International Journal of Earth Sciences

, Volume 106, Issue 6, pp 2109–2129 | Cite as

Long-lasting Cadomian magmatic activity along an active northern Gondwana margin: U–Pb zircon and Sr–Nd isotopic evidence from the Brunovistulian Domain, eastern Bohemian Massif

  • Igor Soejono
  • Vojtěch Janoušek
  • Eliška Žáčková
  • Jiří Sláma
  • Jiří Konopásek
  • Matěj Machek
  • Pavel Hanžl
Original Paper


Cadomian magmatic complexes of the Brunovistulian Domain crop out at the eastern termination of the Bohemian Massif. However, the age, nature and geotectonic affinity of some of pre-Variscan (meta-)igneous rock complexes from this domain are still unknown. Geochronological and geochemical study of the granitic rocks across the Brunovistulian Domain reveals new information about the timing and nature of this magmatic activity originally situated along the northern margin of Gondwana. Zircon U–Pb data (601 ± 3 Ma, Brno Massif; 634 ± 6 Ma, paraautochtonous core of the Svratka Dome; 568 ± 3 Ma, Bíteš orthogneiss) from the allochtonous Moravicum indicate the prolonged magmatic activity within the Brunovistulian Domain during the Ediacaran. The major- and trace-element and Sr–Nd isotopic signatures show heterogeneous geochemical characteristics of the granitic rocks and suggest a magmatic-arc geotectonic setting. The two-stage Depleted Mantle Nd model ages (c. 1.3–2.0 Ga) indicate derivation of the granitic rocks from a relatively primitive crustal source, as well as from an ancient and evolved continental crust of the Brunovistulian Domain. These results constrain the magmatic-arc activity to c. 635–570 Ma and provide a further evidence for a long-lived (at least c. 65 Myr) and likely episodic subduction-related magmatism at the northern margin of Gondwana. The presence of granitic intrusions derived from variously mature crustal sources at different times suggests heterogeneous crustal segments to having been involved in the magmatic-arc system during its multistage evolution.


Cadomian magmatic arc Brunovistulian Domain Bohemian Massif Gondwana margin U–Pb geochronology Geochemistry 



We are indebted to F. Veselovský for separation of zircons, V. Erban for Sr–Nd isotopic analyses, M. Racek for CL imaging and S. Vrána for helpful discussions. We also thank A. Gerdes for editorial handling of this manuscript. The manuscript benefited from constructive reviews by G. Zulauf and one anonymous colleague. This study was supported by the Czech Science Foundation (GACR 13-16315S to P. Štípská), by LK11202 programme of the Ministry of Education of the Czech Republic (to K. Schulmann) and partly also by the Academy of Sciences of the Czech Republic institutional support to the Institute of Geophysics of the CAS, v.v.i. (RVO 67985530).

Supplementary material

531_2016_1416_MOESM1_ESM.pdf (227 kb)
Laser ablation ICP-MS U–Pb zircon data (PDF 226 kb)


  1. Albert R, Arenas R, Gerdes A, Sánchez Martínez S, Marko L (2015a) Provenance of the HP-HT subducted margin in the Variscan belt (Cabo Ortegal Complex, NW Iberian Massif). J Metamorph Geol 33:959–979CrossRefGoogle Scholar
  2. Albert R, Arenas R, Gerdes A, Sánchez Martínez S, Fernández-Suárez J, Fuenlabrada JM (2015b) Provenance of the Variscan Upper Allochthon (Cabo Ortegal Complex, NW Iberian Massif). Gondwana Res 28:1434–1448CrossRefGoogle Scholar
  3. Bandres A, Eguiluz L, Gil Ibarguchi JI, Palacios T (2002) Geodynamic evolution of a Cadomian arc region: the northern Ossa-Morena zone, Iberian Massif. Tectonophysics 352:105–120CrossRefGoogle Scholar
  4. Belka Z, Valverde-Vaquero P, Dörr W, Ahrendt H, Wemmer K, Franke W, Schäer J (2002) Accretion of first Gondwana-derived terranes at the margin of Baltica. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic Amalgamation of Central Europe. Geological Society, London, Special Publications 201:19–36Google Scholar
  5. Bingen B, Belousova EA, Griffin WL (2011) Neoproterozoic recycling of the Sveconorwegian orogenic belt: detrital-zircon data from the Sparagmite basins in the Scandinavian Caledonides. Precambr Res 189:347–367CrossRefGoogle Scholar
  6. Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare Earth Element Geochemistry. Elsevier, Amsterdam, pp 63–114CrossRefGoogle Scholar
  7. Cardona A, Cordani UG, Ruiz J, Valencia VA, Armstrong R, Chew D, Nutman A, Sanchez AW (2009) U–Pb zircon geochronology and Nd isotopic signatures of the Pre-Mesozoic metamorphic basement of the Eastern Peruvian Andes: growth and provenance of a Late Neoproterozoic to Carboniferous accretionary orogen on the northwest margin of Gondwana. J Geol 117:285–305CrossRefGoogle Scholar
