International Journal of Earth Sciences

, Volume 106, Issue 5, pp 1631–1649 | Cite as

The timing of metamorphism in the Odenwald–Spessart basement, Mid-German Crystalline Zone

  • T. M. WillEmail author
  • B. Schulz
  • E. Schmädicke
Original Paper


New in situ electron microprobe monazite and white mica 40Ar/39Ar step heating ages support the proposition that the Odenwald–Spessart basement, Mid-German Crystalline Zone, consists of at least two distinct crustal terranes that experienced different geological histories prior to their juxtaposition. The monazite ages constrain tectonothermal events at 430 ± 43 Ma, 349 ± 14 Ma, 331 ± 16 Ma and 317 ± 12 Ma/316 ± 4 Ma, and the 40Ar/39Ar analyses provide white mica ages of 322 ± 3 Ma and 324 ± 3 Ma. Granulite-facies metamorphism occurred in the western Odenwald at c. 430 and 349 Ma, and amphibolite-facies metamorphism affected the eastern Odenwald and the central Spessart basements between c. 324 and 316 Ma. We interpret these data to indicate that the Otzberg–Michelbach Fault Zone, which separates the eastern Odenwald–Spessart basement from the Western Odenwald basement, is part of the Rheic Suture, which marks the position of a major Variscan plate boundary separating Gondwana- and Avalonia-derived crustal terranes. The age of the Carboniferous granulite-facies event in the western Odenwald overlaps with the minimum age of eclogite-facies metamorphism in the adjacent eastern Odenwald. The granulite- and eclogite-facies rocks experienced contrasting pressure–temperature paths but occur in close spatial proximity, being separated by the Rheic Suture. As high-pressure and high-temperature metamorphisms are of similar age, we interpret the Odenwald–Spessart basement as a paired metamorphic belt and propose that the adjacent high-pressure and high-temperature rocks were metamorphosed in the same subduction zone system. Juxtaposition of these rocks occurred during the final stages of the Variscan orogeny along the Rheic Suture.


Odenwald–Spessart basement Mid-German Crystalline Zone Terrane boundary In situ monazite age dating 40Ar/39Ar age data Paired metamorphic belt 



P. Späthe (Würzburg) is thanked for the superb thin section preparation and V. von Seckendorff (formerly at Erlangen; now Würzburg) for his assistance with the monazite analysis. L. Ratschbacher, J. Pfänder and co-workers of the Argonlab at the TU Bergakademie Freiberg, Germany, are thanked for the 40Ar/39Ar analyses and age determinations. W. Dörr and J. von Raumer provided fair and helpful reviews. In addition, J. von Raumer is sincerely thanked for his continued interest in this work and for his many suggestions regarding the origin of the Odenwald rocks.

Supplementary material

531_2016_1375_MOESM1_ESM.xls (75 kb)
Supplementary material 1 (XLS 74 kb)
531_2016_1375_MOESM2_ESM.pdf (165 kb)
Supplementary material 2 (PDF 165 kb)
531_2016_1375_MOESM3_ESM.pdf (62 kb)
Supplementary material 3 (PDF 62 kb)


