International Journal of Earth Sciences

, Volume 106, Issue 6, pp 2067–2089 | Cite as

Geochemistry of mylonitic gneisses from the Cycladic Basement Unit (Paros and Serifos, Aegean Sea): implications for protoliths of the high-grade gneisses

  • Annette McGrath
  • Christina Stouraiti
  • Brian Windley
Original Paper


The nature of the protolith(s) of high-grade gneisses from the Aegean Cycladic Basement Unit of the islands of Paros and Serifos is investigated using whole-rock geochemistry and Sr–Nd–O isotopes, in order to better understand their origin and to compare with possible equivalents from the southern Aegean region. On Paros, the basement unit consists of heterogeneous, mylonitized upper amphibolite-grade paragneisses and associated migmatitic rocks, whereas on Serifos, it consists of a mylonitized felsic gneiss, intercalated with layers and lenses of S-type leucogranites and minor mafic metavolcanics. New Nd, Sr and O isotope data suggest a predominantly crustal-derived source in the gneiss protolith from both islands: high initial 87Sr/86Sr ratios (≥7052 to 0.711, calculated at 300 Ma), negative initial εNd (−2.8 to −7.7) values for bulk-rock gneiss samples, and high δ18O values of quartz separates (+10 to +12.7 ‰). Major and trace-element variations corroborate that chemical differentiation within the NW Paros gneiss subunit results from progressive migmatitization. Peraluminous gneisses from eastern Paros share clear similarities with metapelitic gneisses from the Naxos gneiss dome, in terms of their trace-element patterns, εNd (300) and O isotope characteristics. The mineral assemblage, the fine grain size (due to intense mylonitization), and the metaluminous affinity of the South Serifos grey quartzofeldpathic gneiss do not allow for an unambiguous interpretation for these undated rocks; however, a combination of geochemical parameters and tectonic discrimination diagrams indicates an immature siliciclastic (greywacke) protolith from a continental island arc setting. Sr–Nd isotopic systematics indicates an increasing lower crustal component in gneisses from NW Paros, which is closer to the migmatitic core of the Paros dome. The overall isotopic trend of the gneissic Cycladic Basement Unit on Paros is spatially correlated with that of the Naxos gneiss dome.


Aegean Ortho-paragneisses Sr–Nd–O isotopes Paros Serifos 



We would like to thank professor John Tarney (University of Leicester) for his assistance, guidance, and support of this study. Field and analytical work were supported by the State Scholarship Foundation of Greece, ΙΔΡΥΜΑ ΚΡΑΤΙΚΩΝ ΥΠΟΤΡΟΦΙΩΝ (IKY), and the isotope analyses by the Natural Environment Research Council (NERC; UK). The valuable assistance of Nick Marsh at the University of Leicester (XRF analysis) is greatly appreciated. The authors thank professors Hilary Downes and Michael Bröcker for their constructive comments that helped improve this manuscript. We also appreciate the very helpful suggestions and comments by the Editor-in-Chief professor Wolf-Christian Dullo and the topic-Editor professor Ingo Braun for editorial handling. Furthermore, we thank Dr. Kostantinos Soukis for useful comments and Dr. Danae Antivachis for helping with figures.

