International Journal of Earth Sciences

, Volume 106, Issue 5, pp 1735–1751 | Cite as

The 16 April 2015 M w 6.0 offshore eastern Crete earthquake and its aftershock sequence: implications for local/regional seismotectonics

  • Ethem Görgün
  • Kıvanç Kekovalı
  • Doğan Kalafat
Original Paper


We examine the 16 April 2015 M w 6.0 offshore eastern Crete earthquake and its aftershock sequence in southern Aegean Sea. Centroid moment tensors for 45 earthquakes with moment magnitudes (M w) between 3.3 and 6.0 are determined by applying a waveform inversion method. The mainshock is shallow focus thrust event with a strike-slip component at a depth of 30 km. The seismic moment (M o) of the mainshock is estimated as 1.33 × 1018 Nm, and rupture duration of the mainshock is 3.5 s. The focal mechanisms of aftershocks are mainly thrust faulting with a strike-slip component. The geometry of the moment tensors (M w ≥ 3.3) reveals a thrust-faulting regime with NE–SW-trending direction of T axis in the entire activated region. According to high-resolution hypocenter relocation of the eastern Crete earthquake sequence, one main cluster consisting of 352 events is revealed. The aftershock activity in the observation period between 5 January 2015 and 7 July 2015 extends from N to S direction. Seismic cross sections indicate a complex pattern of the hypocenter distribution with the activation of three segments. The subduction interface is clearly revealed with high-resolution hypocenter relocation and moment tensor solution. The best constrained focal depths indicate that the aftershock sequence is mainly confined in the upper plate (depth <40 km) and are ranging from about 4.5 to 39 km depth. A stress tensor inversion of focal mechanism data is performed to obtain a more precise picture of the offshore eastern Crete stress field. The stress tensor inversion results indicate a predominant thrust stress regime with a NW–SE-oriented maximum horizontal compressive stress (S H). According to variance of the stress tensor inversion, to first order, the Crete region is characterized by a homogeneous interplate stress field. We also investigate the Coulomb stress change associated with the mainshock to evaluate any significant enhancement of stresses along Crete and surrounding regions. Positive lobes with stress more than 3 bars are obtained for the mainshock, indicating that these values are large enough to increase the Coulomb stress failure toward NE–SW and NW–SE directions, respectively.


Aftershock Coulomb stress analysis Crete earthquake Focal mechanism Moment tensor inversion Stress tensor inversion 



Authors thank all members of Kandilli Observatory and Earthquake Research Institute, Disaster and Emergency Management Presidency Earthquake Department and the GeoForschungsZentrum Potsdam GEOFON, Seismological Network of Crete, National Observatory of Athens, Aristotle University of Thessaloniki Seismological and MEDNET for providing the continuous seismological data used in this study. The author is also grateful to Dr. Masaru Nakano for providing the waveform inversion code. We would like to thank Prof. Dr. Wolf-Christian Dullo (Editor in Chief), Prof. Dr. Tuncay Taymaz and one anonymous reviewer for their constructive comments and suggestions, which improved the manuscript. All figures are generated by Generic Mapping Tools (GMT) code developed by Wessel and Smith (1998).


