International Journal of Earth Sciences

, Volume 107, Issue 1, pp 177–190 | Cite as

A 3D gravity and magnetic model for the Entenschnabel area (German North Sea)

  • Ingo DresselEmail author
  • Udo Barckhausen
  • Ingo Heyde
Original Paper


In this study, we focus on structural configuration of the Entenschnabel area, a part of the German exclusive economic zone within the North Sea, by means of gravity and magnetic modelling. The starting point of the 3D modelling approach is published information on subseafloor structures for shallow depths, acquired by wells and seismic surveys. Subsequent gravity and magnetic modelling of the structures of the deeper subsurface builds on this geophysical and geological information and on gravity and magnetic data acquired during a research cruise to the Entenschnabel area. On the one hand, our 3D model shows the density and susceptibility distribution of the sediments and the crust. In addition, the potential field modelling provides evidence for a differentiation between lower and upper crust. The thickness distribution of the crust is also discussed with respect to the tectonic framework. Furthermore, gravity as well as magnetic modelling points to an intrusive complex beneath the Central Graben within the Entenschnabel area. On the other hand, this work provides a geological–geophysical consistent 3D gravity and magnetic model that can be used as a starting point for further investigation of this part of the German North Sea.


Potential fields Crustal structure 3D structural model Central Graben 



We would like to thank Lutz Reinhardt and Rüdiger Lutz for discussions concerning the geology of the North Sea. We thank the Technical University Denmark-National Space Institute for the publicly available global gravity field model (DTU10). The GMT software packages (Wessel and Smith 1998) was used in the preparation of this paper. Furthermore, we would also like to thank Y. P. Maystrenko and an anonymous reviewer for their constructive comments which helped to improve the manuscript.


