International Journal of Earth Sciences

, Volume 106, Issue 2, pp 421–451

Protracted, coeval crust and mantle melting during Variscan late-orogenic evolution: U–Pb dating in the eastern French Massif Central

  • Oscar Laurent
  • Simon Couzinié
  • Armin Zeh
  • Olivier Vanderhaeghe
  • Jean-François Moyen
  • Arnaud Villaros
  • Véronique Gardien
  • Cyril Chelle-Michou
Original Paper

Abstract

The late stages of the Variscan orogeny are characterized by middle to lower crustal melting and intrusion of voluminous granitoids throughout the belt, which makes it akin to “hot” orogens. These processes resulted in the development of large granite–migmatite complexes, the largest of which being the 305–300-Ma-old Velay dome in the eastern French Massif Central (FMC). This area also hosts a wide range of late-Variscan plutonic rocks that can be subdivided into four groups: (i) cordierite-bearing peraluminous granites (CPG); (ii) muscovite-bearing peraluminous granites (MPG); (iii) K-feldspar porphyritic, calc-alkaline granitoids (KCG) and (iv) Mg–K-rich (monzo)diorites and lamprophyres (“vaugnerites”). New results of LA-SF-ICP-MS U–Pb zircon and monazite dating on 33 samples from all groups indicate that both granites and mafic rocks emplaced together over a long period of ~40 million years throughout the Carboniferous, as shown by intrusion ages between 337.4 ± 1.0 and 298.9 ± 1.8 Ma for the granitoids, and between 335.7 ± 2.1 and 299.1 ± 1.3 Ma for the vaugnerites. Low zircon saturation temperatures and abundant inherited zircons with predominant late Ediacaran to early Cambrian ages indicate that the CPG and MPG formed through muscovite or biotite dehydration melting of ortho- and paragneisses from the Lower Gneiss Unit. The KCG and vaugnerites contain very few inherited zircons, if any, suggesting higher magma temperatures and consistent with a metasomatized lithospheric mantle source for the vaugnerites. The KCG can be explained by interactions between the CPG/MPG and the vaugnerites, or extensive differentiation of the latter. The new dataset provides clear evidence that the eastern FMC was affected by a long-lived magmatic episode characterized by coeval melting of both crustal and mantle sources. This feature is suggested here to result from a lithospheric-scale thermal anomaly, triggered by the removal of the lithospheric mantle root. The spatial distribution of the dated samples points to a progressive southward delamination of the lithospheric mantle, perhaps in response to rollback following continental subduction, or to “retro-delamination” owing to the retreat of a south-verging subduction zone.

Keywords

U–Pb dating Zircon French Massif Central Granitoids Vaugnerites Variscan orogeny 

Supplementary material

531_2016_1434_MOESM1_ESM.pdf (8.1 mb)
Supplementary material 1 (PDF 8257 kb)
531_2016_1434_MOESM2_ESM.xlsx (1009 kb)
Supplementary material 2 (XLSX 1008 kb)
531_2016_1434_MOESM3_ESM.xlsx (368 kb)
Supplementary material 3 (XLSX 368 kb)

References

  1. Aït-Malek H (1997) Petrology, geochemistry and U/Pb geochronology of acid–basic associations: examples from SE Velay (French Massif Central) and western anti-Atlas (Morocco). Ph.D. thesis, University of NancyGoogle Scholar
  2. Alexandre P (2007) U–Pb SIMS ages from the French Massif Central and implication for the pre-Variscan tectonic evolution in Western Europe. C R Geosci 339:613–621CrossRefGoogle Scholar
  3. Alexandrov P, Floc’h JP, Cuney M, Cheilletz A (2001) Datation U–Pb à la microsonde ionique des zircons de l’unité supérieure de gneiss dans le Sud Limousin, Massif Central. C R Acad Sci Paris 332:625–632Google Scholar
  4. Annen C, Sparks RSJ (2002) Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust. Earth Planet Sci Lett 203:937–955CrossRefGoogle Scholar
  5. Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crust hot zones. J Petrol 47(3):505–539CrossRefGoogle Scholar
  6. Arnaud F, Burg JP (1993) Microstructures des mylonites schisteuses: cartographie des chevauchements varisques dans les Cévennes et détermination de leur cinématique. C R Acad Sci Paris 11:1441–1447Google Scholar
  7. Arnold J, Jacoby WR, Schmeling H, Schott B (2001) Continental collision and the dynamic and thermal evolution of the Variscan orogenic crustal root—numerical models. J Geodynamics 31:273–291CrossRefGoogle Scholar
  8. Averbuch O, Piromallo C (2012) Is there a remnant Variscan subducted slab in the mantle beneath the Paris basin? Implications for the late Variscan lithospheric delamination process and the Paris basin formation. Tectonophysics 558–559:70–83CrossRefGoogle Scholar
  9. Ballèvre M, Le Goff E, Hébert R (2001) The tectonothermal evolution of the Cadomian belt of northern Brittany, France: a Neoproterozoic volcanic arc. Tectonophysics 331:19–43CrossRefGoogle Scholar
  10. Barbarin B (1983) Les granites carbonifères du Forez septentrional (Massif Central Français). Typologie et relations entre les différents massifs. Thèse 3e cycle, Université Clermont-Ferrand 199 pGoogle Scholar
  11. Barbarin B (1988) Mise en évidence des différentes étapes d’un processus global de mélange de magmas acides et basiques: les interactions entre la diorite de Piolard et le monzogranite de Saint-Julien-la-Vêtre (Monts du Forez, Massif Central, France). C R Acad Sci Paris 306:129–134Google Scholar
  12. Barbarin B (1992) Les granites crustaux hercyniens d’Europe Occidentale. Comparaison avec les granites S du Lachlan Fold Belt, Australie. Dualité d’origine. C R Acad Sci Paris 314:593–601Google Scholar