Supplementary material

531_2016_1414_MOESM1_ESM.docx (35 kb)
Supplementary Table. Compilation of zircon ages from rocks of the Cycladic Basement Unit and metasedimentary rocks in the Cycladic Blueschist Unit (CBU), locating in the broader Aegean region. (DOCX 35 kb)


  1. Altherr R, Kreuzer H, Wendt I, Lenz H, Wagner GA, Keller J, Harre W, Höhndorf A (1982) A late oligocene/early miocene high temperature belt in the attic-cycladic crystalline complex (SE Pelagonian, Greece). Geol Jahrb 23:97–164Google Scholar
  2. Anders B (2005) The pre-Alpine evolution of the basement Zone and the Vardar Zone, Greece. Unpublished Ph.D. thesis, Johannes-Gutenberg-Universität Mainz, GermanyGoogle Scholar
  3. Anders B, Reischmann T, Kostopoulos D (2007) Zircon geochronology of basement rocks from the Pelagonian Zone, Greece: constraints on the pre-Alpine evolution of the westernmost Internal Hellenides. Int J Earth Sci 96:639–661CrossRefGoogle Scholar
  4. Andriessen PAM, Boelrijk NAIM, Hebeda EH, Priem ENA, Verdurmen EATh, Verschure RH (1979) Dating the events of metamorphism and granitic magmatism in the Alpine orogen of Naxos (Cyclades, Greece). Contrib Mineral Petrol 69:215–225CrossRefGoogle Scholar
  5. Andriessen PAM, Banga G, Hebeda EH (1987) Isotopic age study of pre-alpine rocks in the basal units on Naxos, Sikinos and Ios, Greek Cyclades. Geol Mijnbouw 66:3–14Google Scholar
  6. Ayres M, Harris N (1997) REE fractionation and Nd-isotope disequilibrium during crustal anatexis: constraints from Himalayan leucogranites. Chem Geol 139:249–269CrossRefGoogle Scholar
  7. Baker J, Matthews A (1995) The stable isotopic evolution of a metamorphic complex, Naxos, Greece. Contrib Mineral Petrol 120:391–403CrossRefGoogle Scholar
  8. Bargnesi EA, Stockli DF, Mancktelow N, Soukis K (2013) Miocene core complex development and coeval supradetachment basin evolution of Paros, Greece, insights from (U–Th)/He thermochronometry. Tectonophysics 595–596:165–182CrossRefGoogle Scholar
  9. Barker F (1979) Trondhjemites, dacites, and related rocks. Elsevier, AmsterdamGoogle Scholar
  10. Bea F (1996a) Controls on the trace element composition of crustal melts. Geol Soc Am Spec Pap 315:33–41Google Scholar
  11. Bea F (1996b) Residence of REE, Y, Th and U in granites and crustal protoliths: implications for the chemistry of crustal melts. J Petrol 37:521–552CrossRefGoogle Scholar
  12. Bhatia MR (1983) Plate tectonics and geochemical compositionof sandstones. J Geol 91:611–627CrossRefGoogle Scholar
  13. Bhatia MR, Crook KAW (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib Mineral Petrol 92:181–193CrossRefGoogle Scholar
  14. Bickle MJ, Wickham SM, Chapman HJ, Taylor HP Jr (1988) A strontium, neodymium and oxygen isotope study of hydrothermal metamorphism and crustal anatexis in the Trois Seigneurs Massif, Pyrenees, France. Contrib Mineral Petrol 100:399–417CrossRefGoogle Scholar
  15. Bolhar R, Ring U, Allen CM (2010) An integrated zircon geochronological and geochemical investigation into the Miocene plutonic evolution of the Cyclades, Aegean Sea, Greece: part 1: geochronology. Contrib Mineral Petrol 160:719–742. doi: 10.1007/s00410-010-0504-4 CrossRefGoogle Scholar
  16. Borthwick J, Harmon RS (1982) A note regarding ClF3 as alternative to Br F5 for oxygen isotope analysis. Geochim Cosmochim Acta 46:1665–1668CrossRefGoogle Scholar
  17. Brichau S, Thomson S, Ring W (2010) Thermochronometric constraints on the tectonic evolution of the Serifos detachment, Aegean Sea. Int J Earth Sci 99:379–393. doi: 10.1007/s00531-008-0386-0 CrossRefGoogle Scholar
