International Journal of Earth Sciences

, Volume 106, Issue 2, pp 453–476 | Cite as

Timing and duration of partial melting and magmatism in the Variscan Montagne Noire gneiss dome (French Massif Central)

  • Pierre Trap
  • Françoise Roger
  • Bénédicte Cenki-Tok
  • Jean-Louis Paquette
Original Paper
  • 358 Downloads

Abstract

Unravelling the detailed pressure–temperature–time-deformation (P–T–t-D) evolution of magmatic and metamorphic rocks provides essential insights into the timing and duration of partial melting and related plutonism during crustal flow and migmatitic dome formation. The Montagne Noire Axial Zone (MNAZ) is a migmatitic dome located within the Variscan orogen in the southern French Massif Central. The timing of the main thermal event that was responsible for intense partial melting is still highly debated. In this study we present new laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) age data on micaschists, migmatites and granites that clarify the P–T–t-D evolution of the MNAZ. Structurally controlled samples were collected in order to constrain the timing of metamorphism, migmatization and plutonism regarding the main structural pattern D1, D2 and D3. D1 and D2 correspond to nappe stacking and dextral transpression, respectively. D3 is related to vertical shortening and coaxial thinning with a preferential NE–SW- to E–W-directed stretching. LA-ICP-MS analyses on the syntectonic Anglès, Soulié and Martys granites yielded U–Th/Pb monazite ages of 305 ± 1.5, 306 ± 1.9 and 314 ± 2 Ma, respectively. Five migmatitic rocks sampled in the eastern and central Espinouse area yielded in situ ages ranging between 312 ± 2 and 301 ± 2 Ma. Along the dome envelope, two garnet–staurolite-bearing micaschists near Saint-Pons-de-Thomières village gave in situ U–Th–Pb ages of 312.1 ± 2.1 and 309.0 ± 3.1 Ma. A fine-grained gneiss with a D3 fabrics in the eastern dome envelope yield a 208Pb/232Th mean age at 305.7 ± 3.9 Ma. All ages obtained in this study for the micaschists, migmatites and granites range between 315 and 301 Ma. We interpret this time span as the record of the high thermal event responsible for intense crustal partial melting within the lower and middle crust. The onset of partial melting occurred at ca. 315 Ma that marked the beginning of transpressional deformation D2. Based on structural and petrological studies, our new U–Th–Pb results suggest that (1) partial melting may have started at ca. 315 Ma and lasted 15–10 Myr and (2) D2 et D3 developed between 315 and 300 Ma and were synchronous. D1 deformation ended at 315 Ma. The onset and duration of D1 related to nappe stacking and crustal thickening is still uncertain.

Keywords

Partial melting Migmatite Magmatism Variscan orogeny Gneiss dome LA-ICP-MS U–Th–Pb dating 

Notes

Acknowledgements

This research was financially supported by an INSU/SYSTER project from French CNRS. This research was also partly supported by the French RENATECH network, who provided access to the electron microscope of the MIMENTO platform of the University of Bourgogne-Franche-Comté. Authors are very grateful for the constructive comments made by Pavel Pitra, Patrice Rey and Romain Tartèse that helped to improve the manuscript.

Supplementary material

531_2016_1417_MOESM1_ESM.doc (50 kb)
Table S1 The detailed analytical procedures for the LA-ICP-MS U–Th–Pb method (DOC 49 kb)
531_2016_1417_MOESM2_ESM.docx (77 kb)
Table S2 LA-ICP-MS U–Th–Pb geochronological data analysed in situ in thin section for the metamorphic rocks. % conc = percentage of concordance ((206Pb/238U age/208Pb/232Th age) × 100). Mz = monazite, Xe = xenotime, Bt = biotite, Ms = muscovite, Crd = cordierite and Sill = sillimanite, Mtx = Quartz–feldspar matrix, Incl. = inclusion in…, Ag = Bt-Sill aggregate and Fol = Muscovite-bearing foliation (DOCX 76 kb)
531_2016_1417_MOESM3_ESM.docx (175 kb)
Table S3 LA-ICP-MS U–Th–Pb geochronological data for separated grains in the magmatic rocks. % conc = percentage of concordance ((206Pb/238U age/208Pb/232Th age) × 100). Mz = monazite and Xe = xenotime, R = rim and c = core (DOCX 174 kb)