  13. Barbarin B (1999) A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46(3):605–626CrossRefGoogle Scholar
  14. Barbarin B, Gerbe MC, Vitel G, Gonord H, Couette F, Lebret P (2012) Notice explicative, Carte géologique de la France (1/50,000e), feuille Firminy (nr. 744). Orléans, Bureau de Recherches Géologiques et MinièresGoogle Scholar
  15. Barbey P, Marignac C, Montel JM, Macaudière J, Gasquet D, Jabbori J (1999) Cordierite growth textures and the conditions of genesis and emplacement of crustal granitic magmas: the Velay granite (Massif Central, France). J Petrol 40(9):1425–1441CrossRefGoogle Scholar
  16. Barbey P, Villaros A, Marignac C, Montel JM (2015) Multiphase melting, magma emplacement and P-T-time path in late-collisional context: the Velay example (Massif Central, France). Bull Soc Geol Fr 186(2–3):93–116CrossRefGoogle Scholar
  17. Batias P, Duthou JL (1979) Age Viséen supérieur du granite porphyroïde de Vienne-Tournon (Massif Central français). In: Proceedings 7ème Réunion Annuelle des Sciences de la Terre, LyonGoogle Scholar
  18. Bé Mézème E, Cocherie A, Faure M, Legendre O, Rossi P (2006) Electron microprobe monazite geochronology of magmatic events: examples from Variscan migmatites and granitoids, Massif Central, France. Lithos 87(3–4):276–288CrossRefGoogle Scholar
  19. Beard JS, Lofgren GE (1991) Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3 and 6.9 kbar. J Petrol 32(2):365–401CrossRefGoogle Scholar
  20. Bernard-Griffiths J, Gebauer D, Grünenfelder M, Piboule M (1985) The tonalite belt of Limousin (French Central Massif): U–Pb zircon ages and tectonic implications. Bull Soc Geol Fr 1(4):523–529Google Scholar
  21. Black R, Liégeois JP (1993) Cratons, mobile belts, alkaline rocks and continental lithospheric mantle: the Pan-African testimony. J Geol Soc Lond 150:89–98CrossRefGoogle Scholar
  22. Bogaerts M, Scaillet B, Vander Auwera J (2006) Phase equilibria of the Lyngdal granodiorite (Norway): implications for the origin of metaluminous ferroan granitoids. J Petrol 47(12):2405–2431CrossRefGoogle Scholar
  23. Bonin B (2004) Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos 78:1–24CrossRefGoogle Scholar
  24. Bouilhol P, Leyreloup AF, Delor C, Vauchez A, Monié P (2006) Relationships between lower and upper crust tectonic during doming: the mylonitic southern edge of the Velay metamorphic core complex (Cévennes-French Massif Central). Geodin Acta 19(3–4):137–153CrossRefGoogle Scholar
  25. Briand B, Piboule M, Santallier D, Bouchardon JL (1991) Geochemistry and tectonic implications of two Ordovician bimodal igneous complexes, southern French Massif Central. J Geol Soc Lond 148:959–971CrossRefGoogle Scholar
  26. Briand B, Duthou JL, Guerrot C, Chenevoy M (2002) The orthoclase lath-rich granites from Vivarais, products of a Dinantian post-tectonic magmatism; identification of a NW-Vivarais geological unit. C R Geoscience 334:741–747CrossRefGoogle Scholar
  27. Brichau S, Respaut JP, Monié P (2008) New age constraints on emplacement of the Cévenol granitoids, South French Massif Central. Int J Earth Sci 97:725–738CrossRefGoogle Scholar
  28. Brown M (2001) Crustal melting and granite magmatism: key issues. Phys Chem Earth 26(4–5):201–212CrossRefGoogle Scholar
  29. Bruguier O, Becq-Giraudon JF, Bosch D, Lancelot J (1998) Late Visean hidden basins in the internal zones of the Variscan belt: U–Pb zircon evidence from the French Massif Central. Geology 26(7):627–630CrossRefGoogle Scholar
  30. Caen-Vachette M (1979) Age cambrien des rhyolites transformées en leptynites dans la série métamorphique du Pilat (Massif Central français). C R Acad Sci Paris 289:997–1000Google Scholar
  31. Caen-Vachette M, Couturié JP, Didier J (1982) Ages radiométriques des granites anatectiques et tardimigmatitique du Velay (Massif Central français). C R Acad Sci Paris 294:135–138Google Scholar
  32. Caron C (1994) Les minéralisations Pb-Zn associées au Paléozoique inférieur d’Europe méridionale. Traçage isotropique Pb-Pb des gites de l’Iglesiente (SW Sardaigne) et des Cévennes et évolution du socle encaissant par la géochronologie U–Pb, 40Ar-39Ar et K-Ar. Ph.D. thesis, University of Montpellier 288 ppGoogle Scholar
  33. Castiñeiras P, Villaseca C, Barbero L, Romera CM (2008) SHRIMP U–Pb zircon dating of anatexis in high-grade migmatite complexes of Central Spain: implications in the Hercynian evolution of Central Iberia. Int J Earth Sci 97:35–50CrossRefGoogle Scholar
  34. Chauvet A, Volland-Tuduri N, Lerouge C, Bouchot V, Monié P, Charonnat X, Faure M (2011) Geochronological and geochemical characterization of magmatic-hydrothermal events within the Southern Variscan external domain (Cévennes area, France). Int J Earth Sci 101(1):69–86CrossRefGoogle Scholar
  35. Chelle-Michou C, Laurent O, Moyen JF, Block S, Gardien V, Paquette JL, Couzinié S (2015) New U–Pb and Hf zircon data from the eastern Massif Central: from Gondwana to Pangea in a nutshell. Géol Fr 1:37–38Google Scholar
  36. Clemens JD, Darbyshire DPF, Flinders J (2009) Sources of post-orogenic calcalkaline magmas: the Arrochar and Garabal Hill-Glen Fyne complexes, Scotland. Lithos 112:524–542CrossRefGoogle Scholar
  37. Cocherie A (2007) Datations U–Pb (laser-ICPMS-MC) sur zircons et U-Th-Pb sur monazites de granitoïdes du Massif central (carte de Firminy). Rapport BRGM MMA/ISO-2007/279Google Scholar
  38. Cocherie A, Be Mézème E, Legendre O, Fanning CM, Faure M, Rossi P (2005) Electron-microprobe dating as a tool for determining the closure of Th–U–Pb systems in migmatitic monazites. Am Mineral 90:607–618CrossRefGoogle Scholar
