle Scholar
  71. Qin L, Humayun M (2008) The Fe/Mn ratio in MORB and OIB determined by ICP–MS. Geochim Cosmochim Acta 72:1660–1677. doi: 10.1016/j.gca.2008.01.012 CrossRefGoogle Scholar
  72. Richardson SH, Gurney JJ, Erlank AJ, Harris JW (1984) Origin of diamonds in old enriched mantle. Nature 310:198–202CrossRefGoogle Scholar
  73. Righter K, Chabot NL (2011) Moderately and slightly siderophile element constraints on the depth and extent of melting in early Mars. Meteorit Planet Sci 46:157–176CrossRefGoogle Scholar
  74. Rizo H, Walker RJ, Carlson RW, Horan MF, Mukhopadhyay S, Manthos V, Francis D, Jackson MG (2016) Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts. Science 352:809–812CrossRefGoogle Scholar
  75. Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Miner Petrol 29:275–289. doi: 10.1007/BF00371276 CrossRefGoogle Scholar
  76. Rollinson H (1993) Using geochemical data: evaluation, presentation, interpretation. Longman, EssexGoogle Scholar
  77. Roulleau E, Stevenson R (2013) Geochemical and isotopic (Nd–Sr–Hf–Pb) evidence for a lithospheric mantle source in the formation of the alkaline Monteregian Province (Quebec). Can J Earth Sci 50:650–666CrossRefGoogle Scholar
  78. Rudnick RL, Gao S (2003) The crust, 3.01—the composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3. Elsevier-Pergamon, Oxford. doi: 10.1016/b0-08-043751-6/03016-4 Google Scholar
  79. Rudnick RL, McDonough WF, O’Connell RJ (1998) Thermal structure, thickness and composition of continental lithosphere. Chem Geol 145:395–411CrossRefGoogle Scholar
  80. Rudnick RL, Barth M, Horn I, McDonough WF (2000) Rutile bearing refractory eclogites: missing link between continents and depleted mantle. Science 287:278–281CrossRefGoogle Scholar
  81. Said N, Kerrich R (2010) Magnesian dyke suites of the 2.7 Ga Kambalda Sequence, Western Australia: evidence for coeval melting of plume asthenosphere and metasomatised lithospheric mantle. Precambr Res 180:183–203CrossRefGoogle Scholar
  82. Sarbas B, Nohl U (2008) The GEOROC database as part of a growing geoinformatics network. In: Brady SR, Sinha AK, Gundersen LC (eds) Geoinformatics 2008—data to knowledge. Proceedings: U.S. Geological Survey Scientific Investigations Report 2008-5172, pp 42–43Google Scholar
  83. Scherstén A, Elliott T, Hawkesworth C, Norman M (2004) Tungsten isotope evidence that mantle plumes contain no contribution from the Earth’s core. Nature 427:234–237. doi: 10.1038/nature02221 CrossRefGoogle Scholar
  84. Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature 434:590–597. doi: 10.1038/nature03411 CrossRefGoogle Scholar
  85. Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung S-L, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM, Teklay M (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316:412–417. doi: 10.1126/Science.1138113 CrossRefGoogle Scholar
  86. Stixrude L, Lithgow-Bertelloni C (2012) Geophysics of chemical heterogeneity in the mantle. Ann Rev Earth Planet Sci 40:569–595CrossRefGoogle Scholar
  87. Stracke A, Hofmann AW, Hart SR (2005) FOZO, HIMU, and the rest of the mantle zoo. Geochem Geophys 6:20, Q05007. doi: 10.1029/2004GC000824
  88. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geological Society Special Publication 42, pp 313–345Google Scholar
  89. Tatsumi Y (2000) Continental crust formation by crustal delamination in subduction zones and complementary accumulation of the enriched mantle I component in the mantle. Geochem Geophys 1:17 (paper # 2000GC000094) Google Scholar
  90. Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265CrossRefGoogle Scholar
  91. Toplis MJ (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Miner Petrol 149:22–39. doi: 10.1007/s00410-004-0629-4 CrossRefGoogle Scholar
  92. Torsvik TH, Van Der Voo R, Doubrovine PV, Burke K, Steinberger B, Ashwal LD, Trønnes RG, Webb SJ, Bull A (2014) Deep mantle structure as a reference frame for movements in and on the Earth. Proc Natl Acad Sci USA 111:8735–8740. doi: 10.1073/pnas.1318135111 CrossRefGoogle Scholar
  93. Ulrych J, Dostal J, Adamoviča J, Jelínek E, Špaček P, Hegner E, Balogh K (2011) Recurrent Cenozoic volcanic activity in the Bohemian Massif (Czech Republic). Lithos 123:133–144CrossRefGoogle Scholar
  94. Venturi CM, Greenough JD, Ulansky C, Fipke C (2015) Stratigraphy, thickness, tectonic environment and economic implications of the giant Suwar-Wadi Qutabah layered mafic complex in NW Yemen. Can J Earth Sci 52:134–146CrossRefGoogle Scholar
  95. Wang ZR, Gaetani GA (2008) Partitioning of Ni between olivine and siliceous eclogite partial melt: experimental constraints on the mantle source of Hawaiian basalts. Contrib Miner Petrol 156:661–678. doi: 10.1007/s00410-008-0308-y CrossRefGoogle Scholar
  96. Weaver BL (1991) The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet Sci Lett 104:381–397. doi: 10.1016/0012-821X(91)90217-6 CrossRefGoogle Scholar
  97. Weiss Y, Class C, Goldstein SL, Hanyu T (2016) Key new pieces of the HIMU puzzle from olivines and diamond inclusions. Nature 537:666–670CrossRefGoogle Scholar
  98. White WM (2010) Oceanic island basalts and mantle plumes: the geochemical perspective. Ann Rev Earth Planet Sci 38:133–160CrossRefGoogle Scholar
  99. Wilkinson L, Hill M, Welna JP, Birkenbeuel GK (1992) SYSTAT for Windows: statistics, version 5. SYSTAT Inc., EvanstonGoogle Scholar
  100. Willbold M, Elliott T, Archer C (2009) ε182W in ocean island basalts and the role of core-mantle interaction. Geochim Cosmochim Acta 73:A1444Google Scholar
  101. Wirth R, Rocholl A (2003) Nanocrystalline diamond from the Earth’s mantle underneath Hawaii. Earth Planet Sci Lett 211:357–369CrossRefGoogle Scholar
  102. Zhang M, O’Reilly SY, Wang KL, Hronsky J, Griffin WL (2008) Flood basalts and metallogeny: the lithospheric mantle connection. Earth Sci Rev 86:145–174. doi: 10.1016/j.earscirev.2007.08.007 CrossRefGoogle Scholar
  103. Zhou S, Polat A, Longstaffe FJ, Yang KG, Fryer BJ, Weisener C (2016) Formation of the Neoarchean Bad Vermilion Lake anorthosite complex and spatially associated granitic rocks at a convergent plate margin, Superior Province, Western Ontario, Canada. Gondwana Res 33:134–159CrossRefGoogle Scholar
  104. Zindler A, Hart SR (1986) Chemical geodynamics. Ann Rev Earth Planet Sci 14:493–571CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Earth, Environmental and Geographical SciencesUBC OkanaganKelownaCanada

Personalised recommendations