  1. Altenberger U, Besch T (1993) The Böllstein Odenwald: evidence for pre- to early-Variscan plate convergence in the Central European Variscides. Geol Rundsch 82:475–488CrossRefGoogle Scholar
  2. Altherr R, Henes-Klaiber U, Hegner E, Satir M (1999) Plutonism in the Variscan Odenwald (Germany): from subduction to collision. Int J Earth Sci 88:422–443CrossRefGoogle Scholar
  3. Anthes G, Reischmann T (2001) Timing of granitoid magmatism in the eastern Mid-German Crystalline Rise. J Geodyn 31:119–143CrossRefGoogle Scholar
  4. Ballèvre M, Bosse V, Ducassou C, Pitra P (2009) Palaeozoic history of the Armorican Massif: models for the tectonic evolution of the suture zones. C R Geosci 341:174–201CrossRefGoogle Scholar
  5. Behr HJ, Heinrichs T (1987) Geological interpretation of DEKORP 2-S: a deep seismic reflection profile across the Saxothuringian and possible implications for the late Variscan structural evolution of Central Europe. Tectonophysics 142:173–202CrossRefGoogle Scholar
  6. Chatterjee ND (1960) Geologische Untersuchungen im Kristallin des Böllsteiner Odenwaldes. N Jb Geol Paläontol Abh 37:223–256Google Scholar
  7. Cherniak DJ, Watson EB, Grove M, Harrison TM (2002) Pb diffusion in monazite. Geol Soc Am Abstr Prog 34(6) Google Scholar
  8. Cocherie A, Albarède F (2001) An improved U–Th–Pb age calculation for electron microprobe dating of monazite. Geochim Cosmochim Acta 24:4509–4522CrossRefGoogle Scholar
  9. Cohen KM, Finney SC, Gibbard PL, Fan J-X (2013; updated 2015) The ICS international chronostratigraphic chart. Episodes 36:199–204Google Scholar
  10. do Couto D, Faure M, Augier R, Cocherie A, Rossi P, Li XH, Lin W (2016) Monazite U–Th–Pb EPMA and zircon U–Pb SIMS chronological constraints on the tectonic, metamorphic, and thermal events in the inner part of the Variscan orogen, example from the Sioule series, French Massif Central. Int J Earth Sci 105:557–579CrossRefGoogle Scholar
  11. Dombrowski A, Henjes-Kunst F, Höhndorf A, Kröner A, Okrusch M, Richter P (1995) Orthogneisses in the Spessart Crystalline Complex, Northwest Bavaria: witnesses of Silurian granitoid magmatism at an active continental margin. Geol Rundsch 84:399–411CrossRefGoogle Scholar
  12. Eckelmann K, Nesbor H-D, Königshof P, Linnemann U, Hofmann M, Lange JM, Sagawe A (2014) Plate interactions of Laurussia and Gondwana during the formation of Pangaea—Constraints from U–Pb LA–SF–ICP–MS detrital zircon ages of Devonian and Early Carboniferous siliciclastics of the Rhenohercynian zone, Central European Variscides. Gondwana Res 25:1484–1500CrossRefGoogle Scholar
  13. Faure M, Sommers C, Melleton J, Cocherie A, Lautout O (2010) The Léon domain (French Massif Armoricain): a westward extension of the Mid-German Crystalline Rise? Structural and geochronological insights. Int J Earth Sci 99:65–81CrossRefGoogle Scholar
  14. Gerdes A, Zeh A (2006) Combined U–Pb and Hf isotope LA–(MC)–ICP–MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci Lett 249:47–61CrossRefGoogle Scholar
  15. Heinrich W, Andrehs G, Franz G (1997) Monazite-xenotime miscibility gap thermometry. I. An empirical calibration. J Metamorph Geol 15:3–16CrossRefGoogle Scholar
  16. Hodges KV (2003) Geochronology and thermochronology in orogenic systems. In: Rudnick RL (ed) The crust. Treatise Geochem 3:263–292Google Scholar
  17. Jarosewich E, Boatner LA (1991) Rare-earth element reference samples for electron microprobe analysis. Geostand Newslett 15:397–399CrossRefGoogle Scholar
  18. Jercinovic MJ, Williams ML, Lane ED (2008) In-situ trace element analysis of monazite and other fine-grained accessory minerals by EMPA. Chem Geol 254:197–215CrossRefGoogle Scholar
  19. Kirsch H, Kober B, Lippolt HJ (1988) Age of intrusion and rapid cooling of the Frankenstein gabbro (Odenwald, SW Germany) evidenced by 40Ar/39Ar and single zircon 207Pb/206Pb measurements. Geol Rundsch 77:693–711CrossRefGoogle Scholar