  39. Costa S, Rey P (1995) Lower crustal rejuvenation and growth during post-thickening collapse: insights from a crustal cross section through a Variscan metamorphic core complex. Geology 23(10):90–908CrossRefGoogle Scholar
  40. Coulon C, Megartsi M, Fourcade S, Maury RC, Bellon H, Louni-Hacini A, Cotten J, Coutelle A, Hermitte D (2002) Post-collisional transition from calc-alkaline to alkaline volcanism during the Neogene in Oranie (Algeria): magmatic expression of a slab breakoff. Lithos 62(3–4):87–110CrossRefGoogle Scholar
  41. Couturié JP, Caen-Vachette M (1979) Age Namurien d’un laccolite granitique différencié par gravité: le granite de la Margeride (Massif Central français). C R Acad Sci Paris 289:449–452Google Scholar
  42. Couzinié S, Moyen JF, Villaros A, Paquette JL, Scarrow JH, Marignac C (2014) Temporal relationships between Mg-K mafic magmatism and catastrophic melting of the Variscan crust in the southern part of Velay Complex (Massif Central, France). J Geosci 59:69–86CrossRefGoogle Scholar
  43. Couzinié S, Laurent O, Moyen JF, Zeh A, Bouilhol P, Villaros A (2016) Post-collisional magmatism: crustal growth not identified by zircon Hf–O isotopes. Earth Planet Sci Lett 456:182–195CrossRefGoogle Scholar
  44. De la Roche H, Leterrier L, Grandclaude P, Marchal M (1980) A classification of volcanic and plutonic rocks using R1–R2 diagram and major element analyses—its relationship with current nomenclature. Chem Geol 29:183–210CrossRefGoogle Scholar
  45. De Saint-Blanquat M, Horsman E, Habert G, Morgan S, Vanderhaeghe O, Law R, Tikoff B (2011) Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs. Tectonophysics 500:20–33CrossRefGoogle Scholar
  46. Denèle Y, Laumonier B, Paquette JL, Olivier P, Gleizes G, Barbey P (2014) Timing of granite emplacement, crustal flow and gneiss dome formation in the Variscan segment of the Pyrenees. In: Schulmann K, Martínez Catalán JR, Lardeaux JM, Janoušek V and Oggiano G (eds) The Variscan Orogeny: Extent, Timescale and the Formation of the European Crust. Geol Soc London Special Publications 405: 265–287Google Scholar
  47. Depine GV, Andronicos CL, Phipps-Morgan J (2008) Near-isothermal conditions in the middle and lower crust induced by melt migration. Nature 452:80–83CrossRefGoogle Scholar
  48. Didier J, Lameyre J (1969) Les granites du Massif Central Français. Etude comparée des leucogranites et des granodiorites. Contrib Mineral Petrol 24:219–238CrossRefGoogle Scholar
  49. Didier J, Duthou JL, Lameyre J (1982) Mantle and crustal granites: genetic classification of orogenic granites and the nature of their enclaves. J Volc Geothermal Res 14:125–132CrossRefGoogle Scholar
  50. Didier J, Barbarin B, Gagny C, Leistel JM, Kerrien Y (1989) Notice explicative, Carte géologique de la France (1/50 000e), feuille Noirétable (nr. 695). Orléans, Bureau de Recherches Géologiques et Minières, p 72Google Scholar
  51. Didier A, Bosse V, Boulvais P, Bouloton J, Paquette JL, Montel JM, Devidal JL (2013) Disturbance versus preservation of U–Th–Pb ages in monazite during fluid–rock interaction: textural, chemical and isotopic in situ study in microgranites (Velay Dome, France). Contrib Mineral Petrol 165(6):1051–1072CrossRefGoogle Scholar
  52. Do Couto D, Faure M, Augier R, Cocherie A, Rossi P, Li XH, Lin W (2015) Monazite U-Th–Pb EPMA and zircon U–Pb SIMS chronological constraints on the tectonic, metamorphic and thermal events in the inner part of the Variscan orogen, example from the Sioule series. Int J Earth Sci, French Massif Central. doi:10.1007/s00531-015-1184-0 Google Scholar
  53. Dostal J, Dupuy C, Leyreloup A (1980) Geochemistry and petrology of meta-igneous granulitic xenoliths in Neogene volcanic rocks of the Massif Central, France—implications for the lower crust. Earth Planet Sci Lette 50(1):31–40CrossRefGoogle Scholar
  54. Downes H, Dupuy C, Leyreloup A (1990) Crustal evolution of the Hercynian belt of Western Europe: evidence from lower-crustal granulitic xenoliths (French Massif Central). Chem Geol 83(3–4):209–231CrossRefGoogle Scholar
  55. Downes H, Shaw A, Williamson BJ, Thirlwall MF (1997) Sr, Nd and Pb isotope geochemistry of the Hercynian granodiorites and monzogranites, Massif Central, France. Chem Geol 136:99–122CrossRefGoogle Scholar
  56. Ducrot J, Lancelot J, Marchand J (1983) Datation U–Pb sur zircons de l’éclogite de la Borie (Haut-Allier, France) et conséquences sur l’évolution ante-hercynienne de l’Europe occidentale. Earth Planet Sci Lett 62:385–394CrossRefGoogle Scholar
  57. Dupraz J, Didier J (1988) Le complexe anatectique du Velay (Massif Central français): structure d’ensemble et évolution géologique. Geol Fr 4:73–88Google Scholar
  58. Duretz T, Gerya TV (2013) Slab detachment during continental collision: influence of crustal rheology and interactions with lithospheric delamination. Tectonophysics 602:124–140CrossRefGoogle Scholar
  59. Duthou JL, Cantagrel JM, Didier J, Vialette Y (1984) Palaeozoic granitoids from the French Massif Central: age and origin studied by 87Rb–87Sr system. Phys Earth Planet Interiors 35:131–144CrossRefGoogle Scholar
  60. Duthou JL, Chenevoy M, Gay M (1994) Rb-Sr middle Devonian age of cordierite bearing migmatites from Lyonnais area (French Massif Central). C R Acad Sci Paris 319:791–796Google Scholar
  61. Faure M (1995) Late orogenic carboniferous extensions in the Variscan French Massif Central. Tectonics 14(1):132–153CrossRefGoogle Scholar