References

  1. Aerden DGAM (1998) Tectonic evolution of the Montagne Noire and a possible orogenic model for syncollisional exhumation of deep rocks, Variscan belt, France. Tectonics 17:62–79CrossRefGoogle Scholar
  2. Aerden DGAM, Malavieille J (1999) Origin of a large-scale fold nappe in the Montagne Noire, Variscan belt, France. J Struct Geol 21:1321–1333CrossRefGoogle Scholar
  3. Alabouvette B, Demange M, Guérangé-Lozes J, Ambert P (2003) Notice et carte géologique de la France (1/250000) feuille de Montpellier. BRGM, Orléans, p 164Google Scholar
  4. Arthaud F (1970) Etude tectonique et microtectonique comparée de deux domaines hercyniens: les nappes de la Montagne Noire (France) et l’anticlinorium de l’Iglesiente (Sardaigne). Université des Sciences et Techniques du Languedoc, p 175Google Scholar
  5. Ayers JC, Miller C, Gorisch B, Milleman J (1999) Textural development of monazite during high-grade metamorphism: hydrothermal growth kinetics, with implications for U–Th–Pb geochronology. Am Mineral 84:1766–1780CrossRefGoogle Scholar
  6. Ballèvre M, Fourcade S, Capdevila R, Peucat JJ, Cocherie A, Fanning CM (2012) Geochronology and geochemistry of Ordovician felsic volcanism in the Southern Armorican Massif (Variscan belt, France): implications for the breakup of Gondwana. Gondwana Res 21:1019–1036CrossRefGoogle Scholar
  7. Bard JP, Rambeloson R (1973) Métamorphisme plurifacial et sens de variation du degrès géothermique durant la tectogenèse polyphasée hercynienne dans la partie orientale de la zone axiale de la Montagne Noire (massif du Caroux, sud du Massif Central français). Bull Soc Geol Fr 15:579–586CrossRefGoogle Scholar
  8. Brun JP, Van Den Driessche J (1994) Extensional gneiss domes and detachment fault systems: structure and kinematics. Bull Soc Geol Fr 165(6):519–530Google Scholar
  9. Brun JP, Van Den Driessche J (1996) Réponse à observations et remarques sur l’article Extensional gneiss domes and detachment fault systems/structure and kinematics (Brun JP, Van Den Driessche J (1994) Bull Soc Géol Fr 165 (6): 519530). Bull Soc Geol Fr 167(2):295–302Google Scholar
  10. Charles N, Faure M, Chen Y (2009) The Montagne Noire migmatitic dome emplacement (French Massif Central): new insights from petrofabric and AMS studies. J Struct Geol 31(11):1423–1440CrossRefGoogle Scholar
  11. Cocherie A, Baudin T, Autran A, Guerrot C, Fanning M, Laumonier B (2005) U–Pb zircon (ID-TIMS and SHRIMP) evidence for the early Ordovician intrusion of metagranites in the late Proterozoic Canaveilles Group of the Pyrenees and the Montagne Noire (France). Bull Soc Geol Fr 176:269–282CrossRefGoogle Scholar
  12. Demange M (1985) The eclogite-facies rocks of the Montagne-Noire, France. Chem Geol 50:173–188. doi: 10.1016/0009-2541(85)90119-6 CrossRefGoogle Scholar
  13. Demange M (1993) What does the Monts-De-Lacaune Fault (Montagne-Noire, France) meanimplications for the origin of the Nappes. C R Acad Sci Ser II 317(3):411–418Google Scholar
  14. Demange M (1994) AnteVariscan evolution of the Montagne-Noire (France)from a passive margin to a foreland basin. C R Acad Sci Ser II 318(7):921–933Google Scholar
  15. Demange M (1996) Extensional gneiss domes and detachment fault systems: structure and kinematicsobservations and remarks. Bull Soc Geol Fr 167(2):295–298Google Scholar
