International Journal of Earth Sciences

, Volume 106, Issue 7, pp 2359–2369 | Cite as

Bismuth selenides from St. Andreasberg, Germany: an oxidised five-element style of mineralisation and its relation to post-Variscan vein-type deposits of central Europe

  • Alexandre Raphael Cabral
  • Wilfried Ließmann
  • Wei Jian
  • Bernd Lehmann
Original Paper

Abstract

Carbonate veinlets at Roter Bär, a former underground mine in the polymetallic St. Andreasberg vein district of the Harz Mountains, Germany, host selenide minerals that are characterised as Bi–Ag-bearing clausthalite (PbSe), tiemannite (HgSe), guanajuatite (Bi2Se3) and a number of selenides of Bi, Zn, Cu, Ag and Pd. An unnamed Bi–Pb–Ag selenide species with some Hg and Cu, ideally Bi4Pb3Ag2Se10, is reported here. Specular hematite is disseminated within the clausthalite, at the marginal zones of which other selenide minerals are located. The occurrence of bohdanowiczite (AgBiSe2) and umangite (Cu3Se2) constrains the formation temperature to ≤120 °C, and the selenide–hematite assemblage (plus barite in the carbonate gangue) identifies highly oxidised conditions. Selenide assemblages of Pb, Bi, Ag, with and without Co and Ni, occur in many parts of the Variscan basement of central Europe (Harz, Erzgebirge, Schwarzwald and Bohemian Massif) and represent a high-oxidation variety of five-element (Ag–As–Bi–Co–Ni) veins.

