Advertisement

International Journal of Earth Sciences

, Volume 106, Issue 3, pp 959–965 | Cite as

Shallow earthquake swarms in southern Ryukyu area: manifestation of dynamics of fluid and/or magma plumbing system revealed by teleseismic and regional datasets

  • Aleš ŠpičákEmail author
  • Jiří Vaněk
Original Paper
  • 240 Downloads

Abstract

Earthquake swarm occurrence beneath volcanic domains is one of the indicators of current magmatic activity in the Earth’s crust. Repeated occurrence of teleseismically recorded earthquake swarms has been observed in the lithospheric wedge of the southern Ryukyu area above the subducting slab of the Philippine Sea Plate. The swarms were analyzed using the EHB, ISC and JMA catalogs of hypocenter parameters. The swarm earthquakes are shallow (1–60 km), in the body-wave magnitude range up to 5.8. The swarms are distributed beneath the seafloor, parallel to the Ryukyu Trench along a belt connecting active subaerial volcanoes Io-Torishima north-east and Kueishantao west of the investigated area. Epicentral zones of the swarms often coincide with distinct elevations at the seafloor—seamounts and seamount ranges. The top of the subducting slab reaches a depth of about 100 km beneath the zones of earthquake swarm occurrence, which is an average depth of a slab beneath volcanoes in general. The repeated occurrence of relatively strong, teleseismically recorded earthquake swarms thus probably reflects fluid and/or magma migration in the plumbing system of the volcanic arc and points to brittle character of the lithospheric wedge at respective depths. In addition to the factual results, this study documents the high accuracy of hypocenter parameter determinations published by the International Seismological Centre and the usefulness of the EHB relocation procedure.

Keywords

Earthquake swarms Southern Ryukyu Wadati-Benioff zone Seamounts Magma plumbing system Earthquake catalogs 

Supplementary material

531_2016_1344_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 19 kb)
531_2016_1344_MOESM2_ESM.eps (7.3 mb)
Supplementary material 2 (EPS 7489 kb)
531_2016_1344_MOESM3_ESM.eps (3.4 mb)
Supplementary material 3 (EPS 3508 kb)

References

  1. Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4(3):1027. doi: 10.1029/2001GC000252 CrossRefGoogle Scholar
  2. Bondár I, Storchak D (2011) Improved location procedures at the International Seismological Centre. Geophys J Int 186:1220–1244. doi: 10.1111/j.1365-246X.2011.05107.x CrossRefGoogle Scholar
  3. Chung S-L, Wang S-L, Shinjo R, Lee C-S, Chen C-H (2000) Initiation of arc magmatism in an embryonic continental rifting zone of the southernmost part of Okinawa Trough. Terra Nova 12:225–230CrossRefGoogle Scholar
  4. Engdahl ER, van der Hilst RD, Buland R (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull Seismol Soc Am 88:722–743Google Scholar
  5. Global Centroid-Moment-Tensor Project: http://www.globalcmt.org/
  6. International Seismological Centre (2009) EHB Bulletin, http://www.isc.ac.uk, Internatl. Seis. Cent., Thatcham, United Kingdom, 2009
  7. Koulakov I (2013) Studying deep sources of volcanism using multiscale seismic tomography. J Volc Geothermal Res 257:205–226CrossRefGoogle Scholar
  8. Lin J-Y, Sibuet J-C, Lee C-S, Hsu S-K, Klingelhoefer F (2007) Origin of the southern Okinawa Trough volcanism from detailed seismic tomography. J Geophys Res 112:B08308. doi: 10.1029/2006JB004703 Google Scholar
  9. Luehr B, Koulakov I, Rabbel W, Zschau J, Ratdomopurbo A, Brotopuspito KS, Fauzi P, Sahara DP (2013) Fluid ascent and magma storage beneath Gunung Merapi revealed by multi-scale seismic imaging. J Volc Geothermal Res 261:7–19CrossRefGoogle Scholar
  10. McGary RS, Evans RL, Wannamaker PE, Elsenbeck J, Rondenay S (2014) Pathway from subducting slab to surface for melt and fluids beneath Mount Rainier. Nature 511:338–340CrossRefGoogle Scholar
  11. Ryan WBF, Carbotte SM, Coplan JO, O’Hara S et al (2009) Global multi-resolution topography synthesis. Geochem Geophys Geosystems 10:Q03014. doi: 10.1029/2008GC002332 CrossRefGoogle Scholar
  12. Sibuet J-C, Letouzey J, Barbier F, Charvet J, Foucher J-P et al (1987) Back arc extension in the Okinawa Trough. J Geophys Res 92(B13):14041–14063CrossRefGoogle Scholar
  13. Sibuet J-C, Deffontaine B, Hsu S-K, Thareau N, Forma J-P, Liu C-S, ACT Party (1998) Okinawa trough backarc basin: early tectonic and magmatic evolution. J Geophys Res 103(B12):30245–30267CrossRefGoogle Scholar
  14. Siebert L, Simkin T (2012) Volcanoes of the world: an illustrated catalog of holocene volcanoes and their eruptions. Smithsonian Institution, Global Volcanism Program Digital Information Series, GVP-3: http://www.volcano.si.edu/world/
  15. Špičák A, Hanuš V, Vaněk J (2009) Seismically active column and volcanic plumbing system beneath the island arc of the Izu-Bonin subduction zone. Geophys J Int 179:1301–1312CrossRefGoogle Scholar
  16. Špičák A, Matějková R, Vaněk J (2013a) Seismic response to recent tectonic processes in the Banda Arc region. J Asian Earth Sci 64:1–13CrossRefGoogle Scholar
  17. Špičák A, Kuna V, Vaněk J (2013b) Earthquake occurrence reveals magma ascent beneath volcanoes and seamounts in the Banda region. Bull Volc 75(12):777. doi: 10.1007/s00445-013-0777-3 CrossRefGoogle Scholar
  18. Syracuse EM, Abers GA (2006) Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem Geophys Geosyst 7(5):Q05017. doi: 10.1029/2005GC001045 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of GeophysicsAcademy of Sciences of the Czech RepublicPraha 4Czech Republic

Personalised recommendations