  16. Demange M (1998) Contribution au problème de la formation des dômes de la Zone axiale de la Montagne Noire: analyse géométrique des plissements superposés dans les séries métasédimentaires de l’enveloppe. Implications pour tout modèle géodynamique. Géol Fr 4:3–56Google Scholar
  17. Demange M (1999) Evolution tectonique de la Montagne Noire: un modèle en transpression. C R Acad Sci Paris 329:823–829Google Scholar
  18. Depine GV, Andronicos CL, Phipps-Morgan J (2008) Near-isothermal conditions in the middle and lower crust induced by melt migration. Nat Geosci 452:80–83Google Scholar
  19. Didier A, Bosse V, Cherneva P, Gautier P, Georgieva M, Paquette JL, Gerdjiko I (2013) Syn-deformation fluid-assisted growth of monazite during renewed high-grade metamorphism in metapelites of the Central Rhodope (Bulgaria, Greece). Chem Geol 381:206–222CrossRefGoogle Scholar
  20. Doublier MP, Potel S, Wemmer K (2014) The tectono-metamorphic evolution of the very low-grade hanging wall constrains two stages gneiss dome formation in the Montagne Noire example (S-France). J Metamorph Geol 33:71–89. doi: 10.1111/jmg.12111 CrossRefGoogle Scholar
  21. Ducrot J, Lancelot JR, Reille JL (1979) Datation en Montagne Noire d’un témoin d’une phase majeure d’amincissement crustal caractéristique de l’Europe prévarisque. Age of a major phase of crustal thinning characteristic of PreVariscan Europe determined in the Montagne Noire region. Bull Soc Geol Fr 21(4):501–505CrossRefGoogle Scholar
  22. Echtler H, Malavieille J (1990) Extensional tectonics, basement uplift and Stephano–Permian collapse basin in a late Variscan metamorphic core complex (Montagne Noire, southern Massif Central). Tectonophysics 177:125–138CrossRefGoogle Scholar
  23. Engel W, Feist R, Franke W (1978) Syn-orogenic gravitational transport in the Carboniferous of the Montagne Noire (South France). Z dt geol Ges 129:461–472Google Scholar
  24. Engel W, Feist R, Franke W (1980) Le Carbonifère anté-Stéphanien de la Montagne Noire: rapport entre mise en place des nappes et sédimentation. Bull Bur Rech Géol Min 1(4):341–389Google Scholar
  25. Faure M, Cottereau N (1988) Données cinématiques sur la mise en place du dôme migmatitique carbonifère moyen de la zone axiale de la Montagne Noire (Massif Central, France). C R Acad Sci Paris 307:1787–1794Google Scholar
  26. Faure M, Lardeaux JM, Ledru P (2009) A review of the pre-Permian geology of the Variscan French Massif Central. C R Geosci 341:202–213CrossRefGoogle Scholar
  27. Faure M, Cocherie A, Bé Mézène E, Charles N, Rossi P (2010) Middle Carboniferous crustal melting in the Variscan belt: new insights from U–Th–Pb tot monazite and U–Pb zircon ages of the Montagne Noire Axial Zone (southern French Massif Central). Gondwana Res 18:653–673CrossRefGoogle Scholar
  28. Faure M, Cocherie A, Gaché J, Esnault C, Guerrot C, Rossi P, Lin W, Li Q (2014) Middle Carboniferous intracontinental subduction in the outer zone of the Variscan belt (Montagne Noire Axial Zone, French Massif Central): multimethod geochronological approach of polyphase metamorphism. Geol Soc Lond Spec Publ. doi: 10.1144/SP405.2 Google Scholar