  18. Bröcker M, Franz L (1998) Rb–Sr isotope studies on Tinos Island (Cyclades, Greece): additional time constraints for metamorphism, extent of infiltration-controlled overprinting and deformational activity. Geol Mag 135:369–382CrossRefGoogle Scholar
  19. Bröcker M, Keasling A (2006) Ion probe U–Pb zircon ages from the high-pressure/low-temperature melange of Syros, Greece: age diversity and the importance of pre-Eocene subduction. J Metamorph Geol 24:615–631CrossRefGoogle Scholar
  20. Bröcker M, Pidgeon RT (2007) Protolith ages of meta-igneous and metatuffaceous rocks from the Cycladic Blueschist Unit, Greece: results of a reconnaissance U–Pb zircon study. J Geol 115:83–98CrossRefGoogle Scholar
  21. Bröcker M, Huyskens M, Berndt J (2016) U–Pb dating of detrital zircons from Andros, Greece: constraints for the time of sediment accumulation in the northern part of the cycladic blueschist belt. Geol J 51:354–367CrossRefGoogle Scholar
  22. Buick IS (1991) The late Alpine evolution of an extensional shear zone, Naxos, Greece. J Geol Soc Lond 148:93–103CrossRefGoogle Scholar
  23. Buick IS, Holland TJB (1989) The P-T-t path associated with crustal extension, Naxos, Cyclades, Greece. Geological Society, London, Special Publications 43:365–369CrossRefGoogle Scholar
  24. Chappell BW, White AJR (1974) Two contrasting granite types. Pac Geol 8:173–174Google Scholar
  25. Chappell BW, White AJR (1992) I- and S-type granites in the Lachlan fold belt. Trans R Soc Edinb Earth Sci 83:1–26CrossRefGoogle Scholar
  26. Chatzaras V, Dörr W, Finger F, Xypolias P, Zulauf G (2013) U–Pb single zircon ages and geochemistry of metagranitoid rocks in the Cycladic Blueschists (Evia Island): implications for the Triassic tectonic setting of Greece. Tectonophysics 595–596:125–139CrossRefGoogle Scholar
  27. Clayton RN, Mayeda TK (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim Cosmochim Acta 27:43–52CrossRefGoogle Scholar
  28. Debon F, Le Fort P (1983) A chemical-mineralogical classification of common plutonic rocks and associations. Trans R Soc Edinb Earth 73:135–149CrossRefGoogle Scholar
  29. Downes H, Duthou JL (1988) Isotopic and trace element arguments for the lower-crustal origin of Hercynian granitoids and pre-Hercynian orthogneisses, Massif Central (France). Chem Geol 68:291–308CrossRefGoogle Scholar
  30. Dürr S, Altherr R, Keller J, Okrusch M, Seidel E (1978) The median Aegean crystalline belt: stratigraphy, structure, metamorphism, magmatism. In: Closs H et al (eds) Alps, apennines, hellinides, inter-union commission on geodynamics scientific report 38, E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 455–477Google Scholar
  31. Ebadi A, Johannes W (1991) Beginning of melting and composition of first melts in the system Qz–Ab–Or–H2O–CO2. Contrib Mineral Petrol 106:286–295CrossRefGoogle Scholar
  32. Engel M, Reischmann T (1998) Single zircon geochronology of orthogneisses from Paros, Greece. Bull Geol Soc Greece 32:91–99Google Scholar
  33. Faure G (1986) Principles of Isotope Geology. Wiley, New York, p 589Google Scholar
  34. Franz L, Okrusch M, Bröcker M (1993) Polymetamorphic evolution of pre-Alpidic basement rocks on the island of Sikinos (Cyclades, Greece). Neues Jahrb Mineral Monatshefte 4:145–162Google Scholar
  35. Fu B, Bröcker M, Ireland T (2015) Zircon U–Pb, O, and Hf isotopic constraints on Mesozoic magmatism in the Cyclades, Aegean Sea, Greece. Int J Earth Sci 104:75–87. doi: 10.1007/s00531-014-1064-z CrossRefGoogle Scholar