Keywords

Polymetallic veins Bismuth Selenides St. Andreasberg Harz Mountains 

References

  1. Banaś M, Atkin D, Bowles JFW, Simpson PR (1979) Definitive data on bohdanowiczite, a new silver bismuth selenide. Mineral Mag 43:131–133CrossRefGoogle Scholar
  2. Baumann L, Werner CD (1968) Die Gangmineralisation des Harzes und ihre Analogien zum Erzgebirge und zu Thüringen. Ber deutsch Ges geol Wiss B 13:525–548Google Scholar
  3. Baumann A, Grauert B, Mecklenburg S, Vinx R (1991) Isotopic age determinations of crystalline rocks of the Upper Harz Mountains, Germany. Geol Rundsch 80:669–690CrossRefGoogle Scholar
  4. Belendorff K (1997) Seltene Selenide und Selenite vom Trogtal bei Lautenthal, Harz. Mineralien-Welt 8(2):22–24Google Scholar
  5. Boness M, Haack U, Feldmann KH (1990) Rb/Sr-Datierung der hydrothermalen Pb–Zn-Vererzung von Bad Grund (Harz), BRD. Chem Erde 50:1–25Google Scholar
  6. Burisch M, Walter BF, Wälle M, Markl G (2016) Tracing fluid migration pathways in the root zone below unconformity-related hydrothermal veins: insights from trace element systematics of individual fluid inclusions. Chem Geol 429:44–50CrossRefGoogle Scholar
  7. Cabral AR, Koglin N, Brätz H (2012) Gold-bearing ferroselite (FeSe2) from Trogtal, Harz, Germany, and significance of its Co/Ni ratio. J Geosci 58:265–272Google Scholar
  8. Cabral AR, Ließmann W, Lehmann B (2015) Gold and palladium minerals (including empirical PdCuBiSe3) from the former Roter Bär mine, St. Andreasberg, Harz Mountains, Germany: a result of low-temperature, oxidising fluid overprint. Mineral Petrol 109:649–657CrossRefGoogle Scholar
  9. Chakrabarti DJ, Laughlin DC (1981) The Cu–Se (copper–selenium) system. Bull Alloy Phase Diagr 2:305–315CrossRefGoogle Scholar
  10. Dill HG (1994) Facies variation and mineralization in central Europe from the Late Paleozoic through the Cenozoic. Econ Geol 89:268–287CrossRefGoogle Scholar
  11. Dolníček Z, Fojt B, Prochaska W, Kučera J, Sulovský P (2009) Origin of the Zálesí U–Ni–Co–As–Ag/Bi deposit, Bohemian Massif, Czech Republic: fluid inclusion and stable isotope constraints. Miner Deposita 44:81–97CrossRefGoogle Scholar
  12. Förster H-J (2005) Mineralogy of the U–Se-polymetallic deposit Niederschlema-Alberoda, Erzgebirge, Germany. IV. The continuous clausthalite–galena solid-solution series. Neu Jb Mineral Abh 181:125–134CrossRefGoogle Scholar
  13. Förster H-J, Cooper MA, Roberts AC, Stanley CJ, Criddle AJ, Hawthorne FC, Laflamme JHG, Tischendorf G (2003) Schlemaite, (Cu,□)6(Pb, Bi)Se4, a new mineral species from Niederschlema-Alberoda, Erzgebirge, Germany: description and crystal structure. Can Miner 41:1433–1444CrossRefGoogle Scholar
  14. Förster H-J, Tischendorf G, Rhede D (2005) Mineralogy of the Niederschlema-Alberoda U–Se-polymetallic deposit, Erzgebirge, Germany. V. Watkinsonite, nevskite, bohdanowiczite and other bismuth minerals. Can Miner 43:899–908CrossRefGoogle Scholar
  15. Frebold G (1927) Beiträge zur Kenntnis der Erzlagerstätten des Harzes. II. Über einige Selenerze und ihre Paragenesen im Harz. Centralblatt Mineral Geol Paläont A 1927, pp 16–32Google Scholar
  16. Fusswinkel T, Wagner T, Wälle M, Wenzel T, Heinrich CA, Markl G (2013) Fluid mixing forms basement-hosted Pb–Zn deposits: insight from metal and halogen geochemistry of individual fluid inclusions. Geology 41:679–682CrossRefGoogle Scholar
  17. Fusswinkel T, Wagner T, Wenzel T, Wälle M, Lorenz J (2014) Red bed and basement sourced fluids recorded in hydrothermal Mn–Fe–As veins, Sailauf (Germany): a LA–ICPMS fluid inclusion study. Chem Geol 363:22–39CrossRefGoogle Scholar