  8. Casas JM, Navidad M, Castiñeiras P, Liesa M, Aguilar C, Carreras J, Hofmann M, Gärtner A, Linnemann U (2015) The Late Neoproterozoic magmatism in the Ediacaran series of the Eastern Pyrenees: new ages and isotope geochemistry. Int J Earth Sci 104:909–925CrossRefGoogle Scholar
  9. Castiñeiras P, Navidad M, Liesa M, Carreras J, Casas JM (2008) U–Pb zircon ages (SHRIMP) for Cadomian and Early Ordovician magmatism in the Eastern Pyrenees: New insights into the pre-Variscan evolution of the northern Gondwana margin. Tectonophysics 461:228–239CrossRefGoogle Scholar
  10. Cháb J, Stráník Z, Eliáš M (2007) Geological map of the Czech Republic 1:500 000. Czech Geological Survey, PragueGoogle Scholar
  11. Chantraine J, Egal E, Thieblemont D, Le Goff E, Guerrot C, Ballévre M, Guennoc P (2001) The Cadomian active margin (north Armorican Massif, France): a segment of the North Atlantic Pan-African belt. Tectonophysics 33:1–18CrossRefGoogle Scholar
  12. Cox KG, Bell JD, Pankhurst RJ (1979) The Interpretation of Igneous Rocks. George Allen & Unwin, London, pp 1–450CrossRefGoogle Scholar
  13. D’Lemos RS, Strachan RA, Topley CG (1990) The Cadomian Orogeny in the north Armorican Massif: a brief review. In: D’Lemos RS, Strachan RA, Topley CG (eds) The Cadomian orogeny. Geological Society, London, Special Publications 51:3–12Google Scholar
  14. Dallmeyer RD, Franke W, Weber K (1995) Pre-Permian geology of Central and Eastern Europe. Springer, Berlin, pp 1–593CrossRefGoogle Scholar
  15. De La Roche H, Leterrier J, Grandclaude P, Marchal M (1980) A classification of volcanic and plutonic rocks using R 1 R 2-diagram and major element analyses—its relationships with current nomenclature. Chem Geol 29:183–210CrossRefGoogle Scholar
  16. Debon F, Le Fort P (1983) A chemical–mineralogical classification of common plutonic rocks and associations. Trans R Soc Edinb Earth Sci 73:135–149CrossRefGoogle Scholar
  17. Dörr W, Fiala J, Vejnar Z, Zulauf G (1998) U–Pb zircon ages and structural development of metagranitoids of the Teplá crystalline complex: evidence for pervasive Cambrian plutonism within the Bohemian Massif (Czech Republic). Geol Rundsch 87:135–149CrossRefGoogle Scholar
  18. Dörr W, Zulauf G, Fiala J, Franke W, Vejnar Z (2002) Neoproterozoic to Early Cambrian history of an active plate margin in the Teplá–Barrandian Unit—a correlation of U–Pb isotopic-dilution-TIMS ages (Bohemia, Czech Republic). Tectonophysics 352:65–85CrossRefGoogle Scholar
  19. Dörr W, Zulauf G, Gerdes A, Lahaye Y, Kowalczyk G (2015) A hidden Tonian basement in the eastern Mediterranean: Age constraints from U–Pb data of magmatic and detrital zircons of the External Hellenides (Crete and Peloponnesus). Precambr Res 258:83–108CrossRefGoogle Scholar
  20. Drost K, Romer RL, Linnemann U, Fatka O, Kraft P, Marek J (2007) Nd–Sr–Pb isotopic signatures of Neoproterozoic–early Paleozoic siliciclastic rocks in response to changing geotectonic regimes: a case study from the Barrandian area (Bohemian Massif, Czech Republic). In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian–Cadomian active margin to Alleghenian–Variscan collision. Geological Society of America, Special Papers 423, pp 191–208Google Scholar
  21. Drost K, Gerdes A, Jeffries T, Linnemann U, Storey C (2011) Provenance of Neoproterozoic and early Paleozoic siliciclastic rocks of the Teplá–Barrandian Unit (Bohemian Massif): evidence from U–Pb detrital zircon ages. Gondwana Res 19:213–231CrossRefGoogle Scholar
  22. Ducea MN, Saleeby JB, Bergantz G (2015) The architecture, chemistry, and evolution of continental magmatic arcs. Annu Rev Earth Planet Sci 43:299–333CrossRefGoogle Scholar
  23. Dudek A (1980) The crystalline basement block of the Outer Carpathians in Moravia: BrunoVistulicum. Rozpr Čs Akad Věd 90:3–85Google Scholar
  24. Dudek A, Melková J (1975) Radiometric age and isotopic data determination in the crystalline basement of the Carpathian Foredeep and of the Moravian Flysch. Věst Ústř Úst Geol 50:257–264Google Scholar
  25. Dunstan LP, Gramlich JW, Barnes IL, Purdy WC (1980) Absolute isotopic abundance and the atomic weight of a reference sample of thallium. J Res Nat Bur Stand 85:1–10CrossRefGoogle Scholar
  26. Fernández-Suárez J, Gutiérrez-Alonso G, Jenner GA, Tubrett MN (2000) New ideas on the Proterozoic-Early Palaeozoic evolution of NW Iberia: insights from U–Pb detrital zircon ages. Precambr Res 102:185–206CrossRefGoogle Scholar