  20. Knauer E, Okrusch M, Richter P, Schmidt K, Schubert W (1974) Die metamorphe Basit-Ultrabasit-Assoziation in der Böllsteiner Gneiskuppel, Odenwald. N Jb Mineral Abh 122:186–228Google Scholar
  21. Kreuzer H, Harre W (1975) K/Ar Altersbestimmungen an Hornblenden und Biotiten des Kristallinen Odenwalds. Aufschluss 27:71–77Google Scholar
  22. Krohe A (1992) Structural evolution of intermediate-crustal rocks in a strike-slip and extensional setting (Variscan Odenwald, SW Germany): differential upward transport of metamorphic complexes and changing deformation mechanisms. Tectonophysics 205:357–386CrossRefGoogle Scholar
  23. Krohe A (1996) Variscan tectonics of central Europe: postaccretionary intraplate deformation of weak continental lithosphere. Tectonics 15:1364–1388CrossRefGoogle Scholar
  24. Kroner U, Romer R (2013) Two plates—many subduction zones: the Variscan orogeny reconsidered. Gondwana Res 24:298–329CrossRefGoogle Scholar
  25. Kryza R, Pin C (2010) The Central-Sudetic ophiolites (SW Poland): petrogenetic issues, geochronology and palaeotectonic implications. Gondwana Res 17:292–305CrossRefGoogle Scholar
  26. Linnemann U, Gerdes A, Drost K, Buschmann B (2007) The continuum between Cadomian orogenesis and opening of the Rheic Ocean: constraints from LA-ICP-MS U–Pb zircon dating and the analysis of plate-tectonic setting (Saxo-Thuringian zone, NE Bohemian Massif, Germany). In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian–Cadomian active margin to Alleghenian–Variscan collision. Geol Soc Am Spec Paper 423:61–96Google Scholar
  27. Lippolt HJ (1986) Nachweis altpaläozoischer Primäralter (Rb–Sr) and karbonischer Abkühlalter (K–Ar) der Muscovit–Biotit-Gneise des Spessarts und der Biotit-Gneise des Böllsteiner Odenwaldes. Geol Rundsch 75:569–583CrossRefGoogle Scholar
  28. Ludwig KR (2008) User manual for Isoplot 3.70. A geochronological toolkit for microsoft excel. Berkeley Geochron Center Spec Publ 4:1–76Google Scholar
  29. Marx I (2008) Metamorphose-Entwicklung des Spessart-Kristallins, mitteleuropäische Varisziden: Phasenpetrologische, mineralchemische und geochemische Untersuchungen an Metapeliten. Unpubl Dissertation, Universität WürzburgGoogle Scholar
  30. Montel J-M, Foret S, Veschambre M, Nicollet C, Provost A (1996) A fast, reliable, inexpensive in situ dating technique: electron microprobe ages on monazite. Chem Geol 131:37–53CrossRefGoogle Scholar
  31. Nance RD, Gutiérrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, Strachan RA, Woodcock NH (2012) A brief history of the Rheic Ocean. Geosci Front 3:125–135CrossRefGoogle Scholar
  32. Nasir S, Okrusch M, Kreuzer H, Lenz H, Höhndorf A (1991) Geochronology of the Spessart crystalline complex, Mid-German Crystalline Rise. Mineral Petrol 44:39–55CrossRefGoogle Scholar
  33. Nickel E (1975) Geologische Position und Petrogenese des kristallinen Odenwaldes. Aufschluss 27:1–25Google Scholar
  34. Okrusch M, Schubert W, Stähle V (2000) The Odenwald, Germany: Variscan metamorphic evolution and igneous events. Beiheft Eur J Mineral 12:45–89CrossRefGoogle Scholar
  35. Oncken O (1997) Transformation of a magmatic arc and an orogenic root during oblique collision and its consequences for the evolution of the European Variscides (Mid-German Crystalline Rise). Geol Rundsch 86:2–20CrossRefGoogle Scholar
  36. Oncken O, Plesch A, Weber J, Ricken W, Schrader S (2000) Passive margin detachment during arc-continent collision (Central European Variscides). In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geol Soc Lond Spec Publ 179:199–216Google Scholar