  18. Geilmann W, Rose H (1928) Ein neues Selenerzvorkommen bei St. Andreasberg im Harz. Neu Jb Mineral Geol Paläont Abh A 57:785–816Google Scholar
  19. Goldschmidt VM, Hefter O (1933) Zur Geochemie des Selens. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, III/35–IV/36:245–252Google Scholar
  20. Hagedorn B, Lippolt HJ (1993) Isotopic age constraints for epigenetic mineralizations in the Harz mountains (Germany) from K–Ar, 40Ar/39Ar and Rb–Sr data of authigenic K-feldspars. In: Möller P, Lüders V (eds) Formation of hydrothermal vein deposits—a case study of the Pb–Zn, barite and fluorite deposits of the Harz mountains. Monograph series on mineral deposits, vol 30. Borntraeger, Berlin-Stuttgart, pp 87–102Google Scholar
  21. Heider J (2014) Die Selenidmineralisation der Grube Henriette. Aufschluss 65:216–226Google Scholar
  22. Heider J, Siemroth J (2012) Die Selenidmineralisation im Grauwacke-Tagebau Rieder bei Gernrode, Harz. Aufschluss 63:213–223Google Scholar
  23. Hofmann BA (1990) Reduction spheroids from northern Switzerland: mineralogy, geochemistry and genetic models. Chem Geol 81:55–81CrossRefGoogle Scholar
  24. Johan Z, Picot P, Ruhlmann F (1982) Evolution paragénétique de la minéralisation uranifère de Chaméane (Puy-de-Dôme), France: chaméanite, geffroyite et giraudite, trois séléniures nouveaux de Cu, Fe, Ag et As. Tschermaks Mineral Petr Mitt 29:151–167CrossRefGoogle Scholar
  25. Keutsch FN, Förster H-J, Stanley CJ, Rede D (2009) The discreditation of hastite, the orthorhombic dimorph of CoSe2, and observations on trogtalite, cubic CoSe2, from the type locality. Can Miner 47:969–976CrossRefGoogle Scholar
  26. Kissin SA (1992) Five-element (Ni–Co–As–Ag–Bi) veins. In: Sheahan PA, Cherry ME (eds) Ore deposit models. Geoscience Canada, Reprint series, vol 6, pp 87–99Google Scholar
  27. Koch H-P (2008) Die Minerale der Grube “Frische Lutter” bei Bad Lauterberg, Harz. Aufschluss 59:65–76Google Scholar
  28. Kopp JC, Spieth V, Bernhardt H-J (2012) Precious metals and selenides mineralisation in the copper-silver deposit Spremberg-Graustein, Niederlausitz, SE-Germany. Z Deutsch Gesell Geowiss 163:361–384CrossRefGoogle Scholar
  29. Kuschka E, Franzke HJ (1974) Zur Kenntnis der Hydrothermalite des Harzes. Z Geol Wiss 2:1417–1436Google Scholar
  30. Ließmann W, Bock M (1993) Die Grube Roter Bär bei St. Andreasberg/Harz. Verlag Sven von Loga, KölnGoogle Scholar
  31. Lüders V, Möller P (1992) Fluid evolution and ore deposition in the Harz Mountains (Germany). Eur J Mineral 4:1053–1068CrossRefGoogle Scholar
  32. Markl G (2015) Schwarzwald—Lagerstätten und Mineralien aus vier Jahrhunderten. Band I—Nordschwarzwald und Grube Clara. Bode, Edition Krüger-Stiftung, LauensteinGoogle Scholar
  33. Markl G, Burisch M, Neumann U (2016) Natural fracking and the genesis of five-element veins. Miner Deposita 51:703–712CrossRefGoogle Scholar
  34. Mertz DF, Lippolt HJ, Schnorrer-Köhler G (1989) Early Cretaceous mineralizing activity in the St. Andreasberg ore district (Southwest Harz, Federal Republic of Germany). Miner Deposita 24:9–13CrossRefGoogle Scholar
  35. Möller P, Morteani G, Hoefs J, Parekh PP (1979) The origin of the ore-bearing solution in the Pb–Zn veins of the western Harz, Germany, as deduced from rare-earth element and isotope distributions in calcites. Chem Geol 26:197–215CrossRefGoogle Scholar
  36. Oelsner OW (1958) Die erzgebirgischen Granite, ihre Vererzung und die Stellung der BiCoNi-Formation innerhalb dieser Vererzung. Geologie 7:682–701Google Scholar