  1. Barka AA, Reilinger R, Şaroğlu F, Şengör AMC (1997) The eastern Isparta angle, its importance in neotectonics of the eastern Mediterranean region. IESCA-1995 Proceedings, vol 1, 3–17Google Scholar
  2. Becker D, Meier T, Rische M, Bohnhoff M, Harjes H-P (2006) Spatio-temporal microseismicity clustering in the Cretan region. Tectonophysics 423:3–16CrossRefGoogle Scholar
  3. Becker D, Meier T, Bohnhoff M, Harjes H-P (2010) Seismicity at the convergent plate boundary offshore Crete, Greece, observed by an amphibian network. J Seismol 14:369–392CrossRefGoogle Scholar
  4. Benetatos C, Kiratzi A, Papazachos C, Karakaisis G (2004) Focal mechanisms of shallow and intermediate depth earthquakes along the Hellenic Arc. J Geodyn 37(2):253–296CrossRefGoogle Scholar
  5. Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4(3):1027. doi: 10.1029/2001GC000252 CrossRefGoogle Scholar
  6. Bohnhoff M, Makris J, Stavrakakis G, Papanikolaou D (2001) Crustal investigation of the Hellenic subduction zone using wide aperture seismic data. Tectonophysics 343:239–262CrossRefGoogle Scholar
  7. Bohnhoff M, Meier T, Harjes H-P (2005) Stress regime at the Hellenic Arc from focal mechanisms. J Seismol 9:341–366CrossRefGoogle Scholar
  8. Bohnhoff M, Grosser H, Dresen G (2006) Strain partitioning and stress rotation at the North Anatolian Fault Zone from aftershock focal mechanisms of the 1999 Izmit Mw = 7.4 Earthquake. Geophys J Int 166:373–385CrossRefGoogle Scholar
  9. Bott MHP (1959) The mechanics of oblique slip faulting. Geol Mag 96:109–117CrossRefGoogle Scholar
  10. Bouchon M (1979) Discrete wave number representation of elastic wave fields in three-space dimensions. J Geophys Res 84:3609–3614CrossRefGoogle Scholar
  11. Delibasis N, Ziazia M, Voulgaris N, Papadopoulos T, Stavrakakis G, Papanastassiou D, Drakatos G (1999) Microseismic activity and seismotectonics of the Heraklion area (central Crete Island, Greece). Tectonophysics 308:237–248CrossRefGoogle Scholar
  12. Delph JR, Biryol CB, Beck SL, Zandt G (2015) Shear wave velocity structure of the Anatolian Plate: anomalously slow crust in southwestern Turkey. Geophys J Int 202:261–276. doi: 10.1093/gji/ggv141 CrossRefGoogle Scholar
  13. Endrun B, Meier T, Bischoff M, Harjes H-P (2004) Lithospheric structure in the area of Crete constrained by receiver functions and dispersion analysis of Rayleigh phase velocities. Geophys J Int 158:592–608CrossRefGoogle Scholar
  14. Engdahl ER, van der Hilst R, Buland R (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull Seismol Soc Am 88:722–743Google Scholar
  15. Fichtner A, Trampert J, Cupillard P, Saygin E, Taymaz T, Capdeville Y, Villaseñor A (2013a) Multi-scale full waveform inversion. Geophys J Int 194(1):534–556. doi: 10.1093/gji/ggt118 CrossRefGoogle Scholar
  16. Fichtner A, Saygin E, Taymaz T, Cupillard P, Capdevillee Y, Trampert J (2013b) The deep structure of the North Anatolian fault zone. Earth Planet Sci Lett 373:109–117. doi: 10.1016/j.epsl.2013.04.027 CrossRefGoogle Scholar
  17. Gephart JW, Forsyth DW (1984) An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the san Fernando earthquake sequence. J Geophys Res 89(B11):9305–9320CrossRefGoogle Scholar
  18. Gerya TV, Stöckhert B (2006) 2-D numerical modeling of tectonic and metamorphic histories at active continental margins. Int J Earth Sci 95:250–274CrossRefGoogle Scholar
  19. Gerya TV, Stöckhert B, Perchuk AL (2002) Exhumation of high-pressure metamorphic rocks in a subduction channel—a numerical simulation. Tectonics 21:6-1–6-19CrossRefGoogle Scholar
  20. Görgün E, Bohnhoff M, Bulut F, Dresen G (2010) Seismotectonic settings of the Karadere-Düzce branch of the North Anatolian Fault Zone between the 1999 Izmit and Düzce ruptures from analysis of Izmit aftershock focal mechanisms. Tectonophysics 482:170–181CrossRefGoogle Scholar