  37. Pfänder JA, Sperner B, Ratschbacher L, Fischer A, Meyer M, Leistner M, Schaeben H (2014) High-resolution 40Ar/39Ar dating using a mechanical sample transfer system combined with a high-temperature cell for step heating experiments and a multicollector ARGUS noble gas mass spectrometer. Geochem Geophys Geosyst 15:2713–2726CrossRefGoogle Scholar
  38. Poller U, Altenberger U, Schubert W (2001) Geochemical investigations of the Bergsträsser Odenwald amphibolites—implications for back-arc magmatism. Mineral Petrol 72:63–76CrossRefGoogle Scholar
  39. Pyle JM, Spear FS, Rudnick RL, McDonough WF (2001) Monazite-xenotime-garnet equilibrium in metapelites and a new monazite-garnet thermometer. J Petrol 42:2083–2107CrossRefGoogle Scholar
  40. Reischmann T, Anthes G (1996) Geochronology of the Mid-German Crystalline Rise west of the River Rhine. Geol Rundsch 85:761–774CrossRefGoogle Scholar
  41. Reischmann T, Anthes G, Jaeckel P, Altenberger U (2001) Age and origin of the Böllsteiner Odenwald. Mineral Petrol 72:29–44CrossRefGoogle Scholar
  42. Renne PR, Mundil R, Balco G, Min K, Ludwig KR (2010) Joint determination of 40K decay constants and 40Ar/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochim Cosmochim Acta 74:5349–5367CrossRefGoogle Scholar
  43. Scherer EE, Mezger K, Münker C (2002) Lu–Hf ages of high-pressure metamorphism in the Variscan fold belt of southern Germany. Geochim Cosmochim Acta Suppl 66:A677Google Scholar
  44. Schubert W, Lippolt HJ, Schwarz W (2001) Early to Middle Carboniferous hornblende 40Ar/39Ar ages of amphibolites and gabbros from the Bergsträsser Odenwald. Mineral Petrol 72:113–132CrossRefGoogle Scholar
  45. Schulz B (2013) Monazite EMP–Th–U–Pb age pattern in Variscan metamorphic units in the Armorican Massif (Brittany, France). Z Dt Ges Geowiss 164:313–335Google Scholar
  46. Schulz B, Schüssler U (2013) Electron-microprobe Th–U–Pb monazite dating in Early Paleozoic high-grade gneisses as a completion of U–Pb isotopic ages (Wilson Terrane, Antarctica). Lithos 175–176:178–192CrossRefGoogle Scholar
  47. Schulz B, von Raumer JF (2011) Discovery of Ordovician–Silurian metamorphic monazite in garnet metapelites of the Alpine External Aiguilles Rouges Massif. Swiss J Geosci 104:67–79CrossRefGoogle Scholar
  48. Siebel W, Eroglu S, Shang CK, Rohrmüller J (2012) Zircon geochronology, elemental and Sr–Nd isotope geochemistry of two Variscan granitoids from the Odenwald–Spessart crystalline complex (Mid-German Crystalline Rise). Mineral Petrol 105:187–200CrossRefGoogle Scholar
  49. Sommermann AE (1993) Zirkonalter aus dem Granit der Bohrung Saar 1. Beiheft Eur J Mineral 5:145Google Scholar
  50. Spear FS (2010) Monazite-allanite phase relations in metapelites. Chem Geol 279:55–62CrossRefGoogle Scholar
  51. Spear FS, Pyle JM (2002) Apatite, monazite and xenotime in metamorphic rocks. In: Kohn M, Rakovan J, Hughes JM (eds) Phosphates—geochemical, geobiological and materials importance. Rev Mineral Geochem 48:293–335Google Scholar
  52. Spear FS, Pyle JM, Cherniak D (2009) Limitations of chemical dating of monazite. Chem Geol 266:218–230CrossRefGoogle Scholar
  53. Stampfli GM, Hochard C, Vérard C, Wilhem C, von Raumer J (2013) The geodynamics of Pangea formation. Tectonophysics 593:1–19CrossRefGoogle Scholar
  54. Stephan T, Kroner U, Hahn T, Hallas P, Heuse T (2016) Fold/cleavage relationships as indicator for late Variscan sinistral transpression at the Rheno-Hercynian–Saxo-Thuringian boundary zone, Central European Variscides. Tectonophysics 681:250–262CrossRefGoogle Scholar
  55. Suzuki K, Kato T (2008) CHIME dating of monazite, xenotime, zircon and polycrase: protocol, pitfalls and chemical criterion of possible discordant age data. Gondwana Res 14:569–586CrossRefGoogle Scholar
  56. Suzuki K, Adachi M, Kajizuka I (1994) Electron microprobe observations of Pb diffusion in metamorphosed detrital monazites. Earth Planet Sci Lett 128:391–405CrossRefGoogle Scholar
