International Journal of Earth Sciences

, Volume 106, Issue 8, pp 2963–2972 | Cite as

Restoration of the Cretaceous uplift of the Harz Mountains, North Germany: evidence for the geometry of a thick-skinned thrust

Original Paper


Reverse movement on the Harz Northern Boundary Fault was responsible for the Late Cretaceous uplift of the Harz Mountains in northern Germany. Using the known geometry of the surface position and dip of the fault, and a published cross section of the Base Permian horizon, we show that it is possible to predict the probable shape of the fault at depth, down to a detachment level. We use the ‘inclined-shear’ method with constant heave and argue that a shear angle of 30° was most likely. In this case, the detachment level is at a depth of ca. 25 km. Kinematic restoration of the Harz Mountains using this fault geometry does not produce a flat horizon, rather it results in a ca. 4 km depression. Airy–Heiskanen isostatic equilibrium adjustment of the Harz Mountains restores the Base Permian horizon to the horizontal, as well as raising the Moho to a depth of 32 km, a typical value for northern Germany. Restoration also causes a rotation of tectonic fabrics within the Harz Mountains of about 11° clockwise. We show that this model geometry is very good fit to the interpreted DEKORP BASIN 9601 deep seismic profile.


Thrust fault Detachment depth Harz Mountains Cretaceous Inversion 



We acknowledge various discussions with colleagues about the Harz Mountains, especially Christian Brandes, Carl-Heinz Friedel, Bernd Leiss, and Axel Vollbrecht. Jonas Kley and Klaus Reicherter provided positive and comprehensive reviews. We thank Midland Valley Exploration for use of their Move software, which was used to carry out the restoration.