  27. Finger F, Pin C (1997) Arc-type crustal zoning in the Brunovistulicum, eastern Czech Republic: a trace of the late Proterozoic Euro-Gondwana margin. J Czech Geol Soc 42:53Google Scholar
  28. Finger F, Frasl G, Dudek A, Jelínek E, Thöni M (1995) Igneous activity (Cadomian plutonism in the Moravo-Silesian basement). In: Dallmeyer RD, Franke W, Weber KP (eds) Pre-Permian geology of Central and Eastern Europe. Springer, Berlin, pp 495–507CrossRefGoogle Scholar
  29. Finger F, von Quadt A, Pin C, Steyrer HP (1998) The ophiolite chain along the western Moravo-Silesian plate margin—a trace of the Rheic suture? Acta Univ Carol Geol 42:244–245Google Scholar
  30. Finger F, Hanžl P, Pin C, von Quadt A, Steyrer HP (2000a) The Brunovistulian: Avalonian Precambrian sequence at the eastern end of the Central European Variscides? In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic Processes: Quantification and Modelling in the Variscan Belt. Geological Society, London, Special Publications 179, pp 103–112Google Scholar
  31. Finger F, Tichomirowa M, Pin C, Hanžl P (2000b) Relics of early-Panafrican metabasite–metarhyolite formation in the Brno Massif, Moravia, Czech Republic. Int J Earth Sci (Geol Rundsch) 89:328–335CrossRefGoogle Scholar
  32. Finger F, Gerdes A, Janoušek V, René M, Riegler G (2007) Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and the Moravo-Moldanubian tectonometamorphic phases. J Geosci 52:9–28Google Scholar
  33. Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic Processes: Quantification and Modelling in the Variscan Belt. Geological Society, London, Special Publications 179, pp 35–61Google Scholar
  34. Friedl G, Finger F, McNaughton NJ, Fletcher IR (2000) Deducing the ancestry of terranes: SHRIMP evidence for South America-derived Gondwana fragments in central Europe. Geology 28:1035–1038CrossRefGoogle Scholar
  35. Friedl G, Finger F, Paquette JL, von Quadt A, McNaughton NJ, Fletcher IR (2004) Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U/Pb zircon ages. Int J Earth Sci 93:802–823CrossRefGoogle Scholar
  36. Fritz H, Dallmeyer RD, Neubauer F (1996) Thick-skinned versus thin-skinned thrusting: rheology controlled thrust propagation in the Variscan collisional belt (the southeastern Bohemian Massif, Czech Republic–Austria). Tectonics 15:1389–1413CrossRefGoogle Scholar
  37. Gerdes A, Zeh A (2006) Combined U–Pb and Hf isotope LA-(MC-) ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci Lett 249:47–61CrossRefGoogle Scholar
  38. Gürsu S, Goncuoglu MC (2008) Petrogenesis and geodynamic evolution of the Late Neoproterozoic post-collisional felsic magmatism in NE Afyon area, western central Turkey. In: Ennih N, Liégeois J-P (eds) The boundaries of the West African Craton. Geological Society, London, Special Publications 297, pp 409–431Google Scholar
  39. Hajná J, Žák J, Kachlík V, Chadima M (2010) Subduction-driven shortening and differential exhumation in a Cadomian accretionary wedge: The Teplá–Barrandian unit, Bohemian Massif. Precambr Res 176:27–45CrossRefGoogle Scholar
  40. Hajná J, Žák J, Kachlík V, Dörr W, Gerdes A (2013) Neoproterozoic to early Cambrian Franciscan-type mélanges in the Teplá–Barrandian unit, Bohemian Massif: Evidence of modern-style accretionary processes along the Cadomian active margin of Gondwana? Precambr Res 224:653–670CrossRefGoogle Scholar
  41. Hanžl P, Melichar R (1997) The Brno Massif: a section through the active continental margin of a composed terrane? Krystalinikum 23:33–58Google Scholar
  42. Hanžl P, Hrdličková K, Čtyroká J, Čurda J, Gilíková H, Gürtlerová P, Kabátník P, Kratochvílová H, Manová M, Maštera L, Neudert O, Otava J, Tomanová Petrová P, Šalanský K, Šrámek J, Švecová J, Vít J (2007a) Explanations to Geologic map of the Czech Republic 1:25,000, sheet 24-321 Tišnov. Czech Geological Survey, Prague, pp 1–84Google Scholar
  43. Hanžl P, Janoušek V, Žáček V, Wilimský D, Aichler J, Erban V, Pudilová M, Chlupáčová M, Buriánková K, Mixa P, Pecina V (2007b) Magmatic history of granite-derived mylonites from the southern Desná Unit (Silesicum, Czech Republic). Mineral Petrol 89:45–75CrossRefGoogle Scholar
  44. Heilbron M, Machado N (2003) Timing of terrane accretion in the Neoproterozoic–Eopaleozoic Ribeira orogen (SE Brazil). Precambr Res 125:87–112CrossRefGoogle Scholar
  45. Hladil J, Melichar R, Otava J, Galle A, Krs M, Man O, Pruner P, Čejchan P, Orel P (1999) The Devonian in the easternmost Variscides, Moravia: a holistic analysis directed towards comprehension of the original context. Abh Geol BA 54:27–47Google Scholar