  29. Feist R, Galtier J (1985) Découverte de flores d’âge namurien probable dans le flysch à olistolites de Cabrières (Hérault). Implication sur la durée de la sédimentation synorogénique dans la Montagne Noire. Comptes Rendus de l’Académie des sciences, Paris, Série IIa 300:207–212Google Scholar
  30. Franke W, Doublier MP, Klama K, Potel S, Wemmer K (2011) Hot metamorphic core complex in a cold foreland. Int J Earth Sci (Geol Rundsch). doi: 10.1007/s00531-010-0512-7 Google Scholar
  31. Fréville K, Cenki-Tok B, Trap P, Rabin M, Leyreloup A, Régnier JL, Whitney D (2016) Thermal interaction of middle and upper crust during gneiss dome formation: example from the Montagne Noire (French Massif Central). J Metamorph Geol 34:447–462. doi: 10.1111/jmg.12188 CrossRefGoogle Scholar
  32. Gebauer D, Grünenfelder M (1982) Geological development of the Hercynian belt of Europe based on age and origin of high grade and high pressure mafic and ultramafic rocks. In: First international conference on geochronology, cosmochronology, isotope geology, Nikko, pp 111–112Google Scholar
  33. Gèze B (1949) Etude géologique de la Montagne Noire et des Cévennes méridionales. Soc Géol Fr Mém 62:1–125Google Scholar
  34. Guy A, Edel JB, Schulmann K, Tomek C, Lexa O (2011) A geophysical model of the Variscan orogenic root (Bohemian Massif): implications for modern collisional orogens. Lithos 124:144–157CrossRefGoogle Scholar
  35. Hamet J, Allegre C (1976) Hercynian orogeny in Montagne Noire (France)application of Rb-87-Sr-87 systematics. Geol Soc Am Bull 87(10):1429–1442CrossRefGoogle Scholar
  36. Hanchar JM, Miller CF (1993) Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: implication for interpretation of complex crustal histories. Chem Geol 110:1–13CrossRefGoogle Scholar
  37. Hasalová P, Schulmann K, Leka O, Stípská P, Hrouda F, Ulrich S, Haloda J, Týcová P (2008) Origin of migmatites by deformation-enhanced melt infiltration of orthogneiss: a new model based on quantitative microstructural analysis. J Metamorph Geol 26:29–53CrossRefGoogle Scholar
  38. Hoskin PWO (2000) Patterns of chaos: fractal statistics and the oscillatory chemistry of zircon. Geochim Cosmochim Acta 64:1905–1923CrossRefGoogle Scholar
  39. Hurai V, Paquette JL, Huraiovà M, Konecny P (2010) U–Th–Pb geochronology of zircon and monazite from syenite and pincinite xenoliths in Pliocene alkali basalts of the intra-carpathian back-arc basin. J Volcanol Geotherm Res 198:275–287CrossRefGoogle Scholar
  40. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211:47–69CrossRefGoogle Scholar
  41. Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurement of half-lives and specific activities of 235U and 238U. Phys Rev C 4:1889–1906CrossRefGoogle Scholar
  42. Lardeaux JM (2014) Deciphering orogeny: a metamorphic perspective. Examples from the European Alpine and Variscan belts. Part II. Variscan metamorphism in the French Massif Central—a review. Bull Soc Géol Fr 185:281–310CrossRefGoogle Scholar
  43. Ledru P, Lardeaux JM, Santallier D, Autran A, Quenardel JM, Floch JP, Lerouge G, Maillet N, Marchand J, Ploquin A (1989) Où sont les nappes dans le Massif central français? (Where are the nappes in the French Massif central?). Bull Soc Géol Fr 3:605–618Google Scholar
  44. Ludwig KR (2001) User manual for Isoplot/Ex rev. 2.49. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 1a, pp 1–56Google Scholar