  1. Abramowitz T, Thybo H (2000) Seismic images of Caledonian, lithosphere-scale collision structures in the southeastern North Sea along Mona Lisa Profile 2. Tectonophysics 317:27–54CrossRefGoogle Scholar
  2. Anderson PB (2010) The DTU10 gravity field and mean sea surface. In: Second international symposium of the gravity field of the earth (IGFS2). Fairbanks, AlaskaGoogle Scholar
  3. Arfai J, Jähne F, Lutz R, Reinhardt L, Thöle H, Wirth H (2011) Datengrundlage, Arbeitskonzept und erste vorläufige Ergebnisse zum Projekt Geopotenzial Deutsche Nordsee (2009–2010)—Zwischenbericht der Module C, D und E; Archives No.: 0132438. BGR, HannoverGoogle Scholar
  4. Arfai J, Jähne F, Lutz R, Franke D, Gaedicke C, Kley J (2014) Late Paleozoic to Early Cenozoic geological evolution oft he northwestern German North Sea (Entenschnabel): new results and insights. Neth J Geosci 93–4:147–174. doi: 10.1017/njg.2014.22 Google Scholar
  5. Bachmann Gh, Geluk M, Warrington G, Becker-Roman A, Beutler G, Hagdorn H, Hounslow M, Nietsch E, Röhling H-G, Simon T, Szulc A (2010) Triassic. In: Doornenbal H, Stevenson A (eds) Petroleum geological atlas of the Southern Permian Basin Area. EAGE Publications b.v., Houten, pp 149–174Google Scholar
  6. Baldschuhn R, Binot F, Fleig S, Kockel F (2001) Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor - Strukturen, Strukturentwicklung, Paläogeographie. Geol Jahrb Reihe A Band A 153, StuttgartGoogle Scholar
  7. Brune S, Heine C, Pérez-Gussinyé M, Sobolev SV (2014) Rift migration explains continental margin asymmetry and crustal hyper extension. Nat Commun. doi: 10.1038/ncomms5014 Google Scholar
  8. Cocks LRM, Torsvik TH (2002) Earth geography from 500 to 400 million years ago: a faunal and paleomagnetic review. J Geol Soc 159:631–644CrossRefGoogle Scholar
  9. Doornenbal H, Stevenson A (2010) Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v, HoutenGoogle Scholar
  10. Dressel I, Scheck-Wenderoth M, Cacace M, Lewerenz B, Götze H-J, Reichert C (2015) Reconstruction of the southwestern African continental margin by backward modelling. Mar Pet Geol 67:544–555. doi: 10.1016/j.marpetgeo.2015.06.006 CrossRefGoogle Scholar
  11. Dressel I, Cacace M, Scheck-Wenderoth M (2016a) Coupled thermo-mechanical 3D subsidence analysis along the SW African passive continental margin. Arab J Geosci 9(358):1–22. doi: 10.1007/s12517-016-2407-9 Google Scholar
  12. Dressel I, Scheck-Wenderoth M, Cacace M (2016b) Backward modelling of the subsidence evolution of the Colorado Basin, offshore Argentina and its relation to the evolution of the conjugate Orange Basin, offshore SW Africa. Tectonophysics. doi: 10.1016/j.tecto.2016.08.007 (in press) Google Scholar
  13. Finlay CC, Maus S, Beggan CD, Bondar TN, Chambodut A, Chernova TA, Chulliat A, Golovkov VP, Hamilton B, Hamoudi M, Holme R, Hulot G, Kuang W, Langlais B, Lesur V, Lowes FJ, Lühr H, Macmillan S, Mandea M, McLean S, Manoj C, Menvielle M, Michaelis I, Olsen N, Rauberg J, Rother M, Sabaka TJ, Tangborn A, Toffner-Clausen L, Thébault E, Thomson AWP, Wardinski I, Wei Z, Zvereva TI (2010) International geomagnetic reference field: the eleventh generation. Geophys J Int 183:1216–1260. doi: 10.1111/j.1365-246X.2010.04804.x CrossRefGoogle Scholar
  14. Gac S, Klitzke P, Minakov A, Faleide JI, Scheck-Wenderoth M (2016) Lithospheric strength and elastic thickness of the Barents Sea and Kara Sea region. Tectonophysics 691 Part A:120–132. doi: 10.1016/j.tecto.2016.04.028 CrossRefGoogle Scholar
  15. Götze H-J (1976) Ein numerisches Verfahren zur Berechnung der gravimetrischen Feldgrößen für dreidimensionale Modellkörper. TU Clausthal. Dissertation, TU ClausthalGoogle Scholar
  16. Götze H-J (1984) Über den Einsatz interaktiver Computergraphik im Rahmen 3-dimensionaler Interpretationstechniken in Gravimetrie und Magnetik. TU Clausthal, HabilitationsschriftGoogle Scholar
  17. Götze H-J, Lahmeyer B (1988) Application of three-dimensional interactive modelling in gravityand magnetics. Geophysics 53(8):1096–1108CrossRefGoogle Scholar
  18. Grad M, Tiira T, ESC Working Group (2009) The Moho depth map of the European plate. Geophys J Int 176:279–292CrossRefGoogle Scholar