  46. Höck V (1995) Moravian zone: Metamorphic Evolution. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of Central and Eastern Europe. Springer, Berlin, pp 541–553CrossRefGoogle Scholar
  47. Höck V, Montag O, Leichmann J (1997) Ophiolite remnants at the eastern margin of the Bohemian Massif and their bearing on the tectonic evolution. Mineral Petrol 60:267–287CrossRefGoogle Scholar
  48. Hönig S, Čopjaková R, Škoda R, Novák M, Dolejš D, Leichmann J, Galiová-Vašínová M (2014) Garnet as a major carrier of the Y and REE in the granitic rocks: An example from the layered anorogenic granite in the Brno Batholith, Czech Republic. Am Mineral 99:1922–1941CrossRefGoogle Scholar
  49. Horn I, Rudnick RL, McDonough WF (2000) Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS: application to U–Pb geochronology. Chem Geol 164:281–301CrossRefGoogle Scholar
  50. Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548CrossRefGoogle Scholar
  51. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211:47–69CrossRefGoogle Scholar
  52. Jacobsen SB, Wasserburg GJ (1980) Sm–Nd isotopic evolution of chondrites. Earth Planet Sci Lett 50:139–155CrossRefGoogle Scholar
  53. Janoušek V (2006) Saturnin, R language script for application of accessory-mineral saturation models in igneous geochemistry. Geol Carpath 57:131–142Google Scholar
  54. Janoušek V, Farrow CM, Erban V (2006) Interpretation of Whole-rock Geochemical Data in Igneous Geochemistry: Introducing Geochemical Data Toolkit (GCDkit). J Petrol 47:1255–1259CrossRefGoogle Scholar
  55. Janoušek V, Wiegand B, Žák J (2010) Dating the onset of Variscan crustal exhumation in the core of the Bohemian Massif: new U–Pb single zircon ages from the high-K calc-alkaline granodiorites of the Blatná suite, Central Bohemian Plutonic Complex. J Geol Soc Lond 167:347–360CrossRefGoogle Scholar
  56. Jelínek E, Dudek A (1993) Geochemistry of the subsurface Precambrian plutonic rocks from the Brunovistulian complex in the Bohemian massif, Czechoslovakia. Precambr Res 62:103–125CrossRefGoogle Scholar
  57. Jensen LS (1976) A new cation plot for classifying Subalkalic Volcanic Rocks. Ont Geol Surv Misc Pap 66:1–22Google Scholar
  58. Kalvoda J, Melichar R, Leichmann J, Bábek O (2002) Late Proterozoic–Paleozoic tectonostratigraphic development and paleogeography of Brunovistulian Terrane and comparison with other terranes at the SE margins of Baltica-Laurussia. J Czech Geol Soc 47:3–4Google Scholar
  59. Kalvoda J, Bábek O, Fatka O, Leichmann J, Melichar R, Nehyba S, Špaček P (2008) Brunovistulian Terrane (Bohemian Massif, Central Europe) from Late Proterozoic to Late Paleozoic: a review. Int J Earth Sci 97:497–518CrossRefGoogle Scholar
  60. Kemnitz H, Romer R, Oncken O (2002) Gondwana break-up and the northern margin of the Saxothuringian belt (Variscides of Central Europe). Int J Earth Sci 91:246–259CrossRefGoogle Scholar
  61. Konopásek J, Schulmann K, Johan V (2002) Eclogite-facies metamorphism at the eastern margin of the Bohemian Massif—subduction prior to continental underthrusting? Eur J Mineral 14:701–713CrossRefGoogle Scholar
  62. Konopásek J, Sláma J, Košler J (2016) Linking the basement geology along the Africa–South America coasts in the South Atlantic. Precambr Res 280:221–230CrossRefGoogle Scholar
  63. Košler J, Sylvester PJ (2003) Present trends and the future of zircon in geochronology: laser ablation ICP-MS. In: Hanchar JM, Hoskin PWO (eds) Zircon. Mineralogical Society of America and Geochemical Society Reviews in Mineralogy and Geochemistry 53:243–275Google Scholar
  64. Košler J, Fonneland H, Sylvester PJ, Tubrett M, Pedersen RB (2002) U–Pb dating of detrital zircons for sediment provenance studies—a comparison of laser ablation ICP-MS and SIMS techniques. Chem Geol 182:605–618CrossRefGoogle Scholar
  65. Košler J, Konopásek J, Sláma J, Vrána S (2014) U–Pb zircon provenance of Moldanubian metasediments in the Bohemian Massif. J Geol Soc Lond 171:83–95CrossRefGoogle Scholar
  66. Kröner A, Wendt I, Liew TC, Compston W, Todt W, Fiala J, Vaňková V, Vaněk J (1988) U–Pb zircon and Sm–Nd model ages of high-grade Moldanubian metasediments, Bohemian Massif, Czechoslovakia. Contrib Mineral Petrol 99:257–266CrossRefGoogle Scholar
  67. Kröner A, Štípská P, Schulmann K, Jaeckel P (2000) Chronological constrains on the pre-Variscan evolution of the northeastern margin of the Bohemian Massif, Czech Republic. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic Processes: Quantification and Modelling in the Variscan fold belt. Geological Society, London, Special Publications 179, pp 175–197Google Scholar