  45. Malavieille J (2010) Impact of erosion, sedimentation, and structural heritage on the structure and kinematics of orogenic wedges: analog models and case studies. Geol Soc Am 20:4–10. doi: 10.1130/GSATG48A.1 Google Scholar
  46. Maluski H, Costa S, Echtler H (1991) Late Variscan tectonic evolution by thinning of earlier thickened crust: a 40Ar39Ar study of the Montagne Noire, southern Massif Central, France. Lithos 26(3–4):287–304CrossRefGoogle Scholar
  47. Matte P, Lancelot J, Mattauer M (1998) La Zone axiale hercynienne de la Montagne Noire n’est pas un “metamorphic core complex” extensif mais un anticlinal post-nappe à coeur anatectique. Geodin Acta 11(1):13–22Google Scholar
  48. Montel JM (1993) A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chem Geol 10:127–146CrossRefGoogle Scholar
  49. Müller W, Shelley M, Miller P, Broude S (2009) Initial performance metrics of a new custom-designed ArF excimer La-ICPMS system coupled to a two-volume laser-ablation cell. J Anal At Spectrom 24:209–214CrossRefGoogle Scholar
  50. Nicolas A, Bouchez JL, Blaise JL, Poirier JP (1977) Geological aspects of deformation in continental shear zones. Tectonophysics 42:55–73CrossRefGoogle Scholar
  51. Ourzik A, Debat P, Mercier A (1991) Metamorphic evolution of the N and Ne parts of the Montagne Noire Axial Zone (southern Massif-Central, France). C R Acad Sci Ser II 313(13):1547–1553Google Scholar
  52. Pitra P, Poujol M, Van Den Driessche J, Poilvet JC, Paquette JL (2012) Early Permian extensional shearing of an Ordovician granite: the Saint-Eutrope “C/S-like” orthogneiss (Montagne Noire, French Massif Central). C R Geosci 34:377–384. doi: 10.1016/j.crte.2012.06.002 CrossRefGoogle Scholar
  53. Poilvet JC, Poujol M, Pitra P, Van Den Driesssche J, Paquette JL (2011) The Montalet granite, Montagne Noire, France: an Early Permian syn-extensional pluton as evidenced by new U–Th–Pb data on zircon and monazite. C R Geosci 343:454–461. doi: 10.1016/j.crte.2011.06.002 CrossRefGoogle Scholar
  54. Rabin M, Trap P, Carry N, Fréville K, Cenki-Tok B, Lobjoie C, Goncalves P, Marquer D (2015) Strain partitioning along the anatectic front in the Variscan Montagne Noire massif (Southern French Massif Central). Tectonics 34:1709–1735. doi: 10.1002/2014TC003790 CrossRefGoogle Scholar
  55. Rey PF, Teyssier C, Kruckenberg SC, Whitney DL (2011) Viscous collision in channel explains double domes in metamorphic core complexes. Geology 39(4):387–390CrossRefGoogle Scholar
  56. Rey PF, Teyssier C, Kruckenberg SC, Whitney DL (2012) Viscous collision in channel explains double domes inmetamorphic core complexes. Geology 40:e280 (Forum Reply) CrossRefGoogle Scholar
  57. Roger F, Respaut JP, Brunel M, Matte P, Paquette JL (2004) Première datation U–Pb des orthogneiss oeillés de la zone axiale de la Montagne Noire (Sud du Massif Central): nouveaux témoins du magmatisme ordovicien dans la chaîne varisque. C R Geosci Acad Sci Paris 336:19–28CrossRefGoogle Scholar
  58. Roger F, Maluski H, Lepvrier C, Van Vu T, Paquette JL (2012) LA-ICPMS zircons U/Pb dating of Permo–Triassic and Cretaceous magmatisms in Northern Vietnam—geodynamical implications. J Asian Earth Sci 48:72–82. doi: 10.1016/j.jseaes.2011.12.012 CrossRefGoogle Scholar