  21. Hardebeck JL, Hauksson E (2001) Stress orientations obtained from earthquake focal mechanisms: what are appropriate uncertainty estimates? Bull Seismol Soc Am 97:826–842CrossRefGoogle Scholar
  22. Huguen C, Mascle J, Chaumillon E, Woodside JM, Benkhelil J, Kopf A, Volkonskaya A (2001) Deformation styles of the eastern Mediterranean Ridge and surroundings from combined swath mapping and seismic reflection profiling. Tectonophysics 343:21–47CrossRefGoogle Scholar
  23. Jost M, Knabenbauer O, Cheng J, Harjes H-P (2002) Fault plane solutions of microearthquakes and small events in the Hellenic Arc. Tectonophysics 356:87–114CrossRefGoogle Scholar
  24. Kind R, Eken T, Tilmann F, Sodoudi F, Taymaz T, Bulut F, Yuan X, Can B, Schneider F (2015) Thickness of the lithosphere beneath Turkey and surroundings from S-receiver functions. Solid Earth 6:971–984. doi: 10.5194/se-6-971-2015 CrossRefGoogle Scholar
  25. King GCP, Stein RS, Lin J (1994) Static stress changes and the triggering of earthquakes. Bull Seismol Soc Am 84:935–953Google Scholar
  26. Kiratzi A, Louvari E (2003) Focal mechanisms of shallow earthquakes in the Aegean Sea and the surrounding lands determined by waveform modelling: a new database. J Geodyn 36(1–2):251–274CrossRefGoogle Scholar
  27. Knapmeyer M, Harjes H-P (2000) Imaging crustal discontinuities and the downgoing slab beneath western Crete. Geophys J Int 143:1–22CrossRefGoogle Scholar
  28. Kreemer C, Chamot-Rooke N (2004) Contemporary kinematics of the southern Aegean and the Mediterranean Ridge. Geophys J Int 157:1377–1392CrossRefGoogle Scholar
  29. Le Pichon X, Kreemer C (2010) The Miocene-to-Present Kinematic Evolution of the Eastern Mediterranean and Middle East and Its Implications for Dynamics. Annu Rev Earth Planet Sci 38:323–351CrossRefGoogle Scholar
  30. Le Pichon X, Chamot-Rooke N, Lallemant S (1995) Geodetic determination of the kinematics of central Greece with respect to Europe: implications for eastern Mediterranean tectonics. Geophys Res 100:12675–12690CrossRefGoogle Scholar
  31. Lienert BRE, Havskov J (1995) A computer program for locating earthquakes both locally and globally. Seismol Res Lett 66:26–36CrossRefGoogle Scholar
  32. Lin J, Stein RS (2004) Stress triggering in thrust and subduction earthquakes, and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. J Geophys Res 109:B02303. doi: 10.1029/2003JB002607 CrossRefGoogle Scholar
  33. Lu Z, Wyss M, Pulpan H (1997) Details of stress directions in the Alaska subduction zone from fault plane solutions. J Geophys Res 102:5385–5402CrossRefGoogle Scholar
  34. Lund B, Slunga R (1999) Stress tensor inversion using detailed microearthquake information and stability constraints: application to Olfus in southwest Iceland. J Geophys Res 104:14.947–14.964CrossRefGoogle Scholar
  35. Mascle J, Le Cleach A, Jongsma D (1986) The eastern Hellenic margin from Crete to Rhodes: example of progressive collision. Mar Geol 73:145–168CrossRefGoogle Scholar
  36. McCloskey J, Nalbant SS, Steacy S, Nostro C, Scotti O, Baumont D (2003) Structural constraints on the spatial distribution of aftershocks. Geophys Res Lett 30(12):1610. doi: 10.1029/2003GL017225 CrossRefGoogle Scholar
  37. McClusky S, Balassanian S, Barka A, Demir C, Ergintav S, Georgiev I, Gurkan O, Hamburger M, Hurst K, Kahle H, Kastens K, Kekelidze G, King R, Kotzev V, Lenk O, Mahmoud S, Mishin A, Nadariya M, Ouzounis A, Paradissis D, Peter Y, Prilepin M, Reilinger R, Sanli I, Seeger H, Tealeb A, Toksöz MN, Veis G (2000) Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res 105:5695–5719CrossRefGoogle Scholar
  38. McKenzie D (1978) Active Tectonics of the Alpine-Himalayan belt: the Aegean Sea and surrounding regions. Geophys J Int 55:217–254CrossRefGoogle Scholar
  39. Meier T, Rische M, Endrun B, Vafidis A, Harjes H-P (2004) Seismicity of the Hellenic subduction zone in the area of western and central Crete observed by temporary local seismic networks. Tectonophysics 383:149–169CrossRefGoogle Scholar