  36. Fullagar PD (1992) Geochronological studies of fault-related rocks. In: Bartholomew MJ, Hyndman DH, Mogk DW, Mason R (eds) Basement Tectonics, 8, Characterization and Comparison of Ancient and Mesozoic Continental Margins, Proceedings of the Eighth International Conference on Basement Tectonics, Montana, USA, 1988, pp 37–50Google Scholar
  37. Garver JI, Royce PR, Smick TA (1996) Chromium and nickel in shale of the Taconic foreland: a case study for the provenance of fine-grained sediments with an ultramafic source. J Sediment Res 66:100–106Google Scholar
  38. Gautier P, Brun JP (1994) Crustal-scale geometry and kinematics of late-orogenic extension in the central Aegean (Cyclades and Ewia Island). Tectonophysics 238:399–424CrossRefGoogle Scholar
  39. Gautier P, Brun JP, Jolivet L (1993) Structure and kinematics of Upper Cenozoic extensional detachment on Naxos and Paros (Cyclades Islands, Greece). Tectonics 12:1180–1194CrossRefGoogle Scholar
  40. Grasemann B, Petrakakis K (2007) Evolution of the Serifos metamorphic core complex. In: Lister G, Forster M, Ring U (eds) Inside the Aegean metamorphic core complexes. J Virtual Explor, 28, Paper 2Google Scholar
  41. Grasemann B, Schneider DA, Stockli DF, Iglseder C (2011) Miocene bivergent crustal extension in the Aegean: evidence from the western Cyclades (Greece). Lithosphere 4:23–39CrossRefGoogle Scholar
  42. Henjes-Kunst F, Kreuzer H (1982) Isotopic dating of pre-alpidic rocks from the island of Ios (Cyclades, Greece). Contrib Mineral Petrol 80:245–253CrossRefGoogle Scholar
  43. Hinchey AM, Carr SD (2007) Protolith composition of cordierite–gedrite basement rocks and garnet amphibolites of the Bearpaw Lake area of the Thor–Odin Dome, Monash Complex, British Columbia, Canada. Can Mineral 45:607–629CrossRefGoogle Scholar
  44. Hinsken T, Bröcket M, Berndt J, Gärtner C (2015) Maximum sedimentation ages and provenance of metasedimentary rocks from Tinos Island, Cycladic blueschist belt, Greece. Int J Earth Sci. doi: 10.1007/s00531-015-1258-z Google Scholar
  45. Iglseder C, Grasemann B, Schneider DA, Petrakakis K, Miller C, Klötzli US, Thöni M, Zámolyi A, Rambousek C (2009) I and S-type plutonism on Serifos (W-Cyclades, Greece). Tectonophysics 473:69–83CrossRefGoogle Scholar
  46. Janoušek V, Farrow CM, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). J Petrol 47(6):1255–1259CrossRefGoogle Scholar
  47. Jenner GA (1996) Trace-element geochemistry of igneous rocks; geochemical nomenclature and analytical geochemistry. In: Wyman DA (ed) Trace-element geochemistry of volcanic rocks: applications for massive sulphide exploration. Geological Association of Canada, Short Course Notes 12:51–77Google Scholar
  48. Jolivet L, Brun JP (2010) Cenozoic geodynamic evolution of the Aegean. Int J Earth Sci 99:109–138CrossRefGoogle Scholar
  49. Jolivet L, Faccenna C, Goffé B, Burov E, Agard P (2003) Subduction tectonics and exhumation of high-pressure metamorphic rocks in the Mediterranean orogens. Am J Sci 303:353–409CrossRefGoogle Scholar
  50. Jolivet L, Menant A, Sternai P, Rabillard A, Arbaret L, Augier R, Laurent V, Beaudoin A, Grasemann B, Huet B, Labrousse L, Le Pourhiet L (2015) The geological signature of the slab tear below the Aegean. Tectonophysics 659:166–182CrossRefGoogle Scholar
  51. Katzir Y, Garfunkel Z, Avigad D, Matthews A (2007) The geodynamic evolution of the Alpine orogen in the Cyclades (Aegean Sea, Greece): insights from diverse origins and modes of emplacement of ultramafic rocks. Geol Soc Lond Spec Publ 291:17–40CrossRefGoogle Scholar