  68. Kuznetsov NB, Soboleva AA, Udoratina OV, Hertseva MV, Andreichev VL (2007) Pre-Ordovician tectonic evolution and volcano-plutonic associations of the Timanides and northern Pre-Uralides, northeast part of the East European Craton. Gondwana Res 12:05–323CrossRefGoogle Scholar
  69. Kuznetsov NB, Natapov LM, Belousova EA, O’Reilly SY, Griffin WL (2010) Geochronological, geochemical and isotopic study of detrital zircon suites from Late Neoproterozoic clastic strata along the NE margin of the East European Craton: implications for plate tectonic models. Gondwana Res 17:583–601CrossRefGoogle Scholar
  70. Leichmann J, Höck V (2008) The Brno Batholith: an insight into the magmatic and metamorphic evolution of the Cadomian Brunovistulian Unit, eastern margin of the Bohemian Massif. J Geosci 53:281–305Google Scholar
  71. Liew TC, Hofmann AW (1988) Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: Indications from a Nd and Sr isotopic study. Contrib Mineral Petrol 98:129–138CrossRefGoogle Scholar
  72. Linnemann U, Romer RL (2002) The Cadomian Orogeny in Saxo-Thuringia, Germany: geochemical and Nd–Sr–Pb isotopic characterization of marginal basins with constraints to geotectonic setting and provenance. Tectonophysics 352:33–64CrossRefGoogle Scholar
  73. Linnemann U, McNaughton NJ, Romer RL, Gehmlich M, Drost K, Tonk C (2004) West African provenance for Saxo-Thuringia (Bohemian Massif): did Armorica ever leave pre-Pangean Gondwana?—U/Pb-SHRIMP zircon evidence and the Nd-isotopic record. Int J Earth Sci 93:683–705CrossRefGoogle Scholar
  74. Linnemann U, Pereira F, Jeffries TE, Drost K, Gerdes A (2008) The Cadomian Orogeny and the opening of the Rheic Ocean: the diacrony of geotectonic processes constrained by LA-ICP-MS U–Pb zircon dating (Ossa-Morena and Saxo-Thuringian zones, Iberian and Bohemian massifs). Tectonophysics 461:21–43CrossRefGoogle Scholar
  75. Linnemann U, Gerdes A, Hofmann M, Marko L (2014) The Cadomian Orogen: Neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton—constraints from U-Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambr Res 244:236–278CrossRefGoogle Scholar
  76. Ludwig KR (2008) User’s Manual for Isoplot v. 3.6, A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publications 4, pp 1–77Google Scholar
  77. Lugmair GW, Marti K (1978) Lunar initial 143Nd/144Nd: differential evolution line of the lunar crust and mantle. Earth Planet Sci Lett 39:349–357CrossRefGoogle Scholar
  78. Mašek J, Zoubek J (1980) Proposal of stratigraphical terms for stratigraphical units of the Barrandian Proterozoic. Bull Czech Geol Surv 55:121–123Google Scholar
  79. Matte P, Maluski H, Rajlich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: result of large-scale Variscan shearing. Tectonophysics 177:151–170CrossRefGoogle Scholar
  80. Mazur S, Kröner A, Szczepański J, Turniak K, Hanžl P, Melichar R, Rodionov NV, Paderin I, Sergeev SA (2010) Single zircon U–Pb ages and geochemistry of granitoid gneisses from SW Poland: evidence for an Avalonian affinity of the Brunian microcontinent. Geol Mag 147:508–526CrossRefGoogle Scholar
  81. Mazur S, Szczepański J, Turniak K, McNaughton NJ (2012) Location of the Rheic suture in the eastern Bohemian Massif: evidence from detrital zircon data. Terra Nova 24:199–206CrossRefGoogle Scholar
  82. McLelland JM, Selleck BW, Bickford ME (2010) Review of the Proterozoic evolution of the Grenville Province, its Adirondack outlier, and the Mesoproterozoic inliers of the Appalachians. In: Tollo RP, Bartholomew MJ, Hibbard, JP, Karabinos PM (eds) From Rodinia to Pangea: the lithotectonic record of the Appalachian region. Geological Society of America, Memoirs 206, pp 21–49Google Scholar
  83. Míková J, Denková P (2007) Modified chromatographic separation scheme for Sr and Nd isotope analysis in geological silicate samples. J Geosci 52:221–226Google Scholar
  84. Miller CF, McDowell SM, Mapes RW (2003) Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31:529–532CrossRefGoogle Scholar
  85. Moczydlowska M (1997) Proterozoic and Cambrian successions in Upper Silesia: an Avalonian Terrane in southern Poland. Geol Mag 134:679–689CrossRefGoogle Scholar
  86. Murphy JB, Eguiluz L, Zulauf G (2002) Cadomian orogens, peri-Gondwanan correlatives and Laurentia–Baltica connections. Tectonophysics 352:1–9CrossRefGoogle Scholar