  37. Pieczonka J, Piestrzyński A (2005) New minerals from the red bed type precious metal deposit of the Lubin-Sieroszowice mining district, SW Poland. In: Mao JW, Bierlein FP (eds) Mineral deposit research: meeting the global challenge. Proceedings of the eighth Biennial SGA meeting in Beijing, China, 18–21 Aug 2005, vol 2. Springer, pp 1041–1044Google Scholar
  38. Piestrzyński A, Pieczonka J, Głuszek A (2002) Redbed-type gold mineralisation, Kupferschiefer, south-west Poland. Miner Deposita 37:512–528CrossRefGoogle Scholar
  39. Pokrovsky GS, Borisova AY, Roux J, Hazemann J-L, Petdang A, Tella M, Testemale D (2006) Antimony speciation in saline hydrothermal fluids: a combined X-ray absorption fine structure spectroscopy and solubility study. Geochim Cosmochim Acta 70:4196–4214CrossRefGoogle Scholar
  40. Pokrovsky G, Gout R, Schoit J, Zotov A, Harrichoury J-C (1996) Thermodynamic properties and stoichiometry of As (III) hydroxide complexes at hydrothermal conditions. Geochim Cosmochim Acta 60:737–749CrossRefGoogle Scholar
  41. Pringle GJ, Thorpe RI (1980) Bohdanowiczite, junoite and laitakarite from the Kidd Creek mine, Timmins, Ontario. Can Miner 18:353–360Google Scholar
  42. Ramdohr P, Schmitt M (1955) Vier neue natürliche Kobaltselenide vom Steinbruch Trogtal bei Lautenthal im Harz. Neu Jb Mineral Mh 6:133–142Google Scholar
  43. Romer RL, Schneider J, Linnemann U (2010) Post-Variscan deformation and hydrothermal mineralization in Saxo-Thuringia and beyond: a geochronological review. In: Linnemann U, Romer RL (eds) Pre-Mesozoic geology of Saxo-Thuringia—from the Cadomian active margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 347–360Google Scholar
  44. Schmidt Mumm A, Wolfgramm M (2004) Fluid systems and mineralization in the north German and Polish basin. Geofluids 4:315–328CrossRefGoogle Scholar
  45. Schneider J, Haack U, Stedingk K (2003) Rb–Sr dating of epithermal vein mineralization stages in the eastern Harz Mountains (Germany) by paleomixing lines. Geochim Cosmochim Acta 67:1803–1819CrossRefGoogle Scholar
  46. Schoell M (1970) K/Ar and Rb/Sr age determinations on minerals and total rocks of the Harz-Mountains/Germany. Eclogae Geol Helv 63:299Google Scholar
  47. Sejkora J, Makovicky E, Topa D, Putz H, Zagler G, Plášil J (2011) Litochlebite, Ag2PbBi4Se8, a new selenide mineral species from Zálesí, Czech Republic, description and crystal structure. Can Miner 49:639–650CrossRefGoogle Scholar
  48. Shepherd TJ, Bouch JE, Gunn AG, McKervey JA, Naden J, Scrivener RC, Styles MT, Large DE (2005) Permo–Triassic unconformity-related Au–Pd mineralisation, South Devon, UK: new insights and the European perspective. Miner Deposita 40:24–44CrossRefGoogle Scholar
  49. Simon G, Kesler SE, Essene EJ (1997) Phase relations among selenides, sulfides, tellurides, and oxides: II. Applications to selenide-bearing ore deposits. Econ Geol 92:468–484CrossRefGoogle Scholar
  50. Stanley CJ, Criddle AJ, Förster H-J, Roberts AC (2002) Tischendorfite, Pd8Hg3Se9, a new mineral species from Tilkerode, Harz Mountains, Germany. Can Miner 40:739–745CrossRefGoogle Scholar
  51. Staude S, Werner W, Mordhorst T, Wemmer K, Jacob DE, Markl G (2012) Multi-stage Ag–Bi–Co–Ni–U and Cu–Bi vein mineralization at Wittichen, Schwarzwald, SW Germany: geological setting, ore mineralogy, and fluid evolution. Miner Deposita 47:251–276CrossRefGoogle Scholar
  52. Stedingk K, Stoppel D (1993) History of mining operations and economic importance of the Harz vein district. In: Möller P, Lüders V (eds) Formation of hydrothermal vein deposits—a case study of the Pb–Zn, barite and fluorite deposits of the Harz mountains. Monograph series on mineral deposits, vol 30. Borntraeger, Berlin-Stuttgart, pp 1–3Google Scholar