  52. Keay S, Lister G (2002) African provenance for the metasediments and metaigneous rocks of the Cyclades, Aegean Sea, Greece. Geology 30:235–238CrossRefGoogle Scholar
  53. Keay S, Lister G, Buick I (2001) The timing of partial melting, Barrovian metamorphism and granite intrusion in the Naxos metamorphic core complex, Cyclades, Aegean Sea, Greece. Tectonophysics 342:275–312CrossRefGoogle Scholar
  54. Le Breton N, Thompson AB (1988) Fluid-absent (dehydration) melting of biotite in metapelite in the early stages of crustal anatexis. Contrib Mineral Petr 99:226–237CrossRefGoogle Scholar
  55. Lister GS, Banga G, Feenstra A (1984) Metamorphic core complexes of Cordilleran type in the Cyclades, Aegean Sea, Greece. Geology 12:221–225CrossRefGoogle Scholar
  56. Löwen K, Bröcker M, Berndt J (2015) Depositional ages of clastic metasediments from Samos and Syros, Greece: results of a detrital zircon study. Int J Earth Sci 104:205–220CrossRefGoogle Scholar
  57. Macera P, Di Pisa A, Gasperini D (2011) Geochemical and Sr-Nd isotope disequilibria during multi-stage anatexis in a metasedimentary Hercynian crust. Eur J Mineral 23:207–222CrossRefGoogle Scholar
  58. Marsh NG, Tarney J, Hendry GL (1983) Trace element geochemistry of basalts from hole 504B, Panama Basin, DSDP Legs 69 and 70. Initial Rep Deep Sea 69:747–763Google Scholar
  59. Martin L, Duchêne S, Deloule E, Vanderhaeghe O (2006) The isotopic composition of zircon and garnet: a record of the metamorphic history of Naxos, Greece. Lithos 87:174–192CrossRefGoogle Scholar
  60. McGrath A (1999) Structural and geochemical evolution of an extensional metamorphic core complex, Paros, Greece. Unpubl Ph.D. thesis. University of Leicester, UKGoogle Scholar
  61. Meinhold G, Kostopoulos D, Reischmann T (2007) Geochemical constraints on the provenance and depositional setting of sedimentary rocks from the islands of Chios, Inousses and Psara, Aegean Sea, Greece: implications for the evolution of Palaeotethys. J Geol Soc Lond 164:1145–1163CrossRefGoogle Scholar
  62. Moreno-Ventas I, Rogers G, Castro A (1995) The role of hybridization in the genesis of Hercynian granitoids in the Gredos Massif, Spain: inferences from Sr–Nd isotopes. Contrib Mineral Petrol 120:137–149CrossRefGoogle Scholar
  63. Nesbitt HW, Markovics G, Price RC (1980) Chemical processes affecting alkalis and alkaline earth during continental weathering. Geochim Cosmochim Acta 44:1659–1666CrossRefGoogle Scholar
  64. Okrusch M, Bröcker M (1990) Eclogite facies rocks in the Cycladic Blueschist Belt, Greece: a review. Eur J Mineral 2:451–478CrossRefGoogle Scholar
  65. Papanikolaou DJ (1977) On the structural geology and tectonics of Paros Island (Aegean Sea). Ann Geol de Pays Hell 28:450–464Google Scholar
  66. Papanikolaou DJ (1980) Contribution to the geology of the Aegean Sea: the island of Paros. Ann Geol de Pays Hell 30:65–96Google Scholar
  67. Papanikolaou D (1987) Tectonic evolution of the Cycladic blueschist belt (Aegean Sea, Greece). Chem Transp Metasomatic Process. Springer, Netherlands, pp 429–450CrossRefGoogle Scholar
  68. Papanikolaou D (1989) Are the medial crystalline massifs of the Eastern Mediterranean drifted Gondwanan fragments? Geol Soc Greece Spec Publ 1:63–90Google Scholar
  69. Papanikolaou DJ, Demirtasli E (1987) Geological correlations between the Alpine segments of the Hellenides–Balkanides and Taurides–Pontides. In: Flugel HW et al (eds) Pre-variscan and Variscan events in the Alpine-Mediterranean mountain belts. Allfa Publishers, Bratislava, pp 387–396Google Scholar