  62. Faure M, Charonnat X, Chauvet A (1999) Structural map and tectonic evolution of the Cévennes para-autochtonous domain of the Hercynian belt (French Massif Central). C R Acad Sci Paris 328:401–407CrossRefGoogle Scholar
  63. Faure M, Monié P, Pin C, Maluski H, Leloix C (2002) Late Visean thermal event in the northern part of the French Massif Central: new 40Ar/39Ar and Rb-Sr isotopic constraints on the Hercynian syn-orogenic extension. Int J Earth Sci 91:53–75CrossRefGoogle Scholar
  64. Faure M, Bé Mézème E, Duguet M, Cartier C, Talbot JY (2005) Paleozoic tectonic evolution of medio-Europa from the example of the French Massif Central and Massif Armoricain. In: Carosi R, Dias R, Iacopini D, Rosenbaum G (eds.), The southern Variscan belt. J Virtual Explorer 19, paper 5Google Scholar
  65. Faure M, Bé Mézème E, Cocherie A, Rossi P, Chemenda A, Boutelier D (2008) Devonian geodynamic evolution of the Variscan belt, insights from the French Massif Central and Massif Armoricain. Tectonics. doi:10.1029/2007TC002115 Google Scholar
  66. Faure M, Lardeaux JM, Ledru P (2009) A review of the pre-Permian geology of the Variscan French Massif Central. C R Geoscience 341(2–3):202–213CrossRefGoogle Scholar
  67. Féménias O, Coussaert N, Bingen B, Whitehouse M, Mercier JC, Demaiffe D (2003) A Permian underplating event in late- to post-orogenic tectonic setting. Evidence from the mafic–ultramafic layered xenoliths from Beaunit (French Massif Central). Chem Geol 199:293–315CrossRefGoogle Scholar
  68. Fernández-Suárez J, Dunning GR, Jenner GA, Gutiérrez-Alonzo G (2000) Variscan collisional magmatism and deformation in NW Iberia: constraints from U–Pb geochronology of granitoids. J Geol Soc Lond 157:565–576CrossRefGoogle Scholar
  69. Fernández-Suárez J, Gutierrez-Alonso G, Johnston ST, Jeffries TE, Pastor-Galán D, Jenner GA, Murphy JB (2011) Iberian late-Variscan granitoids: some considerations on crustal sources and the significance of “mantle extraction ages”. Lithos 123:121–132CrossRefGoogle Scholar
  70. Feybesse JL, Lardeaux JM, Johan V, Tegyey M, Dufour E, Lumière B, Delfour J (1988) La série de la Brévenne (Massif Central français): une unité dévonienne charriée sur le complexe métamorphique des Monts du Lyonnais à la fin de la collision varisque. C R Acad Sci Paris 307:991–996Google Scholar
  71. Finger F, Roberts MP, Haunschmid B, Schermaier A, Steyrer HP (1997) Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations. Mineral Petrol 61:67–96CrossRefGoogle Scholar
  72. François T (2009) Geochemical and geochronological constraints on the origin and emplacement of Mont-Lozère granites. M.Sc. thesis, University of MontpellierGoogle Scholar
  73. Gardien V (1990) Reliques de grenat et de staurotide dans la série métamorphique de basse pression du Mont Pilat (Massif Central français): témonis d’une évolution tectonométamorphique polyphasée. C R Acad Sci Paris 310:233–240Google Scholar
  74. Gardien V (1993) Les reliques pétrologiques de haute à moyenne pression des séries du Vivarais oriental (Est du Massif Central français). Comptes rendus de l‘Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’univers. Sciences de la Terre 316:1247–1254Google Scholar
  75. Gardien V, Teygey M, Lardeaux JM, Misseri M, Dufour E (1990) Crust mantle relationships in the French Variscan Belt: the example of Monts du Lyonnais unit (Eastern French Massif central). J Metam Geol 8(5):477–492CrossRefGoogle Scholar
  76. Gardien V, Thompson AB, Grujic D, Ulmer P (1995) Experimental melting of biotite + plagioclase + quartz ± muscovite assemblages and implications for crustal melting. J Geophys Res 100:15581–15591CrossRefGoogle Scholar
  77. Gardien V, Lardeaux JM, Ledru P, Allemand P, Guillot S (1997) Metamorphism during late orogenic extension; insights from the French Variscan belt. Bull Soc Geol Fr 168(3):271–286Google Scholar
  78. Gardien V, Vanderhaeghe O, Arnaud N, Cocherie A, Grange M, Lécuyer C (2011) Thermal maturation and exhumation of a middle orogenic crust in the Livradois area (French Massif Central). Bull Soc Geol Fr 182(1):5–24CrossRefGoogle Scholar
  79. Gay M, Peterlongo JM, Caen-Vachette M (1981) Age radiométrique des granites en massifs allongés et en feuillets minces, syntectoniques dans les Monts du Lyonais (Massif Central français). C R Acad Sci Paris 293:993–996Google Scholar
  80. Geisler T, Ulonska M, Schleicher H, Pidgeon RT, van Bronswijk W (2001) Leaching and differential recrystallization of metamict zircon under experimental conditions. Contrib Mineral Petrol 141:53–65CrossRefGoogle Scholar
  81. Gerdes A, Zeh A (2006) Combined U–Pb and Hf isotope LA-(MC)ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci Lett 249:47–61CrossRefGoogle Scholar
  82. Gerdes A, Zeh A (2009) Zircon formation versus zircon alteration–new insights from combined U–Pb and Lu–Hf in situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chem Geol 261:230–243CrossRefGoogle Scholar
  83. Gray R, Pysklywec RN (2012) Geodynamic models of mature continental collision: evolution of an orogen from lithospheric subduction to continental retreat/delamination. J Geophysical Res 117(B3):B03408Google Scholar
  84. Guo Z, Wilson M, Zhang M, Cheng Z, Zhang L (2013) Post-collisional, K-rich mafic magmatism in south Tibet: constraints on Indian slab-to-wedge transport processes and plateau uplift. Contrib Mineral Petrol 165:1311–1340CrossRefGoogle Scholar
  85. Harris NBW, Vance D, Ayres M (2000) From sediment to granite: timescales of anatexis in the upper crust. Chem Geol 162:155–167CrossRefGoogle Scholar