  40. Michael AJ (1984) Determination of stress from slip data: faults and folds. J Geophys Res 89:11517–11526CrossRefGoogle Scholar
  41. Michael AJ (1987) Use of focal mechanisms to determine stress: a control study. J Geophys Res 92:357–368CrossRefGoogle Scholar
  42. Michael AJ (1991) Spatial variations of stress within the 1987 Whittier Narrows, California, aftershock sequence: new techniques and results. J Geophys Res 96:6303–6319CrossRefGoogle Scholar
  43. Michael AJ, Ellsworth WL, Oppenheimer D (1990) Co-seismic stress changes induced by the 1989 Loma Prieta, California earthquake. Geophys Res Lett 17:1441–1444CrossRefGoogle Scholar
  44. Nakano M, Kumagai H, Inoue H (2008) Waveform inversion in the frequency domain for the simultaneous determination of earthquake source mechanism and moment function. Geophys J Int 173:1000–1011CrossRefGoogle Scholar
  45. Nakano M, Yamashina T, Kumagai H, Inoue H, Sunarjo (2010) Centroid moment tensor catalogue for Indonesia. Phys Earth Planet Inter 183:456–467CrossRefGoogle Scholar
  46. Nyst M, Thatcher W (2004) New constraints on the active tectonic deformation of the Aegean. J Geophys Res 109:B11406. doi: 10.1029/2003JB002830 CrossRefGoogle Scholar
  47. Papazachos BC (1996) Large seismic faults in the Hellenic arc. Ann Geofis 39:891–903Google Scholar
  48. Papazachos BC, Karakostas VG, Papazachos CB, Scordilis EM (2000) The geometry of the Wadati–Benioff zone and lithospheric kinematics in the Hellenic Arc. Tectonophysics 319:275–300CrossRefGoogle Scholar
  49. Reasenberg PA, Simpson RW (1992) Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake. Science 255:1687–1690. doi: 10.1126/science.255.5052.1687 CrossRefGoogle Scholar
  50. Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S, Cakmak R, Ozener H, Kadirov F, Guliev I, Stepanyan R, Nadariya M, Hahubia G, Mahmoud S, Sakr K, ArRajehi A, Paradissis D, Al-Aydrus A, Prilepin M, Guseva T, Evren E, Dmitrotsa A, Filikov SV, Gomez F, Al-Ghazzi R, Karam G (2006) GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111:B05411. doi: 10.1029/2005JB004051 CrossRefGoogle Scholar
  51. Reilinger R, McClusky S, Paradissis D, Ergintav S, Vernant P (2010) Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone. Tectonophysics 488:22–30CrossRefGoogle Scholar
  52. Roumelioti Z, Kiratzi A, Benetatos C (2011) Time-Domain Moment Tensors for shallow (h ≤ 40 km) earthquakes in the broader Aegean Sea for the years 2006 and 2007: the database of the Aristotle University of Thessaloniki. J Geodyn 51:179–189CrossRefGoogle Scholar
  53. Saltogianni V, Gianniou M, Taymaz T, Yolsal-Çevikbilen S, Stiros S (2015) Fault-Slip Source Models for the 2014 Mw 6.9 Samothraki-Gökçeada Earthquake (North Aegean Trough): combining geodetic and seismological observations. J Geophys Res (JGR) Solid Earth. doi: 10.1002/2015JB012052 Google Scholar
  54. Şaroğlu F, Emre Ö, Kuşcu İ (1992) Active Fault Map of Turkey, General Directorate of Mineral Research and Exploration (MTA), Eskisehir Yolu, 06520, Ankara, TurkeyGoogle Scholar
  55. Şengör AMC, Görür N, Şaroğlu F (1985) Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. Society of Economic Paleontologists and Mineralogists. Special Publication, vol 37, pp 227–264Google Scholar
  56. Shaw B, Jackson J (2010) Earthquake mechanisms and active tectonics of the Hellenic subduction zone. Geophys J Int 181:966–984Google Scholar
  57. Skarlatoudis AA, Papazachos CB, Margaris BN, Papaioannou C, Ventouzi C, Vamvakaris D, Bruestle A, Meier T, Friederich W, Stavrakakis G, Taymaz T, Kind R, Vafidis A, Dahm T (2009) Combination of acceleration-sensor and broadband velocity-sensor recordings for attenuation studies: the case of the 8 January 2006 Kythera Intermediate-Depth Earthquake. Bull Seismol Soc Am 99(2A):694–704. doi: 10.1785/0120070211 CrossRefGoogle Scholar