  87. Murphy JB, Pisarevsky SA, Nance RD, Keppie JD (2004) Neoproterozoic-Early Paleozoic evolution of peri-Gondwanan terranes: implications for Laurentia–Gondwana connections. Int J Earth Sci (Geol Rundsch) 93:659–682CrossRefGoogle Scholar
  88. Murphy JB, Gutiérrez-Alonso G, Nance RD, Fernández-Suárez J, Keppie JD, Quesada C, Strachan RA, Dostal J (2006) Origin of the Rheic Ocean: rifting along a Neoproterozoic suture? Geology 34:325–328CrossRefGoogle Scholar
  89. Nance RD, Linnemann U (2008) The Rheic Ocean: origin, evolution, and significance. GSA Today 18:4–12CrossRefGoogle Scholar
  90. Nance RD, Murphy JB, Strachan RA, D’Lemos RS, Taylor GK (1991) Late Proterozoic tectonostratigraphic evolution of the Avalonian and Cadomian terranes. Precambr Res 53:41–78CrossRefGoogle Scholar
  91. Nance RD, Murphy JB, Keppie JD (2002) A Cordilleran model for the evolution of Avalonia. Tectonophysics 352:11–31CrossRefGoogle Scholar
  92. Nance RD, Gutiérrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, Strachan R, Woodcock NH (2010) Evolution of the Rheic Ocean. Gondwana Res 17:194–222CrossRefGoogle Scholar
  93. Nawrocki J, Źylińska A, Bula Z, Grabowski J, Krywiec P, Poprawa P (2004) Early Cambrian location and affinities of the Brunovistulian Terrane (Central Europe) in the light of palaeomagnetic data. J Geol Soc Lond 161:513–522CrossRefGoogle Scholar
  94. Nawrocki J, Dunlap J, Pecskay Z, Krzemiński L, Źylińska A, Fanning M, Kozłowski W, Salwa S, Szczepanik Z, Trela W (2007) Late Neoproterozoic to Early Palaeozoic palaeogeography of the Holy Cross Mountains (Central Europe): an integrated approach. J Geol Soc Lond 164:405–423CrossRefGoogle Scholar
  95. Neubauer F (2002) Evolution of late Neoproterozoic to early Paleozoic tectonic elements in Central and Southeast European Alpine mountain belts: review and synthesis. Tectonophysics 352:87–103CrossRefGoogle Scholar
  96. Oberc-Dziedzic T, Klimas K, Kryza R, Fanning CM (2003) SHRIMP zircon geochronology of the Strzelin gneiss, SW Poland: evidence for a Neoproterozoic thermal event in the Fore-Sudetic Block, Central European Variscides. Int J Earth Sci 92:701–711CrossRefGoogle Scholar
  97. Paterson SR, Ducea MN (2015) Arc Magmatic Tempos: Gathering the Evidence. Elements 11:91–98CrossRefGoogle Scholar
  98. Paton C, Woodhead JD, Hellstrom JC, Hergt JM, Greig A, Maas R (2010) Improved laser ablation U–Pb zircon geochronology through robust downhole fractionation correction. Geochem Geophys Geosyst. doi: 10.1029/2009GC002618 Google Scholar
  99. Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983CrossRefGoogle Scholar
  100. Pease VL, Dovzhikova E, Beliakova L, Gee DG (2004) Late Neoproterozoic granitoid magmatism in the basement to the Pechora Basin, NW Russia: geochemical constraints indicate westward subduction beneath NE Baltica. In: Gee DG (ed) The Neoproterozoic Timanide Orogen of Eastern Baltica. Geological Society, London, Memoirs 30:75–85Google Scholar
  101. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib Mineral Petrol 58:63–81CrossRefGoogle Scholar
  102. Pereira MF, Chichorro M, Solá AR, Silva JB, Sánchez-García T, Bellido F (2011) Tracing the Cadomian magmatism with detrital/inherited zircon ages by in situ U–Pb SHRIMP geochronology (Ossa-Morena Zone, SW Iberian Massif). Lithos 123:204–217CrossRefGoogle Scholar
  103. Petrus JA, Kamber BS (2012) VizualAge: A Novel Approach to Laser Ablation ICP-MS U–Pb Geochronology Data Reduction. Geostand Geoanal Res 36:247–270CrossRefGoogle Scholar
  104. Pin C, Zalduegui JFS (1997) Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Anal Chim Acta 339:79–89CrossRefGoogle Scholar
  105. Pin C, Briot D, Bassin C, Poitrasson F (1994) Concomitant separation of strontium and samarium–neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography. Anal Chim Acta 298:209–217CrossRefGoogle Scholar
  106. Romano SS, Dörr W, Zulauf G (2004) Cambrian granitoids in pre-Alpine basement of Crete (Greece): evidence from U–Pb dating of zircon. Int J Earth Sci 93:844–859CrossRefGoogle Scholar
  107. Rubio-Ordóñez A, Gutiérrez-Alonso G, Valverde-Vaquero P, Cuesta A, Gallastegui G, Gerdes A, Cárdenes V (2015) Arc-related Ediacaran magmatism along the northern margin of Gondwana: geochronology and isotopic geochemistry from Northern Iberia. Gondwana Res 27:216–227CrossRefGoogle Scholar
  108. Şahin SY, Aysal N, Güngör Y, Peytcheva I, Neubauer F (2014) Geochemistry and U–Pb zircon geochronology of metagranites in Istranca (Strandja) Zone, NW Pontides, Turkey: implications for the geodynamic evolution of Cadomian Orogeny. Gondwana Res 26:755–771CrossRefGoogle Scholar