  86. Henk A, Von Blankenburg F, Finger F, Schaltegger U, Zulauf G (2000) Syn-convergent high temperature metamorphism and magmatism in the Variscides: a discussion of potential heat sources. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the variscan belt. Geol Soc Lond Spec Publ 179:387–399Google Scholar
  87. Hou Z, Cook NJ (2009) Metallogenesis of the Tibetan collisional orogen: a review and introduction to the special issue. Ore Geol Rev 36:2–24CrossRefGoogle Scholar
  88. Isnard H (1996) Datation par la méthode U–Pb sur monazites des granites du Mont Lozère et de l’Est de la Margeride (laccolites de Chambon-le- Château et de St-Christophe d’Allier): contribution à l’histoire post-tectonique du Massif Central Français. M.Sc. thesis, University of Montpellier, 55 ppGoogle Scholar
  89. Janoušek V, Bowes DR, Rogers G, Farrow CM, Jelínek E (2000) Modelling diverse processes in the petrogenesis of a composite Batholith: the Central Bohemian Pluton, Central European Hercynides. J Petrol 41(4):511–543CrossRefGoogle Scholar
  90. Kemp AIS, Hawkesworth CJ (2003) Granitic perspectives on the generation and secular evolution of the continental crust. In: Rudnick RL (ed) The crust. Treatise on geochemistry. Elsevier-Pergamon, Oxford, pp 349–410CrossRefGoogle Scholar
  91. Kober B, Kalt A, Hanel M, Pidgeon RT (2004) SHRIMP dating of zircons from high-grade metasediments of the Schwarzwald/SW-Germany and implications for the evolution of the Moldanubian basement. Contrib Mineral Petrol 147:330–345CrossRefGoogle Scholar
  92. Kosztolanyi C (1971) Géochronologie des gisements uranifères français par la méthode uranium-plomb. Influence du déséquilibre radioactif sur les résultats. Ph.D. thesis, University of Nancy 279 ppGoogle Scholar
  93. Kroner U, Romer RL (2013) Two plates—many subduction zones: the Variscan orogeny reconsidered. Gondwana Res 24(1):298–329CrossRefGoogle Scholar
  94. Labrousse L, Prouteau G, Ganzhorn AC (2011) Continental exhumation triggered by partial melting at high pressure. Geology 39(12):1171–1174CrossRefGoogle Scholar
  95. Lafon JM (1986) Géochronologie U-Pb appliquée à deux segments du massif central français, le Rouergue oriental et le Limousin central. Thèse de l'Université de Montpellier, p 152Google Scholar
  96. Lafon JM, Respaut JP (1988) Géochronologie U–Pb et leucogranites varisques : cas des massifs de Grandrieu (Lozère) et de la Porcherie (Limousin), Massif Central français. Bull Minér 111:225–237Google Scholar
  97. Lardeaux JM, Ledru P, Daniel I, Duchène S (2001) The Variscan French Massif Central—a new addition to the ultra-high pressure metamorphic “club”: exhumation processes and geodynamic consequences. Tectonophysics 332:143–168CrossRefGoogle Scholar
  98. Lardeaux JM, Schulmann K, Faure M, Janoušek V, Lexa O, Skrzypek E, Edel JB, Tipska P (2014) The moldanubian zone in the French Massif Central, Vosges/Schwarzwald and Bohemian Massif revisited: differences and similarities. Geol Soc Lond Spec Publ 405(1):7–44CrossRefGoogle Scholar
  99. Laurent O, Doucelance R, Martin H, Moyen JF (2013) Differentiation of the late-Archaean sanukitoid series and some implications for crustal growth: insights from geochemical modelling on the Bulai pluton, Central Limpopo Belt, South Africa. Precambrian Res 227:186–203CrossRefGoogle Scholar
  100. Laurent O, Martin H, Moyen JF, Doucelance R (2014a) The diversity and evolution of late-Archean granitoids: evidence for the onset of modern-style plate tectonics between 3.0 and 2.5 Ga. Lithos 205:208–235CrossRefGoogle Scholar
  101. Laurent O, Rapopo M, Stevens G, Moyen JF, Martin H, Doucelance R, Bosq C (2014b) Contrasting petrogenesis of Mg–K and Fe–K granitoids and implications for post-collisional magmatism: case study from the Late-Archean Matok pluton (Pietersburg block, South Africa). Lithos 196–197:131–149CrossRefGoogle Scholar
  102. Ledru P, Lardeaux JM, Santallier D, Autran A, Quenardel JM, Floch JP, Lerouge G, Maillet N, Marchand J, Ploquin A (1989) Où sont les nappes dans le Massif central français ? Bulletin de la Société Geologique de France 8:605–618Google Scholar
  103. Ledru P, Courrioux G, Dallain C, Lardeaux JM, Montel JM, Vanderhaeghe O, Vitel G (2001) The Velay dome (French Massif Central): melt generation and granite emplacement during orogenic evolution. Tectonophysics 342:207–237CrossRefGoogle Scholar
  104. Leloix C, Faure M, Feybesse JL (1999) Hercynian polyphase tectonics in the northeast French Massif Central: the closure of the Brévenne Devonian-Dinantian rift. Int J Earth Sci 88:409–421CrossRefGoogle Scholar
  105. Liégeois JP, Navez J, Hertogen J, Black R (1998) Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos 45:1–28CrossRefGoogle Scholar
  106. Linnemann U, McNaughton NJ, Romer RL, Gehmlich M, Drost K, Tonk C (2004) West African provenance for Saxo-Thuringia (Bohemian Massif): did Armorica ever leave pre-Pangean Gondwana? U/Pb-SHRIMP zircon evidence and the Nd isotopic record. Int J Earth Sci 93:683–705CrossRefGoogle Scholar
  107. Linnemann U, Gerdes A, Drost K, Buschmann B (2007) The continuum between Cadomian orogenesis and opening of the Rheic Ocean: Constraints from LA-ICP-MS U–Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, northeastern Bohemian Massif, Germany). In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) the evolution of the Rheic Ocean: From Avalonian-Cadomian active margin to Alleghenian-Variscan collision. Geological Society of America Special Paper vol 423, pp 61–96Google Scholar
  108. Linnemann U, Gerdes A, Hofmann M, Marko L (2014) The Cadomian Orogen: neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton—Constraints from U–Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambrian Res 244:236–278CrossRefGoogle Scholar