  57. Todt WA, Altenberger U, von Raumer JF (1995) U–Pb data on zircons for the thermal peak of metamorphism in the Variscan Odenwald, Germany. Geol Rundsch 84:466–472Google Scholar
  58. Villaseca C, Castiñeiras P, Orejana D (2015) Early Ordovician metabasites from the Spanish Central System: a remnant of intraplate HP rocks in the Central Iberian Zone. Gondwana Res 27:392–409CrossRefGoogle Scholar
  59. von Raumer JF (1973) Die mineralfazielle Stellung der Metapelite und Metagrauwacken zwischen Heppenheim und Reichelsheim (Odenwald). N Jb Mineral Abh 118:313–336Google Scholar
  60. von Raumer JF, Stampfli GM (2008) The birth of the Rheic Ocean—Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics 461:9–20CrossRefGoogle Scholar
  61. von Raumer JF, Stampfli GM, Arenas R, Sánchez Martínez S (2015) Ediacaran to Cambrian oceanic rocks of the Gondwana margin and their tectonic interpretation. Int J Earth Sci 104:1107–1121CrossRefGoogle Scholar
  62. von Seckendorff V, Timmermann MJ, Kramer MJ, Wrobel P (2004) New 40Ar/39Ar ages and geochemistry of late Carboniferous-early Permian lamprophyres and related volcanic rocks in the Saxothuringian Zone of the Variscan Orogeny (Germany). In: Wilson M, Neumann E-R, Davies GR, Timmermann MJ, Heeremans M, Larsen BT (eds) Permo-Carboniferous magmatism and rifting in Europe. Geol Soc Lond Spec Publ 223:335–359Google Scholar
  63. Weber K (1995) Structure of the Spessart crystalline complex. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of Central and Eastern Europe. Springer, Berlin, pp 167–173CrossRefGoogle Scholar
  64. Will TM (1998) Phase diagrams and their application to determine pressure-temperature paths of metamorphic rocks. N Jb Mineral Abh 174:103–130Google Scholar
  65. Will TM (2001) Paleostress-tensor analysis of late deformation events in the Odenwald Crystalline Complex and comparison with other units of the Mid-German Crystalline Rise, Germany. Mineral Petrol 72:229–247CrossRefGoogle Scholar
  66. Will TM, Schmädicke E (2001) A first report of retrogressed eclogites in the Odenwald Crystalline Complex: evidence for high-pressure metamorphism in the Mid-German Crystalline Rise, Germany. Lithos 59:109–125CrossRefGoogle Scholar
  67. Will TM, Schmädicke E (2003) Isobaric cooling and anti-clockwise P–T paths in the Variscan Odenwald Crystalline Complex. J Metamorph Geol 21:469–480CrossRefGoogle Scholar
  68. Will TM, Lee S-H, Schmädicke E, Frimmel HE, Okrusch M (2015) Variscan terrane boundaries in the Odenwald–Spessart basement, Mid-German Crystalline Zone: new evidence from ocean ridge, intraplate and arc-derived metabasaltic rocks. Lithos 220–223:23–42CrossRefGoogle Scholar
  69. Williams ML, Jercinovic MJ, Goncalves P, Mahan K (2006) Format and philosophy for collecting, compiling, and reporting microprobe monazite ages. Chem Geol 225:1–15CrossRefGoogle Scholar
  70. Zeh A (1996) Die Druck-Temperatur-Deformationsentwicklung des Ruhlaer Kristallins (Mitteldeutsche Kristallinzone). Geotekt Forsch 86:1–214Google Scholar
  71. Zeh A, Gerdes A (2010) Baltica- and Gondwana-derived sediments in the Mid-German Crystalline Rise (Central Europe): implications for the closure of the Rheic ocean. Gondwana Res 17:254–263CrossRefGoogle Scholar
  72. Zeh A, Will TM (2010) The Mid-German Crystalline Rise. In: Linnemann U, Romer RL (eds) Pre-Mesozoic geology of Saxo-Thuringia–From the Cadomian active margin to the Variscan orogen. Schweizerbart, Stuttgart, pp 195–220Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institut für Geographie und Geologie der Universität WürzburgWürzburgGermany
  2. 2.Institut für MineralogieTU Bergakademie FreibergFreibergGermany
  3. 3.GeoZentrum NordbayernUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations