International Journal of Earth Sciences

, Volume 106, Issue 5, pp 1505–1524 | Cite as

Interaction between two contrasting magmas in the Albtal pluton (Schwarzwald, SW Germany): textural and mineral-chemical evidence

  • Lorenz Michel
  • Thomas Wenzel
  • Gregor Markl
Original Paper


The magmatic evolution of the Variscan Albtal pluton, Schwarzwald, SW Germany, is explored using detailed textural observations and the chemical composition of plagioclase and biotite in both granite and its mafic magmatic enclaves (MMEs). MMEs probably formed in a two-step process. First, mafic magma intruded a granitic magma chamber and created a boundary layer, which received thermal and compositional input from the mafic magma. This is indicated by corroded “granitic” quartz crystals and by large “granitic” plagioclase xenocrysts, which contain zones of higher anorthite and partly crystallized from a melt of higher Sr content. Texturally, different plagioclase types (e.g. zoned and inclusion-rich types) correspond to different degrees of overprint most likely caused by a thermal and compositional gradient in the boundary layer. The intrusion of a second mafic magma batch into the boundary layer is recorded by a thin An50 zone along plagioclase rims that crystallized from a melt enriched in Sr. Most probably, the second mafic intrusion caused disruption of the boundary layer, dispersal of the hybrid magma in the granite magma and formation of the enclaves. Rapid thermal quenching of the MMEs in the granite magma is manifested by An30 overgrowths on large plagioclase grains that contain needle apatites. Our results demonstrate the importance of microtextural investigations for the reconstruction of possible mixing end members in the formation of granites.


Mafic enclave Granite Magma chamber processes Magma mixing Plagioclase Schwarzwald 



Simone Kaulfuß is thanked for preparing the thin sections. Wolfgang Siebel, two anonymous reviewers and Editor Wolf-Christian Dullo gave thoughtful comments that improved the paper.

Supplementary material

531_2016_1363_MOESM1_ESM.doc (220 kb)
Supplementary material 1 (DOC 221 kb)
531_2016_1363_MOESM2_ESM.pdf (178 kb)
Supplementary material 2 (PDF 179 kb)
531_2016_1363_MOESM3_ESM.xls (238 kb)
Supplementary material 3 (XLS 239 kb)
531_2016_1363_MOESM4_ESM.xls (155 kb)
Supplementary material 4 (XLS 155 kb)
531_2016_1363_MOESM5_ESM.xls (128 kb)
Supplementary material 5 (XLS 129 kb)


  1. Altherr R, Henjes-Kunst F, Langer C, Otto J (1999) Interaction between crustal-derived felsic and mantle-derived mafic magmas in the Oberkirch pluton (European Variscides, Schwarzwald, Germany). Contrib Mineral Petrol 137:304–322. doi: 10.1007/s004100050552 CrossRefGoogle Scholar
  2. Barbarin B (2005) Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos 80:155–177
  3. Barbarin B, Didier J (1992) Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. Earth Environ Sci Trans R Soc Edinb 83:145–153. doi: 10.1017/S0263593300007835 CrossRefGoogle Scholar
  4. Bateman R, Martín MP, Castro A (1992) Mixing of cordierite granitoid and pyroxene gabbro, and fractionation, in the Santa Olalla tonalite (Andalucia). Lithos 28:111–131. doi: 10.1016/0024-4937(92)90027-V CrossRefGoogle Scholar
  5. Blundy JD, Shimizu N (1991) Trace element evidence for plagioclase recycling in calc-alkaline magmas. Earth Planet Sci Lett 102:178–197. doi: 10.1016/0012-821X(91)90007-5 CrossRefGoogle Scholar
  6. Blundy JD, Wood BJ (1991) Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions. Geochim Cosmochim Acta 55:193–209. doi: 10.1016/0016-7037(91)90411-W CrossRefGoogle Scholar
  7. Brophy JG, Dorais MJ, Donnelly-Nolan J, Singer BS (1996) Plagioclase zonation styles in hornblende gabbro inclusions from Little Glass Mountain. Medicine Lake volcano, California: implications for fractionation mechanisms and the formation of composition gaps. Contrib Mineral Petrol 126:121–136. doi: 10.1007/s004100050239 CrossRefGoogle Scholar
  8. Büsch W, Otto J (1980) Endogenetic inclusions in granites of the Black Forest, Germany Neues Jahrbuch für Mineralogie, Monatshefte 269–282Google Scholar
  9. Büttner S, Kruhl JH (1997) The evolution of a late-Variscan high-T/low-P region: the southeastern margin of the Bohemian massif. Geol Rundsch 86:21–38. doi: 10.1007/s005310050119 CrossRefGoogle Scholar
  10. Cashman K, Blundy J (2013) Petrological cannibalism: the chemical and textural consequences of incremental magma body growth. Contrib Mineral Petrol 166:703–729. doi: 10.1007/s00410-013-0895-0 CrossRefGoogle Scholar
  11. Chappell BW (1996) Magma mixing and the production of compositional variation within granite suites: evidence from the granites of Southeastern Australia. J Petrol 37:449–470. doi: 10.1093/petrology/37.3.449 CrossRefGoogle Scholar
  12. Clemens JD, Stevens G (2012) What controls chemical variation in granitic magmas? Lithos 134–135:317–329. doi: 10.1016/j.lithos.2012.01.001 CrossRefGoogle Scholar
  13. Clemens JD, Helps PA, Stevens G (2009) Chemical structure in granitic magmas—a signal from the source? Earth Environ Sci Trans R Soc Edinb 100:159–172. doi: 10.1017/S1755691009016053 Google Scholar
  14. Clynne MA (1999) A complex magma mixing origin for rocks erupted in 1915 Lassen Peak, California. J Petrol 40:105–132. doi: 10.1093/petroj/40.1.105 CrossRefGoogle Scholar
  15. Coombs ML, Eichelberger JC, Rutherford MJ (2003) Experimental and textural constraints on mafic enclave formation in volcanic rocks. J Volcanol Geotherm Res 119:125–144. doi: 10.1016/S0377-0273(02)00309-8 CrossRefGoogle Scholar
  16. Couch S, Sparks RSJ, Carroll MR (2001) Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers. Nature 411:1037–1039CrossRefGoogle Scholar
  17. Couch S, Harford CL, Sparks RSJ, Carroll MR (2003) Experimental constraints on the conditions of formation of highly calcic plagioclase microlites at the Soufrire Hills volcano, Montserrat. J Petrol 44:1455–1475. doi: 10.1093/petrology/44.8.1455 CrossRefGoogle Scholar
  18. Davidson JP, Hora JM, Garrison JM, Dungan MA (2005) Crustal forensics in arc magmas. J Volcanol Geotherm Res 140:157–170. doi: 10.1016/j.jvolgeores.2004.07.019 CrossRefGoogle Scholar
  19. Didier J, Barbarin B (1991) The different types of enclaves in granites—nomenclature. In: Didier J, Barbarin B (eds) Enclaves and granite petrology. Developments in petrology, vol 13. Elsevier, Amsterdam, pp 19–23Google Scholar
  20. Eichelberger JC (1978) Andesitic volcanism and crustal evolution. Nature 275:21–27CrossRefGoogle Scholar
  21. Eichelberger JC (1980) Vesiculation of mafic magma during replenishment of silicic magma reservoirs. Nature 288:446–450CrossRefGoogle Scholar
  22. Eisbacher GH, Lüschen E, Wickert F (1989) Crustal-scale thrusting and extension in the Hercynian Schwarzwald and Vosges, central Europe. Tectonics 8:1–21. doi: 10.1029/TC008i001p00001 CrossRefGoogle Scholar
  23. Emmermann R (1968) Differentiation und Metasomatose des Albtalgranits (Südschwarzwald). N Jahrb Mineral Abh 109:96–130Google Scholar
  24. Emmermann R, Daieva L, Schneider J (1975) Petrologic significance of rare earths distribution in granites. Contrib Mineral Petrol 52:267–283. doi: 10.1007/BF00401457 CrossRefGoogle Scholar
  25. Eroglu S, Schoenberg R, Wille M, Beukes N, Taubald H (2015) Geochemical stratigraphy, sedimentology, and Mo isotope systematics of the ca. 2.58–2.50 Ga-old transvaal supergroup carbonate platform, South Africa. Precambrian Res 266:27–46. doi: 10.1016/j.precamres.2015.04.014 CrossRefGoogle Scholar
  26. Farner MJ, Lee C-TA, Putirka KD (2014) Mafic–felsic magma mixing limited by reactive processes: a case study of biotite-rich rinds on mafic enclaves. Earth Planet Sci Lett 393:49–59. doi: 10.1016/j.epsl.2014.02.040 CrossRefGoogle Scholar
  27. Flood RH, Shaw SE (2014) Microgranitoid enclaves in the felsic Looanga monzogranite, New England Batholith, Australia: pressure quench cumulates. Lithos 198–199:92–102. doi: 10.1016/j.lithos.2014.03.015 CrossRefGoogle Scholar
  28. Furman T, Spera FJ (1985) Co-mingling of acid and basic magma with implications for the origin of mafic I-type xenoliths: field and petrochemical relations of an unusual dike complex at eagle lake, Sequoia National Park, California, U.S.A. J Volcanol Geotherm Res 24:151–178. doi: 10.1016/0377-0273(85)90031-9 CrossRefGoogle Scholar
  29. Hann HP, Chen F, Zedler H, Frisch W, Loeschke J (2003) The Rand granite in the southern Schwarzwald and its geodynamic significance in the Variscan belt of SW Germany. Int J Earth Sci 92:821–842. doi: 10.1007/s00531-003-0361-8 CrossRefGoogle Scholar
  30. Hegner E, Chen F, Hann HP (2001) Chronology of basin closure and thrusting in the internal zone of the Variscan belt in the Schwarzwald, Germany: evidence from zircon ages, trace element geochemistry, and Nd isotopic data. Tectonophysics 332:169–184. doi: 10.1016/S0040-1951(00)00254-7 CrossRefGoogle Scholar
  31. Hibbard MJ (1991) Textural anatomy of twelve magma-mixed granitoid systems. In: Didier J, Barbarin B (eds) Enclaves and granite petrology. Developments in petrology, vol 13. Elsevier, London, pp 431–444Google Scholar
  32. Hibbard MJ (1995) Petrography to petrogenesis, 1st edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  33. Hoefs J, Emmermann R (1983) The oxygen isotope composition of Hercynian granites and pre-Hercynian gneisses from the Schwarzwald, SW Germany. Contrib Mineral Petrol 83:320–329. doi: 10.1007/BF00371200 CrossRefGoogle Scholar
  34. Hogan JP (1993) Monomineralic glomerocrysts: textural evidence for mineral resorption during crystallization of igneous rocks. J Geol 101:531–540. doi: 10.2307/30068805 CrossRefGoogle Scholar
  35. Humphreys MCS, Blundy JD, Sparks RSJ (2006) Magma evolution and open-system processes at Shiveluch volcano: insights from phenocryst zoning. J Petrol 47:2303–2334. doi: 10.1093/petrology/egl045 CrossRefGoogle Scholar
  36. Johannes W, Holtz F (1996) Petrogenesis and experimental petrology of granitic rocks. Minerals and rocks, vol 22. Springer, HeidelbergCrossRefGoogle Scholar
  37. Kalt A, Grauert B, Baumann A (1994) Rb-Sr and U-Pb isotope studies on migmatites from the Schwarzwald (Germany): constraints on isotopic resetting during Variscan high-temperature metamorphism. J Metamorph Geol 12:667–680. doi: 10.1111/j.1525-1314.1994.tb00050.x CrossRefGoogle Scholar
  38. Koteas GC, Williams ML, Seaman SJ, Dumond G (2010) Granite genesis and mafic-felsic magma interaction in the lower crust. Geology 38:1067–1070. doi: 10.1130/g31017.1 CrossRefGoogle Scholar
  39. Lange RA, Frey HM, Hector J (2009) A thermodynamic model for the plagioclase-liquid hygrometer/thermometer. Am Mineral 94:494–506. doi: 10.2138/am.2009.3011 CrossRefGoogle Scholar
  40. LeMaitre RW (2002) Igneous rocks: a classification and glossary of terms; recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  41. Liew TC, Hofmann AW (1988) Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: indications from a Nd and Sr isotopic study. Contrib Mineral Petrol 98:129–138. doi: 10.1007/BF00402106 CrossRefGoogle Scholar
  42. Marschall HR, Kalt A, Hanel M (2003) P-t evolution of a variscan lower-crustal segment: a study of granulites from the Schwarzwald, Germany. J Petrol 44:227–253. doi: 10.1093/petrology/44.2.227 CrossRefGoogle Scholar
  43. Martin VM, Pyle DM, Holness MB (2006) The role of crystal frameworks in the preservation of enclaves during magma mixing. Earth Planet Sci Lett 248:787–799. doi: 10.1016/j.epsl.2006.06.030 CrossRefGoogle Scholar
  44. Nakamura M, Shimakita S (1998) Dissolution origin and syn-entrapment compositional change of melt inclusion in plagioclase. Earth Planet Sci Lett 161:119–133. doi: 10.1016/S0012-821X(98)00144-7 CrossRefGoogle Scholar
  45. Neves SP, Vauchez A (1995) Successive mixing and mingling of magmas in a plutonic complex of Northeast Brazil. Lithos 34:275–299. doi: 10.1016/0024-4937(94)00012-Q CrossRefGoogle Scholar
  46. Panjasawatwong Y, Danyushevsky L, Crawford A, Harris K (1995) An experimental study of the effects of melt composition on plagioclase-melt equilibria at 5 and 10 kbar: implications for the origin of magmatic high-An plagioclase. Contrib Mineral Petrol 118:420–432. doi: 10.1007/s004100050024 CrossRefGoogle Scholar
  47. Perugini D, Poli G (2012) The mixing of magmas in plutonic and volcanic environments: analogies and differences. Lithos 153:261–277. doi: 10.1016/j.lithos.2012.02.002 CrossRefGoogle Scholar
  48. Pietranik A, Koepke J (2009) Interactions between dioritic and granodioritic magmas in mingling zones: plagioclase record of mixing, mingling and subsolidus interactions in the Gęsiniec intrusion NE Bohemian Massif, SW Poland. Contrib Mineral Petrol 158:17–36. doi: 10.1007/s00410-008-0368-z CrossRefGoogle Scholar
  49. Pietranik A, Koepke J (2014) Plagioclase transfer from a host granodiorite to mafic microgranular enclaves: diverse records of magma mixing. Mineral Petrol 1–14 doi: 10.1007/s00710-014-0326-6
  50. Pietranik A, Waight TE (2008) Processes and sources during late Variscan Dioritic-Tonalitic magmatism: insights from plagioclase chemistry (gęsiniec intrusion, NE Bohemian Massif, Poland). J Petrol 49:1619–1645. doi: 10.1093/petrology/egn040 CrossRefGoogle Scholar