  109. Lotout C, Pitra P, Poujol M, van den Driessche J (in press) Ordovician magmatism in the Lévézou massif (French Massif Central): tectonic and geodynamic implications. Int J Earth Sci. doi:10.1007/s00531-016-1387-z
  110. Ludwig KR (2008) Isoplot 3.70, a geochronological toolkit for microsoft excel. Berkeley Geochronology Central Special Publication No. 4Google Scholar
  111. Magni V, Faccenna C, van Hunen J, Funiciello F (2013) Delamination versus break-off: the fate of continental collision. Geophys Res Lett 40:285–289CrossRefGoogle Scholar
  112. Malavieille J, Guilhot P, Costa S, Lardeaux JM, Gardien V (1990) Collapse of the thickened Variscan crust in the French Massif Central: Mont Pilat extensional shear zone and St. Etienne Late Carboniferous basin. Tectonophysics 177(1–3):139–149CrossRefGoogle Scholar
  113. Matte P (1986) Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics 126:329–374CrossRefGoogle Scholar
  114. Melleton J, Faure M, Cocherie A (2009) Monazite U–Th/Pb chemical dating of the Early Carboniferous syn-kinematic MP/MT metamorphism in the Variscan French Massif Central. Bull Soc Geol Fr 180(3):283–292CrossRefGoogle Scholar
  115. Melleton J, Cocherie A, Faure M, Rossi P (2010) Precambrian protoliths and Early Paleozoic magmatism in the French Massif Central: U–Pb data and the North Gondwana connection in the west European Variscan belt. Gondwana Res 17(1):13–25CrossRefGoogle Scholar
  116. Mercier L, Lardeaux JM, Davy P (1991) On the tectonic significance of retrograde P–T–t paths in eclogites of the French Massif Central. Tectonics 10(1):131–140CrossRefGoogle Scholar
  117. Mezger K, Krogstad EJ (1997) Interpretation of discordant U–Pb zircon ages—an evaluation. J Metamorphic Geol 15:127–140CrossRefGoogle Scholar
  118. Mintrone M (2015) Le Massif Central avant la chaîne Varisque: caractérisation des orthogneiss du début du Primaire. Travail d’Étude et de Recherche, University of Clermont-Ferrand, France, p 31Google Scholar
  119. Montel JM, Weisbrod A (1986) Characteristics and evolution of “vaugneritic magmas”: an analytical and experimental approach, on the example of the Cévennes Médianes (French Massif Central). Bull Minéral 109:575–587Google Scholar
  120. Montel JM, Marignac C, Barbey P, Pichavant M (1992) Thermobarometry and granite genesis: the Hercynian low-P, high-T Velay anatectic dome (French Massif Central). J Metamorph Geol 10:1–15CrossRefGoogle Scholar
  121. Mougeot R, Respaut JP, Ledru P, Marignac C (1997) U–Pb chronology on accessory minerals of the Velay anatectic dome (French Massif Central). Eur J Mineral 9:141–156Google Scholar
  122. Moyen JF, Laurent O, Chelle-Michou C, Couzinié S, Vanderhaeghe O, Zeh A, Villaros A, Gardien G (in press) Collision versus subduction-related magmatism: two contrasting ways of granite formation and implications for crustal growth. Lithos doi:10.1016/j.lithos.2016.09.018
  123. Nance DR, Murphy BJ (1994) Contrasting basement isotopic signatures and the palinspastic restoration of peripheral orogens: examples from the Neoproterozoic Avalonian-Cadomian Belt. Geology 22:617–620CrossRefGoogle Scholar
  124. Nance DR, Murphy BJ, Strachan RA, D’Lemos RS, Taylor GK (1991) Late Proterozoic tectonostratigraphic evolution of the Avalonian and Cadomian terranes. Precambrian Res 53:41–78CrossRefGoogle Scholar
  125. Nance RD, Murphy JB, Keppie JD (2002) A Cordilleran model for the evolution of Avalonia. Tectonophysics 352:11–31CrossRefGoogle Scholar
  126. Nance RD, Gutierrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, Strachan RA, Woodcock NH (2010) Evolution of the Rheic Ocean. Gondwana Res 17:194–222CrossRefGoogle Scholar
  127. Nelson KD et al (1996) Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results. Science 274:1684–1688CrossRefGoogle Scholar
  128. Paquette LD, Monchoux P, Couturier M (1995) Geochemical and isotopic study of a norite-eclogite transition in the European Variscan belt: implications for U–Pb zircon systematics in metabasic rocks. Geochim Cosmochim Acta 59(8):1611–1622CrossRefGoogle Scholar
  129. Patiño-Douce AE, Beard JS (1995) Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. J Petrol 36:707–738CrossRefGoogle Scholar
  130. Patiño-Douce AE, Beard JS (1996) Effects of P, f(O2) and Mg/Fe ratio on dehydration-melting of model metagreywackes. J Petrol 37:999–1024CrossRefGoogle Scholar
  131. Patiño-Douce AE, Harris N (1998) Experimental constraints on Himalayan anatexis. J Petrol 39(4):689–710CrossRefGoogle Scholar
  132. Patiño-Douce AE, Johnston AD (1991) Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contrib Mineral Petrol 107:202–218CrossRefGoogle Scholar
  133. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58:63–81CrossRefGoogle Scholar
  134. Petford N, Gallagher K (2001) Partial melting of mafic (amphibolitic) lower crust by periodic influx of basaltic magma. Earth Planet Sci Lett 193:483–489CrossRefGoogle Scholar
  135. Petford N, Cruden AR, McCaffrey KJW, Vigneresse JL (2000) Granite magma formation, transport and emplacement in the Earth’s crust. Nature 408:669–673CrossRefGoogle Scholar
  136. Pickering JM, Johnston AD (1998) Fluid-absent melting behavior of a two-mica metapelite: experimental constraints on the origin of black hills granite. J Petrol 39(10):1787–1804CrossRefGoogle Scholar
  137. Pin C (1979a) Âge de 482 Ma des roches orthodérivées du groupe leptyno-amphibolique de Marvejols (Lozère, Massif central français) déterminé par la méthode U–Pb sur zircons. C R Acad Sci Paris Ser II 288:291–294Google Scholar
  138. Pin C (1979b) Géochronologie U–Pb et microtectonique des séries métamorphiques anté-stéphaniennes de l’Aubrac et de la région de Marvejols (Massif Central). Ph.D. thesis, University of Montpellier, p 205Google Scholar
  139. Pin C, Duthou J (1990) Sources of Hercynian granitoids from the French Massif Central: inferences from Nd isotopes and consequences for crustal evolution. Chem Geol 83:281–296CrossRefGoogle Scholar
  140. Pin C, Lancelot J (1982) U–Pb dating of an early paleozoic bimodal magmatism in the French Massif Central and of its further metamorphic evolution. Contrib Mineral Petrol 79:1–12CrossRefGoogle Scholar
  141. Pin C, Paquette JL (1997) A mantle-derived bimodal suite in the Hercynian Belt: Nd isotope and trace element evidence for a subduction-related rift origin of the Late Devonian Brévenne metavolcanics, Massif Central (France). Contrib Mineral Petrol 129:222–238CrossRefGoogle Scholar
  142. Pin C, Paquette JL (2002) Sr-Nd isotope and trace element evidence for a Late Devonian active margin in northern Massif Central (France). Geodin Acta 15:63–77Google Scholar
  143. Pin C, Binon M, Belin JM, Barbarin B, Clemens JD (1990) Origin of microgranular enclaves in granitoids: Equivocal Sr-Nd Evidence From Hercynian Rocks in the Massif Central (France). J Geophysical Res 95(B11):17821CrossRefGoogle Scholar
  144. Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling. J Petrol 36(4):891–931CrossRefGoogle Scholar
  145. Rapp RP, Watson EB, Miller CF (1991) Partial melting of amphibolite/eclogite and the origin of Archaean trondhjemites and tonalites. Precambrian Res 51:1–25CrossRefGoogle Scholar
  146. Respaut JP (1984) Géochronologie et géochimie isotopique U–Pb de la minéralisation uranifère de la mine des Pierres Plantées (Lozère) et de son encaissant: le massif granitique de la Margeride. Ph.D. thesis, University of MontpellierGoogle Scholar
  147. R’Kha Chaham K, Couturié JP, Duthou JL, Fernandez A, Vitel G (1990) L’orthogneiss œillé de l’Arc de Fic : un nouveau témoin d’âge cambrien d’un magmatisme hyper alumineux dans le Massif Central français. C R Acad Sci Paris 311:845–850Google Scholar
  148. Rossi P, Pin C (2008) Les magmatismes paléozoïques. La chaîne Varisque, Géochroniques 105:53–56Google Scholar
  149. Sabatier H (1991) Vaugnerites: special lamprophyre-derived mafic enclaves in some Hercynian granites from Western and Central Europe. In: Didier J, Barbarin B (eds) Enclaves and granite petrology. Elsevier, Amsterdam, pp 63–81Google Scholar
  150. Saint-Joanis R (1975) Étude géologique du socle cristallin du Bas-Livradois (Massif central français) dans le périmètre de la feuille d’Issoire. Ph.D. thesis, Université Blaise Pascal, Clermont-FerrandGoogle Scholar
  151. Scarrow JH, Bea F, Monter PG, Molina JF (2008) Shoshonites, vaungerites and potassic lamprophyres: similarities and differences between ‘ultra’-high-K rocks. Trans R Soc Edimburgh 99:159–175Google Scholar
  152. Schilling FR, Partzsch GM (2001) Quantifying partial melt fraction in the crust beneath the central Andes and the Tibetan Plateau. Phys Chem Earth 26:239–246CrossRefGoogle Scholar
  153. Schulmann K, Lexa O, Štípská P, Racek M, Tajčmanová L, Konopásek J, Edel JB, Pescler A, Lehmann J (2008) Vertical extrusion and horizontal channel flow of orogenic lower crust: key exhumation mechanisms in large hot orogens? J Metamorph Geol 26:273–297CrossRefGoogle Scholar
  154. Schulz B (2014) Early Carboniferous P-T path from the Upper Gneiss Unit of Haut-Allier (French Massif Central)–reconstructed by geothermobarometry and EMP-Th–U–Pb monazite dating. J Geosci, pp 327–349Google Scholar
  155. Singh J, Johannes W (1996) Dehydration melting of tonalites. 2. Compositions of melts and solids. Contrib Mineral Petrol 125:26–44CrossRefGoogle Scholar
  156. Sisson T, Ratajeski K, Hankins W, Glazner A (2005) Voluminous granitic magmas from common basaltic sources. Contrib Mineral Petrol 148:635–661CrossRefGoogle Scholar
  157. Skjerlie KP, Johnston AD (1996) Vapour-absentmelting from 10 to 20 kbar of crustal rocks that containmultiple hydrous phases: implications for anatexis in the deep to very deep continental crust and active continental margins. J Petrol 37:661–691CrossRefGoogle Scholar
  158. Solgadi F, Moyen JF, Vanderhaeghe O, Sawyer EW, Reisberg L (2007) The relative roles of crustal anatexis and mantle-derived magmas: generation of Synorogenic, Hercynian granites in the Livradois area, French Massif Central. Can Mineral 45:581–606CrossRefGoogle Scholar
  159. Stampfli GM, Hochard C, Vérard C, Wilhem C, von Raumer J (2013) The formation of Pangea. Tectonophysics 593:1–19CrossRefGoogle Scholar
  160. Stussi JM, De la Roche A (1984) Le magmatisme orogénique granitique de la chaîne varisque française. Typologie chimique et répartition spatiale. C R Acad Sci Paris (Série 2) 298:43–48Google Scholar
  161. Supply P (1981) Géochronologie U–Pb et pétrologie des enclaves granulitiques de Bournac (Massif Central), M.Sc. thesis, University of MontpellierGoogle Scholar
  162. Tatsumi Y, Suzuki T (2009) Tholeiitic versus calc-alkalic differentiation and evolution of arc crust: constraints from melting experiments on a basalt from the Izu–Bonin–Mariana Arc. J Petrol 50(8):1575–1603CrossRefGoogle Scholar
  163. Turpin L, Velde D, Pinte G (1988) Geochemical comparison between minettes and kersantites from the Western European Hercynian orogen: trace element and Pb–Sr–Nd isotope constraints on their origin. Earth Planet Sci Lett 87:73–86CrossRefGoogle Scholar