  109. Samson SD, D’Lemos RS, Miller BV, Hamilton MA (2005) Neoproterozoic palaeogeography of the Cadomia and Avalon terranes: constraints from detrital zircon U–Pb ages. J Geol Soc Lond 162:65–71CrossRefGoogle Scholar
  110. Schaltegger U, Nägler TF, Corfu F, Maggetti M, Galetti G, Stosch H (1997) A Cambrian island arc in the Silvretta nappe: constraints from geochemistry and geochronology. Schweiz Mineral Petrogr Mitt 77:337–350Google Scholar
  111. Schaltegger U, Schmitt AK, Horstwood MSA (2015) U–Th–Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities. Chem Geol 402:89–110CrossRefGoogle Scholar
  112. Scharbert S, Batík P (1980) The age of the Thaya (Dyje) Pluton. Verh Geol Bundesanst 1980:325–331Google Scholar
  113. Schulmann K, Ledru P, Autran A, Melka R, Lardeaux JM, Urban M, Lobkowicz M (1991) Evolution of nappes in the eastern margin of the Bohemian Massif: a kinematic interpretation. Geol Rundsch 80:73–92CrossRefGoogle Scholar
  114. Schulmann K, Melka R, Lobkowicz MZ, Ledru P, Lardeaux JM, Autran A (1994) Contrasting styles of deformation during progressive nappe stacking at the southeastern margin of the Bohemian Massif (Thaya Dome). J Struct Geol 16:355–370CrossRefGoogle Scholar
  115. Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux JM, Edel JB, Štípská P, Ulrich S (2009) An Andean type Palaeozoic convergence in the Bohemian Massif. Comptes Rendus Geosci 341:266–286CrossRefGoogle Scholar
  116. Schulmann K, Lexa O, Janoušek V, Lardeaux JM, Edel JB (2014) Anatomy of a diffuse cryptic suture zone: an example from the Bohemian Massif, European Variscides. Geology 42:275–278CrossRefGoogle Scholar
  117. Schulz B, Bombach K, Pawlig S, Brätz H (2004) Neoproterozoic to Early-Palaeozoic magmatic evolution in the Gondwana-derived Austroalpine basement to the south of the Tauern Window (Eastern Alps). Int J Earth Sci 93:824–843CrossRefGoogle Scholar
  118. Shafaii Moghadam H, Khademi M, Hu Z, Stern RJ, Santos JF, Wu Y (2015) Cadomian (Ediacaran–Cambrian) arc magmatism in the ChahJam–Biarjmand Metamorphic Complex (Iran): magmatism along the northern active margin of Gondwana. Gondwana Res 27:439–452CrossRefGoogle Scholar
  119. Sláma J, Dunkley DJ, Kachlík V, Kusiak MA (2008a) Transition from island-arc to passive setting on the continental margin of Gondwana: U–Pb zircon dating of Neoproterozoic metaconglomerates from the SE margin of the Teplá–Barrandian Unit, Bohemian Massif. Tectonophysics 461:44–59CrossRefGoogle Scholar
  120. Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008b) Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35CrossRefGoogle Scholar
  121. Soejono I, Žáčková E, Janoušek V, Machek M, Košler J (2010) Vestige of an Early Cambrian incipient oceanic crust incorporated in the Variscan orogen: Letovice Complex, Bohemian Massif. J Geol Soc Lond 167:1113–1130CrossRefGoogle Scholar
  122. Souček J, Jelínek E, Bowes DR (1992) Geochemistry of gneisses of the eastern margin of the Bohemian Massif. In: Kukal Z (ed) Proceedings of the 1st international conference on the Bohemian Massif. Czech Geological Survey, Prague, pp 269–285Google Scholar
  123. Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362CrossRefGoogle Scholar
  124. Štípská P, Schulmann K (1995) Inverted metamorphic zonation in a basement-derived nappe sequence, eastern margin of the Bohemian Massif. Geol J 30:385–413CrossRefGoogle Scholar
  125. Štípská P, Hacker BR, Racek M, Holder R, Kylander-Clark ARC, Schulmann K, Hasalová P (2015) Monazite dating of prograde and retrograde P–T–d paths in the Barrovian terrane of the Thaya Window, Bohemian Massif. J Petrol 56:1007–1035CrossRefGoogle Scholar
  126. Strachan RA, D’Lemos RS, Dallmeyer RD (1996) Late Precambrian evolution of an active plate margin: North Armorican Massif, France. In: Nance RD, Thompson MD (eds) Avalonian and related Peri-Gondwanan terranes of the Circum–North Atlantic. Geological Society of America, Special Papers 304, pp 319–332Google Scholar
  127. Strnad L, Mihaljevič M (2005) Sedimentary provenance of Mid-Devonian clastic sediments in the Teplá–Barrandian Unit (Bohemian Massif): U–Pb and Pb–Pb geochronology of detrital zircons by laser ablation ICP-MS. Mineral Petrol 84:47–68CrossRefGoogle Scholar
  128. Suess FE (1912) Die moravische Fenster und ihre Beziehung zum Grundgebirge des Hohen Gesenkes. Denkschr Österr Akad Wiss Mat Naturwiss Kl 88:541–631Google Scholar
  129. Suess FE (1926) Intrusionstektonik und Wandertektonik im variszischen Grundgebirge. Verlag von Gebrüder Borntraeger, Berlin, pp 1–268Google Scholar