  58. Sodoudi F, Kind R, Hatzfeld D, Priestly K, Hanka W, Wylegalla K, Stavrakakis G, Vafidis A, Harjes H-P, Bohnhoff M (2006) Lithospheric structure of the Aegean obtained from P and S receiver functions. J Geophys Res 111:B12307. doi: 10.1029/2005JB003932 CrossRefGoogle Scholar
  59. Taymaz T, Price S (1992) The 1971 May 12 Burdur Earthquake sequence, SW Turkey: a synthesis of seismological and geological observations. Geophys J Int 108:589–603CrossRefGoogle Scholar
  60. Taymaz T, Jackson J, Westaway R (1990) Earthquake mechanisms in the Hellenic Trench near Crete. Geophys J Int 102:695–731CrossRefGoogle Scholar
  61. Taymaz T, Jackson JA, McKenzie D (1991) Active tectonics of the north and central Aegean Sea. Geophys J Int 106:433–490CrossRefGoogle Scholar
  62. ten Veen JH, Kleinspehn KL (2003) Incipient continental collision and plate-boundary curvature: late Pliocene–Holocene transtensional Hellenic forearc, Crete, Greece. J Geol Soc 160:161–181CrossRefGoogle Scholar
  63. Toda S, Stein RS, Richards-Dinger K, Bozkurt S (2005) Forecasting the evolution of seismicity in southern California: animations built on earthquake stress transfer. J Geophys Res 110:B05S16. doi: 10.1029/2004JB003415 CrossRefGoogle Scholar
  64. Toda S, Lin J, Meghraoui M, Stein RS (2008) 12 May 2008 M = 7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems. Geophys Res Lett 35:L17305. doi: 10.1029/2008GL034903 CrossRefGoogle Scholar
  65. Toda S, Stein RS, Lin J (2011) Widespread seismicity excitation throughout central Japan following the 2011 M = 9.0 Tohoku earthquake and its interpretation by Coulomb stress transfer. Geophys Res Lett 38:L00G03. doi: 10.1029/2011GL047834 CrossRefGoogle Scholar
  66. Vanacore EA, Taymaz T, Saygin E (2013) Moho structure of the Anatolian Plate from receiver function analysis. Geophys J Int 193(1):329–337. doi: 10.1093/gji/ggs107 CrossRefGoogle Scholar
  67. Vavryčuk V (2014) Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophys J Int 199:69–77. doi: 10.1093/gji/ggu224 CrossRefGoogle Scholar
  68. Waldhauser F, Ellsworth WL (2000) A double-difference earthquake location algorithm: method and application to the Northern Hayward fault, California. Bull Seismol Soc Am 90:1353–1368CrossRefGoogle Scholar
  69. Wallace RE (1951) Geometry of shearing stress and relationship to faulting. J Geol 59:118–130CrossRefGoogle Scholar
  70. Wessel P, Smith WHF (1998) New, improved version of the Generic Mapping Tools Released. EOS Trans., American Geophysical Union, 79, 579Google Scholar
  71. Wiemer S, Gerstenberger MC, Hauksson E (2002) Properties of the 1999, Mw 7.1, Hector Mine earthquake: implications for aftershock hazard. Bull Seismol Soc Am 92:1227–1240CrossRefGoogle Scholar
  72. Yolsal-Çevikbilen S, Taymaz T (2012) Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical Tsunamis in the Eastern Mediterranean. Tectonophysics 536–537:61–100. doi: 10.1016/j.tecto.2012.02.019 CrossRefGoogle Scholar
  73. Yolsal-Çevikbilen S, Taymaz T, Helvacı C (2014) Earthquake mechanisms in the Gulfs of Gökova, Sığacık, Kuşadası, and the Simav Region (western Turkey): neotectonics, seismotectonics and geodynamic implications. Tectonophysics 635:100–124. doi: 10.1016/j.tecto.2014.05.001 CrossRefGoogle Scholar
  74. Zang A, Stephansson O (2010) Stress field of the Earth’s crust. Springer, DordrechtCrossRefGoogle Scholar
  75. Zoback ML (1992) First and second order patterns of stress in the lithosphere: the world stress map project. J Geophys Res 97:11703–11728CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ethem Görgün
    • 1
  • Kıvanç Kekovalı
    • 2
  • Doğan Kalafat
    • 2
  1. 1.Department of Geophysical EngineeringIstanbul UniversityAvcılarTurkey
  2. 2.Kandilli Observatory and Earthquake Research InstituteBoğaziçi UniversityÇengelköyTurkey

Personalised recommendations