  164. Turpin L, Cuney M, Friedrich M, Bouchez JL, Aubertin M (1990) Meta-igneous origin of Hercynian peraluminous granites in N.W. French Massif Central: implications for crustal history reconstructions. Contrib Mineral Petrol 104:163–172CrossRefGoogle Scholar
  165. van Hunen J, Allen MB (2011) Continental collision and slab break-off: a comparison of 3-D numerical models with observations. Earth Planet Sci Lett 302(1–2):27–37CrossRefGoogle Scholar
  166. Vanderhaeghe O (2009) Migmatites, granites and orogeny: flow modes of partially molten rocks and magmas associated with melt/solid segregation in orogenic belts. Tectonophysics 477:119–134CrossRefGoogle Scholar
  167. Vanderhaeghe O (2012) The thermal–mechanical evolution of crustal orogenic belts at convergent plate boundaries: a reappraisal of the orogenic cycle. J Geodynamics 56–57:124–145CrossRefGoogle Scholar
  168. Vanderhaeghe O, Duchêne S (2010) Crustal-scale mass transfer, geotherm and topography at convergent plate boundaries. Terra Nova 22:315–323CrossRefGoogle Scholar
  169. Vanderhaeghe O, Teyssier C (2001) Partial melting and flow of orogens. Tectonophysics 342:451–472CrossRefGoogle Scholar
  170. Vanderhaeghe O, Burg JP, Teyssier C (1999) Exhumation of migmatites in two collapsed orogens: Canadian cordillera and French Variscides. In: Ring U, Brandon MT, Lister GS, Willett SD (eds) Exhumation processes: normal faulting, ductile flow and erosion. Geological Society of London Special Publication vol 154, pp 181–204Google Scholar
  171. Vermeesch P (2012) On the visualisation of detrital age distributions. Chem Geol 312–313:190–194CrossRefGoogle Scholar
  172. Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid-absent melting relations in the pelitic system. Contrib Mineral Petrol 98:257–276CrossRefGoogle Scholar
  173. Vielzeuf D, Montel JM (1994) Partial melting of metagreywackes. 1. Fluid-absent experiments and phase relationships. Contrib Mineral Petrol 117:375–393CrossRefGoogle Scholar
  174. von Raumer JF, Stampfli GM, Borel G, Bussy F (2002) Organization of pre-Variscan basement areas at the north-Gondwanan margin. Int J Earth Sci 91:35–52CrossRefGoogle Scholar
  175. von Raumer JF, Finger F, Veselá P, Stampfli GM (2013) Durbachites-Vaugnerites—a geodynamic marker in the central European Variscan orogen. Terra Nova. doi:10.1111/ter.12071 Google Scholar
  176. Walker BA, Miller CF, Claiborne LL, Wooden JL, Miller JS (2007) Geology and geochronology of the Spirit Mountain batholith, southern Nevada: implications for timescales and physical processes of batholith construction. J Volcanol Geothermal Res 167(1–4):239–262CrossRefGoogle Scholar
  177. Watkins JM, Clemens JD, Treloar PJ (2007) Archaean TTGs as sources of younger granitic magmas: melting of sodic metatonalites at 0.6–1.2 GPa. Contrib Mineral Petrol 154:91–110CrossRefGoogle Scholar
  178. Watson EB, Harrison TM (1983) Zircon saturation revisited—temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304CrossRefGoogle Scholar
  179. Williamson BJ, Downes H, Thirlwall MF (1992) The relationship between crustal magmatic underplating and granite genesis: an example from the Velay granite complex, Massif Central, France. Trans R Soc Edinb Earth Sci 83:235–245CrossRefGoogle Scholar
  180. Williamson BJ, Shaw A, Downes H, Thirlwall MF (1996) Geochemical constraints on the genesis of Hercynian two-mica leucogranites from the Massif Central, France. Chem Geol 127:25–42CrossRefGoogle Scholar
  181. Williamson B, Downes H, Thirlwall M, Beard A (1997) Geochemical constraints on restite composition and unmixing in the Velay anatectic granite, French Massif Central. Lithos 40(2–4):295–319CrossRefGoogle Scholar
  182. Wolf MB, Wyllie PJ (1994) Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time. Contrib Mineral Petrol 115:369–383CrossRefGoogle Scholar
  183. Zeh A, Gerdes A (2010) Baltica- and Gondwana-derived sediments in the Mid-German Crystalline Rise (Central Europe): implications for the closure of the Rheic ocean. Gondwana Res 17:254–263CrossRefGoogle Scholar
  184. Zeh A, Brätz H, Millar IL, Williams IS (2001) A combined zircon SHRIMP and Sm-Nd isotope study on high-grade paragneisses from the Mid-German Crystalline Rise: evidence for northern Gondwanan and Grenvillian provenance. J Geol Soc Lond 158:983–994CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Oscar Laurent
    • 1
    • 2
    • 12
  • Simon Couzinié
    • 3
    • 4
  • Armin Zeh
    • 1
    • 5
  • Olivier Vanderhaeghe
    • 6
  • Jean-François Moyen
    • 3
  • Arnaud Villaros
    • 7
    • 8
    • 9
  • Véronique Gardien
    • 10
  • Cyril Chelle-Michou
    • 3
    • 11
  1. 1.Institut für GeowissenschaftenJ.W. Goethe UniversitätFrankfurt Am MainGermany
  2. 2.Département de Géologie B20Université de LiègeLiègeBelgium
  3. 3.Département de GéologieUniversité Jean MonnetSaint-ÉtienneFrance
  4. 4.Department of Earth SciencesUniversity of StellenboschMatielandSouth Africa
  5. 5.Abteilung Mineralogie und Petrologie, Institut für Angewandte GeowissenschaftenKarlsruher Institut für Technologie, Campus SüdKarlsruheGermany
  6. 6.Géosciences Environnement ToulouseUniversité Paul SabatierToulouseFrance
  7. 7.Université d’Orléans, ISTO, UMR 7327OrléansFrance
  8. 8.CNRS, ISTO, UMR 7327OrléansFrance
  9. 9.BRGM, ISTO, UMR 7327OrléansFrance
  10. 10.LGL, TPE UMR5276Université Lyon 1LyonFrance
  11. 11.Department of Earth SciencesUniversity of GenevaGenevaSwitzerland
  12. 12.Institute for Geochemistry and PetrologyETH ZürichZurichSwitzerland

Personalised recommendations