  70. Patiño Douce AE, Harris N (1998) Experimental constraints on Himalayan anataxis. J Petrol 39:689–710CrossRefGoogle Scholar
  71. Pe-Piper G (1998) The nature of Triassic extension-related magmatism in Greece: evidence from Nd and Pb isotope geochemistry. Geol Mag 135:331–348CrossRefGoogle Scholar
  72. Pe-Piper G (2000) Origin of S-type granites coeval with I-type granites in the Hellenic subduction system, Miocene of Naxos, Greece. Eur J Mineral 12:859–875CrossRefGoogle Scholar
  73. Pe-Piper G, Piper DJW (2002) The igneous rocks of Greece: the anatomy of an orogen. Gebrüder Borntraeger, BerlinGoogle Scholar
  74. Pe-Piper G, Kotopouli CN, Piper DJW (1997) Granitoid rocks of Naxos, Greece: regional geology and petrology. Geol Mag 32:153–171Google Scholar
  75. Petrakakis K, Iglseder C, Zámolyi A, Rambousek C, Grasemann B, Draganits E, Kurka A, Photiades A (2010) Geological map of Greece, Serifos Island. Institute of Geology and Mineral Exploration, AthensGoogle Scholar
  76. Peytcheva I, von Quadt A, Ovtcharova M (2004) Metagranitoids from the eastern part of the Central Rhodopean Dome (Bulgaria): U–Pb, Rb–Sr, and Ar–Ar timing of emplacement and exhumation and isotope-geochemical features. Contrib Mineral Petrol 82:1–31CrossRefGoogle Scholar
  77. Photiades A, Keay A (2003) Geological and geochronological data for Sikinos and Folegandros metamorphic units (Cyclades, Greece): their tectono-stratigraphic significance. Bull Geol Soc Greece 35:35–45Google Scholar
  78. Rabillard A, Arbaret L, Jolivet L, Le Breton N, Gumiaux C, Augier R, Grasemann B (2015) Interactions between plutonism and detachments during metamorphic core complex formation, Serifos Island (Cyclades, Greece). Tectonics 34:1080–1106. doi: 10.1002/2014TC003650 CrossRefGoogle Scholar
  79. Reischmann T (1998) Pre-alpine origin of tectonic units from the metamorphic core complex of Naxos, Greece, identified by single zircon Pb/Pb dating. Bull Geol Soc Greece 32:101–111Google Scholar
  80. Robertson AHF (2012) Late Palaeozoic–Cenozoic tectonic development of Greece and Albania in the context of alternative reconstructions of Tethys in the Eastern Mediterranean region. Int Geol Rev 54:373–454CrossRefGoogle Scholar
  81. Rudnick RL, Gao S (2003) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3. Elsevier-Pergamon, Oxford, pp 1–65Google Scholar
  82. Saunders AD, Tarney J, Marsh NG, Wood DA (1980) Ophiolites as ocean crust or marginal basin crust: a geochemical approach. In: Panayiotou A (ed) Ophiolites. Proceedings of the international ophiolite symposium, cyprus 1979, pp 193–204Google Scholar
  83. Sawyer EW (1986) The influence of rock type, chemistry, chemical weathering and sorting on the geochemistry of clastic sediments from Quetico Metasedimentary Belt, Superior Province, Canada. Chem Geol 55:77–95CrossRefGoogle Scholar
  84. Schneider DA, Senkowski C, Vogel H, Grasemann B, Iglseder C, Schmitt AK (2011) Eocene tectonometamorphism on Serifos (western Cyclades) deduced from zircon depth-profiling geochronology and mica thermochronology. Lithos 125:151–172CrossRefGoogle Scholar
  85. Shand SJ (1927) Eruptive rocks. Murby, LondonGoogle Scholar
  86. Shaw DM (1956) Geochemistry of pelitic rocks. Part II: major elements and general geochemistry. Geol Soc Am Bull 67:919–934CrossRefGoogle Scholar
  87. Sheppard SMF (1977) The Cornubian batholiths, southwest England: D/H and 18O/16O studies of kaolinite and other alteration minerals. J Geol Soc Lond 133:573–591CrossRefGoogle Scholar