  1. Airy GB (1855) On the computation of the effect of the attraction of mountain masses, as disturbing the apparent astronomical latitude of stations in geodetic surveys. Philos Trans R Soc 145:101–104. doi:10.1098/rstl.1855.0003 CrossRefGoogle Scholar
  2. Anderson EM (1951) The dynamics of faulting and Dyke formation with applications to britain. Oliver and Boyd, EdinburghGoogle Scholar
  3. Bayerlee J (1977) Friction in rocks. In: Evernden JF (ed) Experimental studies of rock friction with application to earthquake prediction. U.S Geological Survey, Menlo Park, pp 55–77Google Scholar
  4. Best G, Zirngast M (1998) Die strukturelle Entwicklung der exhumierten Salzstruktur ‘Oberes Allertal’ Internal report of the Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), ISBN 978-3-9813373-0-3Google Scholar
  5. Best G, Zirngast M (1999) Reconstruction of the exhumed upper Allertal salt structure. EGU Straßbourg 1999, J Conf Abstr 4:518Google Scholar
  6. Brandes C, Winsemann J, Meinsen J, Roskosch J, Tsukamoto S, Frechen M, Tanner DC, Steffen H, Wu P (2012) Activity along the Osning Thrust in Central Europe during the Lateglacial: ice-sheet and lithosphere interactions. Quat Sci Rev 38:49–62. doi:10.1016/j.quascirev.2012.01.021 CrossRefGoogle Scholar
  7. Brandes C, Schmidt C, Tanner DC, Winsemann J (2013) Paleostress pattern and salt tectonics within a developing foreland basin (north-western Subhercynian Basin, Northern Germany). Int J Earth Sci 102(8):2239–2254. doi:10.1007/s00531-013-0911-7 CrossRefGoogle Scholar
  8. Brandes C, Tanner DC (2014) Fault-related folding: a review of kinematic models and their application. Earth Sci Rev 138:352–370. doi:10.1016/j.earscirev.2014.06.008 CrossRefGoogle Scholar
  9. Braxmeir H (2011) SRTM-mission relief map. Accessed 26 June 2016
  10. Brink H-J (2011) The crustal structure around the Harz Mountains (Germany): review and analysis. Z Dt Ges Geowiss 162(3):235–250. doi:10.1127/1860-1804/2011/0162-0235 Google Scholar
  11. Capote R, Muñoz JA, Simón JL, Liesa C-L, Arlegui LE (2002) Alpine tectonics, I: the Alpine system north of the Betic Cordillera. In: Gibbons W, Moreno T (eds) The geology of Spain: London, The Geological Society of London, p 367–400Google Scholar
  12. DePaola N, Mirabella F, Barchi MR, Burchielli F (2006) Early orogenic normal faults and their reactivation during thrust belt evolution: the Gubbio Fault case study, Umbria-Marche Apennines (Italy). J Struct Geol 28:1948–1957. doi:10.1016/j.jsg.2006.06.002 CrossRefGoogle Scholar
  13. DEKORP-Basin Research Group (1999) Deep crustal structure of the northeast German Basin: new DEKORP BASIN 96 deep-profiling results. Geology 27:55–58. doi:10.1130/0091-7613(1999)027<0055:DCSOTN>2.3.CO;2
  14. Deutsche Stratigraphische Kommission, Menning M, Hendrich A (eds) (2012) Stratigraphische Tabelle von Deutschland. Deutsche Stratigraphische Kommission, Deutsches GeoForschungsZentrum, PotsdamGoogle Scholar
  15. Engel W, Franke W, Grote C, Weber K, Ahrendt H, Eder FW (1983) Nappe tectonics in the southeastern part of the Rheinisches Schiefergebirge. In: Martin H, Eder FW (eds) lntracontinental fold belts. Springer, Berlin, pp 267–288CrossRefGoogle Scholar
  16. Ersch JS, Gruber JG (eds) (1826) Allgemeine Encyclopädie der Wissenschaften und Künste. FA Brockhaus, LeipzigGoogle Scholar
  17. Flick H (1986) The Hercynian mountains—a postorogenic overthrusted massif? Naturwissenschaften 73(11):670–671. doi:10.1007/BF00366689 CrossRefGoogle Scholar
  18. Franzke H-J, Voigt T, von Eynatten H, Brix MR, Burmester G (2004) Geometrie und Kinematik der Harznordrandstörung, erläutert an Profilen aus dem Gebiet von Blankenburg. Geowiss Mitt Thüringen 11:39–62Google Scholar
  19. Franzke H-J, Müller R, Voigt T, von Eynatten H (2007) Paleo-stress paths in the Harz Mountains and surrounding areas (Germany) between the Triassic and the Upper Cretaceous. Z geol Wissenschaft 35(3):141–156Google Scholar
  20. Gabriel G, Jahr T, Jentzsch G, Melzer J (1996) The Harz Mountains, Germany: finite-element modeling of the evolution based on the interpretation of the gravity field. Phys Chem Earth 21(4):305–311. doi:10.1016/S0079-1946(97)00053-0 CrossRefGoogle Scholar
  21. Gabriel G, Jahr T, Jentzsch G, Melzer J (1997) Deep structure and evolution of the Harz Mountains: results of three-dimensional gravity and finite-element modeling. Tectonophysics 270:279–299. doi:10.1016/S0040-1951(96)00176-X CrossRefGoogle Scholar
  22. Gabriel G, Jahr T, Weber U (2001) The gravity field south of the Harz Mountains: predominated by granitic material? Z Geol Wiss 29(3):249–266Google Scholar
  23. Groshong RH Jr (1989) Half graben structures: balanced models of extensional fault-bend folds. Geol Soc Am Bull 101(1):1329–1360. doi:10.1130/0016-7606(1989)101<0096:HGSBMO>2.3.CO;2 CrossRefGoogle Scholar