  51. Pietranik A, Koepke J, Puziewicz J (2006) Crystallization and resorption in plutonic plagioclase: implications on the evolution of granodiorite magma (Gęsiniec granodiorite, strzelin crystalline Massif, SW Poland) Lithos 86:260–280
  52. Pitcher WS (1997) The nature and origin of granite, 2 nd edn. Chapman & Hall, London; Weinheim [u.a.]Google Scholar
  53. Reubi O, Blundy J (2009) A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites. Nature 461:1269–1273CrossRefGoogle Scholar
  54. Schaltegger U (2000) U-Pb geochronology of the Southern Black Forest Batholith (Central Variscan Belt): timing of exhumation and granite emplacement. Int J Earth Sci 88:814–828. doi: 10.1007/s005310050308 CrossRefGoogle Scholar
  55. Schuler C (1983) Die interne SR-Isotopensystematik des herzynischen Albtalgranits (Schwarzwald). Zürich, Techn. Hochsch., Diss., 1983, ZürichGoogle Scholar
  56. Singer BS, Dungan MA, Layne GD (1995) Textures and Sr, Ba, Mg, Fe, K and Ti compositional profiles in volcanic plagioclase clues to the dynamics of calc-alkaline magma chambers. Am Mineral 80:776–798CrossRefGoogle Scholar
  57. Sisson TW, Grove TL, Coleman DS (1996) Hornblende gabbro sill complex at Onion valley, California, and a mixing origin for the Sierra Nevada batholith. Contrib Mineral Petrol 126:81–108. doi: 10.1007/s004100050237 CrossRefGoogle Scholar
  58. Sparks RSJ, Marshall LA (1986) Thermal and mechanical constraints on mixing between mafic and silicic magmas. J Volcanol Geotherm Res 29:99–124. doi: 10.1016/0377-0273(86)90041-7 CrossRefGoogle Scholar
  59. Stenger R (1979) Petrographie und Geochemie der endogenen Einschlüsse im Albtalgranit (Südschwarzwald). Jahresheft des geologischen Landesamtes Baden-Württemberg 21:89–106Google Scholar
  60. Ubide T, Galé C, Larrea P, Arranz E, Lago M, Tierz P (2014) The relevance of crystal transfer to magma mixing: a case study in composite dykes from the central pyrenees. J Petrol 55:1535–1559. doi: 10.1093/petrology/egu033 CrossRefGoogle Scholar
  61. Ustunisik G, Kilinc A, Nielsen RL (2014) New insights into the processes controlling compositional zoning in plagioclase. Lithos 200–201:80–93. doi: 10.1016/j.lithos.2014.03.021 CrossRefGoogle Scholar
  62. Waight TE, Maas R, Nicholls IA (2001) Geochemical investigations of microgranitoid enclaves in the S-type Cowra Granodiorite, Lachlan Fold Belt, SE Australia. Lithos 56:165–186. doi: 10.1016/S0024-4937(00)00053-0 CrossRefGoogle Scholar
  63. Weidendorfer D, Mattsson HB, Ulmer P (2014) Dynamics of Magma Mixing in Partially crystallized magma chambers: textural and petrological constraints from the basal complex of the austurhorn intrusion (SE Iceland). J Petrol 55:1865–1903. doi: 10.1093/petrology/egu044 CrossRefGoogle Scholar
  64. Wiebe RA, Smith D, Sturm M, King EM, Seckler MS (1997) Enclaves in the Cadillac Mountain granite (coastal maine): samples of hybrid magma from the base of the chamber. J Petrol 38:393–423. doi: 10.1093/petroj/38.3.393 CrossRefGoogle Scholar
  65. Wimmenauer W (1963) Einschlüsse im Albtalgranite (Südschwarzwald) und ihre Bedeutung für dessen Vorgeschichte. Neues Jahrbuch für Mineralogie, Monatshefte 1:6–17Google Scholar
  66. Wyllie PJ, Cox KG, Biggar GM (1962) The habit of apatite in synthetic systems and igneous rocks. J Petrol 3:238–243. doi: 10.1093/petrology/3.2.238 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of GeosciencesUniversity of TübingenTübingenGermany

Personalised recommendations