  88. Stouraiti C, Mitropoulos P, Tarney J, Barreiro B, McGrath AM, Baltatzis E (2010) Geochemistry and petrogenesis of late Miocene granitoids, Cyclades, southern Aegean: nature of source components. Lithos 114:337–352CrossRefGoogle Scholar
  89. Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Geological Society, London, Special Publications 42:313–345CrossRefGoogle Scholar
  90. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, OxfordGoogle Scholar
  91. Tomaschek F, Keiter M, Kennedy AK, Ballhaus C (2008) Pre-alpine basement within the Northern Cycladic Blueschist unit on Syros Island, Greece. Z dtsch Ges Geowiss 159:521–532Google Scholar
  92. Tschegg C, Grasemann B (2009) Deformation and alteration of a granodiorite during low-angle normal faulting (Serifos, Greece). Lithosphere 1:139–154CrossRefGoogle Scholar
  93. Van der Maar PA, Jansen JBH (1983) The geology of the polymetamorphic complex of Ios, Cyclades, Greece, and its significance for the Cycladic Massif. Geol Rundsch 72:283–299CrossRefGoogle Scholar
  94. Van Hinsbergen DJJ, Hafkenscheid E, Spakman W, Meulenkamp JE, Wortel R (2005) Nappe stacking resulting from subduction of oceanic and continental lithosphere below Greece. Geology 33:325–328CrossRefGoogle Scholar
  95. Vavassis I, De Bono A, Stampfli GM, Giorgis D, Valloton A, Amelin Y (2000) U–Pb and Ar–Ar geochronological data from the Pelagonian basement in Evia (Greece): geodynamic implication for the evolution of Paleotethys. Schweiz Miner Petrogr 80:21–43Google Scholar
  96. Villaros A, Stevens G, Moyen JF, Buick IS (2009) The trace element compositions of S-type granites: evidence for disequilibrium melting and accessory phase entrainment in the source. Contrib Mineral Petrol 158:543–561CrossRefGoogle Scholar
  97. Villaseca C, Barbero L, Rogers G (1998) Crustal origin of Hercynian peraluminous granitic batholiths of Central Spain: petrological, geochemical and isotopic (Sr, Nd) constraints. Lithos 43:55–79CrossRefGoogle Scholar
  98. Villaseca C, Orejana D, Paterson BA, Billstrom K, Pérez-Soba C (2007) Metaluminous pyroxene-bearing granulite xenoliths from the lower continental crust in central Spain: their role in the genesis of Hercynian I-type granites. Eur J Mineral 19:463–477CrossRefGoogle Scholar
  99. White AJR, Chappell BW (1977) Ultrametamorphism and granitoid genesis. Tectonophysics 43:7–22CrossRefGoogle Scholar
  100. Wickham SM (1990) Isotopic modification of the continental crust: implications for the use of isotope tracers in granite petrogenesis. In: Asworth JR, Brown M (eds) High-temperature Metamorphism and Crustal Anatexis. Unwin Hyman, London, pp 124–148CrossRefGoogle Scholar
  101. Wijbrans JR, McDougall I (1988) Metamorphic evolution of the Attic Cycladic metamorphic belt on Naxos (Cyclades, Greece) utilizing 40Ar/39Ar age spectrum measurements. J Metamorph Geol 6:571–594. doi: 10.1111/j.1525-1314.1988.tb00441.x CrossRefGoogle Scholar
  102. Xypolias P, Dörr W, Zulauf G (2006) Late carboniferous plutonism within the pre-Alpine basement of the external hellenides (Kithira, Greece): evidence from U–Pb zircon dating. J Geol Soc Lond 163:539–547CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Annette McGrath
    • 1
  • Christina Stouraiti
    • 2
  • Brian Windley
    • 1
  1. 1.Department of GeologyUniversity of LeicesterLeicesterUK
  2. 2.Division of Geochemistry and Economic Geology, Department of Geology and GeoenvironmentNational and Kapodistrian University of AthensZografou, AthensGreece

Personalised recommendations