  24. Groshong RH Jr (1990) Unique determination of normal fault shape from hanging-wall bed geometry in detached half grabens. Eclogae Geol Helv 83:455–471. doi:10.5169/seals-166596 Google Scholar
  25. Groshong RH Jr (2006) 3-D structural geology. A practical guide to quantitative surface and subsurface map interpretation, 2nd edn. Springer, Berlin. doi:10.1007/978-3-540-31055-6
  26. Groshong RH Jr, Withjack MO, Schlische RW, Hidayah TN (2012) Bed length does not remain constant during deformation: recognition and why it matters. J Struct Geol 41:86–97. doi:10.1016/j.jsg.2012.02.009 CrossRefGoogle Scholar
  27. Hague TA, Gray GG (1996) A critique of techniques for modelling normal-fault and rollover geometries. In: Buchanan PG, Niewland DA (eds) Modern developments in structural interpretation, validation and modelling. Geol Soc Lond Spec Pub 99:8997. doi:10.1144/GSL.SP.1996.099.01.08
  28. Heiskanen WA, Vening Meinesz FA (1958) The earth and its gravity field. McGraw-Hill, New York. doi:10.1017/S001675680006115X
  29. Kley J, Franzke H-J, Jähne F, Krawczyk C, Lohr T, Scheck-Wenderoth M, Sippel J, Tanner D, van Gent H, the SPP structural geology group (2008) Chapter 3.3—Strain and Stress. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins—the Central European Basin System, Springer, Berlin, pp 97–124. doi:10.1007/978-3-540-85085-4
  30. Kley J, Voigt T (2008) Late Cretaceous intraplate thrusting in central Europe: effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology 36(11):839–842. doi:10.1130/G24930A.1 CrossRefGoogle Scholar
  31. Kockel F (2003) Inversion structures in central Europe–expressions and reasons, an open discussion. Geol Mijnb 82:367–382. doi:10.1017/S0016774600020187 CrossRefGoogle Scholar
  32. Kossow D (2002) Die kinematische Entwicklung des invertierten, intrakontinentalen Nordostdeutschen Beckens: Ergebnisse seismisch-stratigraphischer Untersuchungen und einer Profilbilanzierung. Dissertation, Deutsches GeoForschungsZentrum GFZGoogle Scholar
  33. Kossow D, Krawczyk CM (2002) Structure and quantification of processes controlling the evolution of the inverted NE-German Basin. Mar Pet Geol 19:601–618CrossRefGoogle Scholar
  34. Krawczyk CM, Stiller M, DEKORP-Basin Research Group (1999) Reflection seismic constraints on Paleozoic crustal structure and Moho beneath the NE German Basin. Tectonophysics 314:241–253. doi:10.1016/S0040-1951(99)00246-2
  35. Littke R, Bayer U, Gajewski D, Nelskamp S (2008) Dynamics of complex intracontinental basins: the central European basin system. Springer, Berlin, p 519. doi:10.1007/978-3-540-85085-4
  36. Mazur S, Scheck-Wenderoth M, Krzywiec P (2005) Different modes of Late Cretaceous-Early Tertiary inversion in the North German and Polish basins. Int J Earth Sci 94:782–798. doi:10.1007/s00531-005-0016-z CrossRefGoogle Scholar
  37. McClay KR (1989) Analogue models of inversion tectonics. In: Cooper MA, Williams GD (eds) Inversion tectonics. Geol Soc Lond, Spec Pub 44, pp 41–59. doi:10.1144/GSL.SP.1989.044.01.04
  38. McClay KR (1995) The geometries and kinematics of inverted fault systems: a review of analogue model studies. In: Buchanan JG, Buchanan PG (eds) Basin inversion. Geol Soc Lond Spec Pub 88, pp 97–118. doi:10.1144/GSL.SP.1995.088.01.07
  39. McKenzie DP (1969) The relation between fault plane solutions for earthquakes and the directions of the principal stresses. Bull Seismol Soc Am 59:591–601Google Scholar
  40. Medwedeff DA, Suppe J (1997) Multibend fault-bend folding. J Struct Geol 19:279–292. doi:10.1016/S0191-8141(97)83026-X CrossRefGoogle Scholar
  41. Ménard G, Molnar P, Platt JP (1991) Budget of crustal shortening and subduction of continental crust in the Alps. Tectonics 10:231–244. doi:10.1029/90TC02552 CrossRefGoogle Scholar
  42. Reicherter KR, Pletsch TK (2000) Evidence for a synchronous circum-Iberian subsidence event and its relation to the African-Iberian plate convergence in the Late Cretaceous. Terra Nova 12:141–147. doi:10.1046/j.1365-3121.2000.00276.x CrossRefGoogle Scholar
  43. Römer FA (1866) Beiträge zur geologischen Kenntniss des norddeutschen Harzgebirges. 5. Abtheilung Palaeontogr 13(5):201–236Google Scholar
  44. Römer FA (1900) Beiträge zur geologischen Kenntniss des nordwestlichen Harzgebirges. Palaeontogr 1(9):1–46Google Scholar
  45. Ruchholz K (1983) Bretonischer Blattverschiebungsmechanismus im Harz und seine Bedeutung im Bereich des Rhenischen Troges. Thesen Koll, Zentralinst Physik der Erde: 1–8Google Scholar
  46. Scheck M, Barrio-Alvers L, Bayer U, Götze H-J (1999) Density structure of the Northeast German basin: 3D modelling along the DEKORP line BASIN 96. Phys Chem Earth Part A Solid Earth Geod 24(3):221–230. doi:10.1016/S1464-1895(99)00022-8 CrossRefGoogle Scholar