  130. Tait JA, Bachtadse V, Franke W, Soffel HC (1997) Geodynamic evolution of the European Variscan fold belt: palaeomagnetic and geological constraints. Geol Rundsch 86:585–598CrossRefGoogle Scholar
  131. Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265CrossRefGoogle Scholar
  132. Tedeschi M, Novo T, Pedrosa-Soares A, Dissin I, Tassinari C, Silva LC, Gonçalves L, Alkmim F, Lana C, Figueiredo C, Dantes E, Medeiros S, De Campos C, Corrales F, Heilbron M (2016) The Ediacaran Rio Doce arc revisited (Araçuaí–Ribeira orogenic system, SE Brazil). J South Am Earth Sci 68:167–186CrossRefGoogle Scholar
  133. Ustaömer PA, Mundil R, Renne PR (2005) U/Pb and Pb/Pb zircon ages for arc-related intrusions of the Bolu Massif (W Pontides, NW Turkey): evidence for Late Precambrian (Cadomian) age. Terra Nova 17:215–223CrossRefGoogle Scholar
  134. Valverde-Vaquero P, Dörr W, Belka Z, Franke W, Wiszniewska J, Schastok J (2000) U–Pb single-grain dating of detrital zircon in the Cambrian of Central Poland: implications for Gondwana versus Baltica provenance studies. Earth Planet Sci Lett 184:225–240CrossRefGoogle Scholar
  135. van Breemen O, Aftalion M, Bowes DR, Dudek A, Mísař Z, Povondra P, Vrána S (1982) Geochronological studies of the Bohemian Massif, Czechoslovakia, and their significance in the evolution of Central Europe. Trans R Soc Edinb Earth Sci 73:89–108CrossRefGoogle Scholar
  136. Vavrdová M, Mikuláš R, Nehyba S (2003) Lower Cambrian siliciclastic sediments in southern Moravia (Czech Republic) and their paleogeographical constraints. Geol Carpath 54:67–79Google Scholar
  137. Villaseca C, Barbero L, Herreros V (1998) A re-examination of the typology of peraluminous granite types in intracontinental orogenic belts. Trans R Soc Edinb Earth Sci 89:113–119CrossRefGoogle Scholar
  138. von Raumer JF, Stampfli GM (2008) The birth of the Rheic Ocean—Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics 461:9–20CrossRefGoogle Scholar
  139. von Raumer JF, Stampfli GM, Borel G, Bussy F (2002) Organization of pre-Variscan basement areas at the north-Gondwanan margin. Int J Earth Sci 91:35–52CrossRefGoogle Scholar
  140. Wasserburg GJ, Jacobsen SB, DePaolo DJ, McCulloch MT, Wen T (1981) Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochim Cosmochim Acta 45:2311–2324CrossRefGoogle Scholar
  141. Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304CrossRefGoogle Scholar
  142. Wendt JI, Kröner A, Fiala J, Todt W (1993) Evidence from zircon dating for existence of approximately 2.1 Ga old crystalline basement in southern Bohemia, Czech Republic. Geol Rundsch 82:42–50CrossRefGoogle Scholar
  143. Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newsl 19:1–23CrossRefGoogle Scholar
  144. Winchester J, Pharaoh T, Verniers J (2002) Palaeozoic amalgamation of Central Europe: an introduction and synthesis of new results from recent geological and geophysical investigations. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe. Geological Society, London, Special Publications 201, pp 1–18Google Scholar
  145. Winchester JA, Pharaoh TC, Verniers J, Ioane D, Seghedi A (2006) Palaeozoic accretion of Gondwana-derived terranes to the East European Craton: recognition of detached terrane fragments dispersed after collision with promontories. In: Gee DG, Stephenson RA (eds) European Lithosphere Dynamics. Geological Society London, Memoirs 32, pp 323–332Google Scholar
  146. Wood DA (1980) The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet Sci Lett 50:11–30CrossRefGoogle Scholar
  147. Žák J, Kraft P, Hajná J (2013) Timing, styles, and kinematics of Cambro–Ordovician extension in the Teplá–Barrandian Unit, Bohemian Massif, and its bearing on the opening of the Rheic Ocean. Int J Earth Sci 102:415–433CrossRefGoogle Scholar
  148. Zulauf G, Dörr W, Fiala J, Vejnar Z, Dörr W, Fiala J, Vejnar Z (1997) Late Cadomian crustal tilting and Cambrian transtension in the Teplá-Barrandian Unit (Bohemian Massif, Central European Variscides). Geol Rundsch 86:571–584CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Czech Geological SurveyPrague 1Czech Republic
  2. 2.Institute of Petrology and Structural Geology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
  3. 3.Institute of Geology of the CASPrague 6Czech Republic
  4. 4.Department of GeosciencesUniversity of Tromsø – The Arctic University of NorwayLangnes, TromsøNorway
  5. 5.Institute of Geophysics of the CASPrague 4Czech Republic

Personalised recommendations