  53. Stedingk K, Ließmann W, Bode R (2016) Harz. Bergbaugeschichte—Mineralienschätze—Fundorte. Bode, Edition Krüger-Stiftung, LauensteinGoogle Scholar
  54. Symons DTA, Kawasaki K, Walther S, Borg G (2011) Paleomagnetism of the Cu–Zn–Pb-bearing Kupferschiefer black shale (Upper Permian) at Sangerhausen, Germany. Miner Deposita 46:137–152CrossRefGoogle Scholar
  55. Thomas R, Tischendorf G (1987) Evolution of Variscan magmatic-metallogenetic processes in the Erzgebirge according to thermometric investigations. Z Geol Wiss 15:25–42Google Scholar
  56. Tischendorf G (1959) Zur Genesis einiger Selenidvorkommen, insbesondere von Tilkerode im Harz. Freib Forschungshefte C 69:1–168Google Scholar
  57. Tooth B, Etschmann B, Pokrovsky GS, Testemale D, Hazemann J-L, Grundler PV, Brugger JI (2013) Bismuth speciation in hydrothermal fluids: an X-ray absorption spectroscopy and solubility study. Geochim Cosmochim Acta 101:156–172CrossRefGoogle Scholar
  58. von Eynatten H, Voigt T, Meier A, Franzke H-J, Gaupp R (2008) Provenance of Cretaceous clastics in the Subhercynian Basin: constraints to exhumation of the Harz Mountains and timing of inversion tectonics in Central Europe. Int J Earth Sci (Geol Rundsch) 97:1315–1330CrossRefGoogle Scholar
  59. Wagner T, Okrusch M, Weyer S, Lorenz J, Lahaye Y, Taubald H, Schmitt RT (2010) The role of the Kupferschiefer in the formation of hydrothermal base metal mineralization in the Spessart ore district, Germany: insight from detailed sulfur isotope studies. Miner Deposita 45:217–239CrossRefGoogle Scholar
  60. Wallis E (1994) Erzparagenetische und mineralchemische Untersuchung der Selenide im Harz. Unpublished Diploma thesis, University of Hamburg, Hamburg, GermanyGoogle Scholar
  61. Walter BF, Burisch M, Markl G (2016) Long-term chemical evolution and modification of continental basement brines—a field study from the Schwarzwald, SW Germany. Geofluids 16:604–623CrossRefGoogle Scholar
  62. Wernick JH (1960) Constitution of the AgSbS2–PbS, AgBiS2–PbS, and AgBiS2–AgBiSe2 systems. Am Miner 45:591–598Google Scholar
  63. Wilke A (1952) Die Erzgänge von St. Andreasberg im Rahmen des Mittelharz-Ganggebietes. Beih Geol Jb 7:1–228Google Scholar
  64. Wood SA, Samson IM (1998) Solubility of ore minerals and complexation of ore metals in hydrothermal solutions. Rev Econ Geol 10:33–80Google Scholar
  65. Wood SA, Crerar DA, Borcsik MP (1987) Solubility of the assemblage pyrite–pyrrhotite–magnetite–sphalerite–galena–gold–stibnite–bismuthinite–argentite–molybdenite in H2O–NaCl–CO2 solutions from 200 °C to 350 °C. Econ Geol 82:1864–1887CrossRefGoogle Scholar
  66. Xiong Y (2003) Predicted equilibrium constants for solid and aqueous selenium species to 300 °C: applications to selenium-rich mineral deposits. Ore Geol Rev 23:259–276CrossRefGoogle Scholar
  67. Zheng Y-F, Hoefs J (1993) Stable isotope geochemistry of hydrothermal mineralizations in the Harz mountains: II. Sulfur and oxygen isotopes of sulfides and sulfate and constraints on metallogenetic models. In: Möller P, Lüders V (eds) Formation of hydrothermal vein deposits—a case study of the Pb–Zn, barite and fluorite deposits of the Harz mountains. Monograph series on mineral deposits, vol 30. Borntraeger, Berlin-Stuttgart, pp 211–229Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Mineral ResourcesTechnische Universität ClausthalClausthal-ZellerfeldGermany
  2. 2.Lehrbergwerk Grube Roter Bär Sankt AndreasbergGöttingenGermany
  3. 3.MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral ResourcesChinese Academy of Geological SciencesBeijingChina
  4. 4.Karlsruher Institut für TechnologieKarlsruheGermany

Personalised recommendations