  47. Sibson RH (1985) A note on fault reactivation. J Struct Geol 7:751–754. doi:10.1016/0191-8141(85)90150-6 CrossRefGoogle Scholar
  48. Suppe J (1983) Geometry and kinematics of fault-bend folding. Am J Sci 283:684–721. doi:10.2475/ajs.283.7.684 CrossRefGoogle Scholar
  49. Sykes LR (1978) Intraplate seismicity, reactivation of preexisting zones of weakness, alkaline magmatism, and other tectonism post-dating continental fragmentation. Rev Geophys 16(4):621–687. doi:10.1029/RG016i004p00621 CrossRefGoogle Scholar
  50. Tanner DC, Behrmann JH, Oncken O, Weber K (1998) Three-dimensional retro-modelling of transpression on a linked fault system: the Upper Cretaceous deformation on the western border of the Bohemian Massif, Germany. In: Holdsworth RE, Strachan RA, Dewey JF (eds) Continental transpressional and transtensional tectonics. Geol Soc Lond Spec Publ 135, pp 275–287. doi:10.1144/GSL.SP.1998.135.01.18
  51. Tanner DC, Brandes C, Leiss B (2010) Structure and kinematics of an outcrop-scale, fold-cored triangle zone. Bull Am Assoc Pet Geol 94(12):1799–1809. doi:10.1306/06301009188 Google Scholar
  52. Tsuboi C (1983) Gravity. George Allen and Unwin, London 254 ppGoogle Scholar
  53. Voigt T, von Eynatten H, Franzke H-J (2004) Late Cretaceous unconformities in the Subhercynian Cretaceous Basin (Germany). Acta Geol Pol 54:673–694Google Scholar
  54. Voigt T, Wiese F, von Eynatten H, Franzke H-J, Gaupp R (2006) Facies evolution of syntectonic Upper Cretaceous deposits in the Subhercynian Cretaceous basin and adjoining areas (Germany). Z Dt Ges Geowiss 157:203–244. doi:10.1127/1860-1804/2006/0157-0203 Google Scholar
  55. Voigt T, von Eynatten H, Kley J (2009) Kommentar zu “Nördliche Harzrandstörung: Diskussionsbeiträge zu Tiefenstruktur, Zeitlichkeit und Kinematik” von V Wrede (Z Dt Ges Geowiss 159(2):293–316). [Comment on ’The northern border fault of the Harz Mountains—contributions to the discussion on deep structure, timing and kinematics by V Wrede (Z Dt Ges Geowiss 159(2):293–316).] Z Dt Ges Geowiss 160:93–99. doi:10.1127/1860-1804/2009/0160-0093
  56. von Eynatten H, Voigt T, Meier A, Franzke H-J, Gaupp R (2008) Provenance of the clastic Cretaceous Subhercynian Basin fill: constraints to exhumation of the Harz Mountains and the timing of inversion tectonics in the Central European Basin. Int J Earth Sci 97:1315–1330. doi:10.1007/s00531-007-0212-0 CrossRefGoogle Scholar
  57. von Eynatten H, Dunkl I, Brix M, Hoffmann V-E, Raab M, Thomson SN, Voigt T (2016) Die oberkretazische Heraushebung des Harzes: thermochronologische und sedimentgeologische Daten. Göttingen Contrib Geosci 78:38–39Google Scholar
  58. White NJ, Jackson JA, McKenzie DP (1986) The relationship between the geometry of normal faults and that of the sedimentary layers in their hangingwalls. J Struct Geol 8:897–909. doi:10.1016/0191-8141(86)90035-0 CrossRefGoogle Scholar
  59. Withjack MO, Peterson ET (1993) Prediction of normal-fault geometries; a sensitivity analysis. Am Assoc Pet Geol B 77:18601873Google Scholar
  60. Wrede V (1988) Der nördliche Harzrand—flache Abscherbahn oder wrench-fault-system? Geol Rundsch 77(1):101–114. doi:10.1007/BF01848678 CrossRefGoogle Scholar
  61. Wrede V (2008) Nördliche Harzrandstörung: Diskussionsbeiträge zu Tiefenstruktur, Zeitlichkeit und Kinematik. Z Dt Ges Geowiss 159(2):293–316. doi:10.1127/1860-1804/2008/0159-0293 Google Scholar
  62. Xiao H, Suppe J (1992) Origin of rollover. Am Assoc Pet Geol B 76:509–529Google Scholar
  63. Yamada Y, McClay K (2003a) Application of geometric models to inverted listric fault systems in sandbox experiments. Paper 1: 2D hanging wall deformation and section restoration. J Struct Geol 25(9):1551–1560. doi:10.1016/S0191-8141(02)00181-5 CrossRefGoogle Scholar
  64. Yamada Y, McClay K (2003b) Application of geometric models to inverted listric fault systems in sandbox experiments. Paper 2: insights for possible along strike migration of material during 3D hanging wall deformation. J Struct Geol 25(9):1331–1336. doi:10.1016/S0191-8141(02)00160-8 CrossRefGoogle Scholar
  65. Yegorova TP, Kozlenko VG, Pavlenkova NI, Starostenko VI (1995) 3-D density model for the lithosphere of Europe: construction method and preliminary results. Geophys J Int 121:873–892. doi:10.1111/j.1365-246X.1995.tb06445.x CrossRefGoogle Scholar
  66. Ziesch J, Tanner DC, Krawczyk CM (2014) Strain associated with the fault-parallel flow algorithm during kinematic fault displacement. Math Geosci 46(1):59–73. doi:10.1007/s11004-013-9464-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Leibniz Institute for Applied Geophysics (LIAG)HannoverGermany
  2. 2.Helmholtz Centre Potsdam, GFZ German Research Centre for GeosciencesPotsdamGermany
  3. 3.TU BerlinBerlinGermany

Personalised recommendations