  19. Guterch A, Wybraniec S, Grad M, Chadwick A, Krawczyk CM, Ziegler PA, Thybo H, De Vos W (2010) Crustal structure and structural framework. In: Doornenbal H, Stevenson AG (eds) Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v, Houten, pp 11–24Google Scholar
  20. Harvey A, Brauner H-J, Breunese J, Hoffmann M, Jagosiak P, Olsen BS, Stoker S, van Orsmael J, Pasternak M, Conrad N, Andersen J (2010) Licensing and exploration history. In: Doornenbal H, Stevenson AG (eds) Petroleum geological atlas of the Southern Permian Basin Area. EAGE Publications b.v, Houten, pp 255–269Google Scholar
  21. Jaritz W (1974) Zur Entstehung der Salzstrukturen Nordwestdeutschlands. Geol Jahrbuch Reihe A Band A 10, HannoverGoogle Scholar
  22. Kockel F (1995) Structural and paleogeographical development of the German North Sea Sector. Beiträge zur regionalen Geologie der Erde, vol 26. Gebrüder Borntraeger, BerlinGoogle Scholar
  23. Lyngsie S, Thybo H (2007) A new tectonic model for the Laurentia—Avalonia—Baltica sutures in the North Sea: a case study along the MONA LISA profile 3. Tectonophysics 429(3–4):201–227CrossRefGoogle Scholar
  24. Lyngsie S, Thybo H, Rasmussen T (2006) Regional geological and tectonic structures of the North Sea area from potential field modelling. Tectonophysics 413(3–4):147–170CrossRefGoogle Scholar
  25. Maystrenko YP, Scheck-Wenderoth M (2013) 3D lithosphere-scale density model of the Central European Basin System and adjacent areas. Tectonophysics 601:53–77. doi: 10.1016/j.tecto.2013.04.023 CrossRefGoogle Scholar
  26. Maystrenko YP, Bayer U, Scheck-Wenderoth M (2012) Salt as a 3D element in structural modelling—example from the Central European Basin System. Tectonophysics 591:62–82. doi: 10.1016/j.tecto.2012.06.030 CrossRefGoogle Scholar
  27. Maystrenko YP, Scheck-Wenderoth M, Hartwig A, Anka Z, Watts AB, Hirsch KK, Fishwick S (2013) Structural features of the Southwest African continental margin according to results of lithosphere-scale 3D gravity and thermal modelling. Tectonophysics 604:104–121. doi: 10.1016/j.tecto.2013.04.014 CrossRefGoogle Scholar
  28. Morelli C, Gantar C, Honkasalo T, McConnel RK, Tanner JG, Szabo B, Outila U, Whalen CT (1971) The International Standardization Net 1971 (IGSN71). IUGG IAG Special Publication, Germany, p 4Google Scholar
  29. Reinhardt L, Krüger A, Zeiler M (2010) Geopotenzial Deutsche Nordsee. Geowissenschaftliche Mitteilungen Heft Nr. 41, BonnGoogle Scholar
  30. Reinhold K, Krull P, Kockel F, Lutz R, Gaedicke C, Rätz J, Locmelis B, Vinnemann C (2008) Salzstrukturen Norddeutschlands, geologische Karte 1:500000, Archive No. 2008 B 504. BGR, HannoverGoogle Scholar
  31. Schmidt S, Plonka C, Götze H-J, Lahmeyer B (2011) Hybrid modelling of gravity, gravity gradients and magnetic fields. Geophys Prospect 58:1046–1051CrossRefGoogle Scholar
  32. Sclater JG, Christie PAF (1980) Continental stretching: an explanation of the post-mid-Cretaceous subsidence of the Central North Sea Basin. J Geophys Res 85(B7):3711–3739CrossRefGoogle Scholar
  33. Sherrif RE (1989) Geophysical methods. Prentice Hall, Engelwood Cliffs, p 605Google Scholar
  34. Smit J, van Wees J-D, Cloetingh S (2016) The Thor suture zone: from subduction to intraplate basin setting. Geol 44:707–710. doi: 10.1130/G37958.1 CrossRefGoogle Scholar
  35. Torsvik TH, Rehnstrom EF (2003) The Tornquist Sea and Baltica Avalonia docking. Tectonophysics 363:67–82. doi: 10.1016/S0040-1951(02)00631-5 CrossRefGoogle Scholar
  36. Walter R (2007) Geologie von Mitteleuropa, 7th edn. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, p 511Google Scholar
  37. Wessel P, Smith WHF (1998) New, improved version of genereic mapping tools released. Eos Trans Am Geophys Union 79(47):579. doi: 10.1029/98EO00426 CrossRefGoogle Scholar
  38. Williamson JP, Pharaoh TC, Banka D, Thybo H, Laigle M, Lee MK (2002) Potential field modelling of the Baltica-Avalonia (Thor-Tornquist) suture beneath the southern North Sea. Tectonophysics 360:47–60CrossRefGoogle Scholar
  39. Ziegler PA (1975) Geologic evolution of the North Sea and its tectonic framework. AAPG Bull 59(7):1073–1097Google Scholar
  40. Ziegler PA (1990) Geological Atlas of Western and Central Europa. Shell International Petroleum Maatschappij BVGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Federal Institute for Geosciences and Natural Resources (BGR)HannoverGermany

Personalised recommendations