  59. Roger F, Teyssier Ch, Respaut JP, Rey P, Jolivet M, Whitney DL, Paquette JP, Brunel M (2015) Timing of deformation and exhumation of the Montagne Noire double dome, French Massif Central. Tectonophysics 640–641:53–69CrossRefGoogle Scholar
  60. Schuiling RD (1960) Le dome gneissique de l’Agoût (Tarn et Hérault). Mém Soc Géol Fr 91:59Google Scholar
  61. Schulmann K, Edel JB, Hasalová P, Cosgrove J, Ježek J, Lexa O (2009) Influence of melt induced mechanical anisotropy on the magnetic fabrics and rheology of deforming migmatites, Central Vosges, France. J Struct Geol 31:1223–1237. doi: 10.1016/j.jsg.2009.07.004 CrossRefGoogle Scholar
  62. Soula JC, Debat P, Brusset S, Bessiere G, Christophoul F, Deramond J (2001) Thrust-related, diapiric, and extensional doming in a frontal orogenic wedge: example of the Montagne Noire, Southern French Hercynian belt. J Struct Geol 23(11):1677–1699. doi: 10.1016/S0191-8141(01)00021-9 CrossRefGoogle Scholar
  63. Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362CrossRefGoogle Scholar
  64. Thompson PH, Bard JP (1982) Isograds and mineral assemblages in the Eastern Axial Zone, Montagne Noire (France): implications for temperature gradients and P/T history. Can J Earth Sci 19(1):129–143CrossRefGoogle Scholar
  65. Van Den Driessche J, Brun JP (1989) Kinematic model of late Paleozoic extensional tectonics in the southern French massif central. C R Acad Sci II 309(16):1607–1613Google Scholar
  66. Van Den Driessche J, Brun JP (1992) Tectonic evolution of the Montagne Noire (French Massif Central): a model of extensional gneiss dome. Geodin Acta 5:85–99CrossRefGoogle Scholar
  67. Van Den Driessche J, Pitra P (2012) Viscous collision in channel explains double domes in metamorphic core complexes. Geology 40(10):E279. doi: 10.1130/G32727C.1 CrossRefGoogle Scholar
  68. Vanderhaeghe O, Teyssier C (2001) Partial melting and flow of orogens. Tectonophysics 342:451–472CrossRefGoogle Scholar
  69. Vanderhaeghe O, Burg JP, Teyssier C (1999) Exhumation of migmatites in two collapsed orogens. In: Ring U, Brandon MT, Lister GS, Willet SD (eds) Exhumation processes: normal faulting, ductile flow and erosion, vol 154. Geological Society London Special Publications, London, pp 181–204Google Scholar
  70. Whitney DL, Roger F, Teyssier Ch, Rey PF, Respaut JP (2015) Syn-collapse eclogite metamorphism and exhumation of deep crust in a migmatite dome/the P–T–t record of the youngest Variscan eclogite (Montagne Noire, French Massif Central). Earth Planet Sci Lett 430:224–234CrossRefGoogle Scholar
  71. Williams ML, Jercinovic MJ, Hetherington CJ (2007) Microprobe monazite geochronology: understanding geologic processes by integrating composition and chronology. Annu Rev Earth Planet Sci Lett 35:137–175CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Pierre Trap
    • 1
  • Françoise Roger
    • 2
  • Bénédicte Cenki-Tok
    • 2
  • Jean-Louis Paquette
    • 3
  1. 1.Laboratoire Chrono-environnement (CNRS-UMR 6249)Université de Bourgogne-Franche-ComtéBesançon CedexFrance
  2. 2.Laboratoire Géosciences Montpellier (CNRS-UMR 5243)Université de MontpellierMontpellier Cedex 5France
  3. 3.Laboratoire Magmas et Volcans (CNRS-UMR 6524)Université Blaise PascalClermont-Ferrand CedexFrance

Personalised recommendations