Advertisement

International Journal of Earth Sciences

, Volume 106, Issue 3, pp 827–853 | Cite as

The Late Variscan control on the location and asymmetry of the Upper Rhine Graben

  • J. C. Grimmer
  • J. R. R. Ritter
  • G. H. Eisbacher
  • W. Fielitz
Review Article

Abstract

The NNE-trending Upper Rhine Graben (URG) of the European Cenozoic Rift System developed from c. 47 Ma onwards in response to changing lithospheric stresses in the northwestern foreland of the Alps. The composite graben structure consists of three segments, each c. 100 km long and 30–40 km wide, but flares to c. 60 km near its southern and to c. 80 km near its northern termination. Normal faulting induced a total extension of 5–8 km of the 1–2 km thick Mesozoic sedimentary Franconian platform and underlying Variscan basement rocks. However, distribution of an up to 3.5 km thick sedimentary graben fill and cumulative displacements near Eastern and Western Main Border fault systems suggest that subsidence of the graben floor and shoulder uplift created strong cross-sectional asymmetries. Cumulative W-down displacements >3 km along strongly segmented transfer faults in the east contrast with E-down displacements <3 km and major monoclinal “block fields” in the west. Both location and asymmetry of the URG appear to be related to lithospheric shear zones that originated within the central parts of the Variscan orogen between c. 330 and 315 Ma. Following pervasive deformation, HT/LP regional metamorphism and emplacement of granodioritic-granitic plutons a c. 50-km-thick orogenic crust were thinned to an about 30-km-thick two-layered crust above a reconsolidated and relatively planar crust-mantle boundary (Moho). In the URG area extensional thinning of the crust appears to have occurred mainly along a composite NNE-striking and mainly W-down “East Rhine Detachment”, which is partly exposed along the Wehratal, Omerskopf, Otzberg and other mylonitic-cataclastic shear zones in the basement of the eastern graben shoulder. These shear zones probably extend into lower crustal levels, where they are revealed as gently W-dipping seismic reflectors beneath and west of the URG. Major W-down displacements probably account for the mapped abundance of high-grade metamorphic basement rocks on the eastern graben shoulder in contrast to the predominantly low-grade metamorphic to unmetamorphosed sedimentary-volcanic rocks exposed on the western shoulder. Although between c. 310 and 270 Ma NE-trending Permocarboniferous volcanic-sedimentary basins of the URG area subsided along upper crustal faults that mimic the trend of Variscan faults, initial broad lithospheric cooling from c. 270–200 Ma led to subsidence of a distinctly NNE- to SSW-oriented embayment that was probably underlain by thinner Palaeozoic crust in the area of the NNE-trending East Rhine Detachment. After re-emergence of the platform above sea level in late Mesozoic times, the deep-reaching W-dipping “extensional defects” of the East Rhine Detachment exerted a primary lithospheric scale control on both location and cross-sectional asymmetry of the Cenozoic graben structure. NE- and NW-striking, strongly altered and more shallow rooted Permocarboniferous or Mesozoic faults exerted secondary upper crustal controls on transfer faults and the accommodation zones near the terminations and segment boundaries of the URG. Deep crustal to upper lithospheric asymmetries continue to influence the neotectonic setting of the URG, such as westward rising earthquake hypocentres. Seismic activity along the URG appears to be part of a >600 km long zone that delimits the trailing edge of a SW-moving lithospheric block. In the URG area, NE–SW-oriented seismic anisotropy at sublithospheric depths of c. 60–80 km suggest active mantle flow in this direction as a possible driving force for the reactivation of pre-graben lithospheric shear zones.

Keywords

Upper Rhine Graben Late Variscan extension Rift asymmetry Structural inheritance Neotectonics Seismic anisotropy 

Notes

Acknowledgments

Constructive reviews of J. Kley and A. Henk as well as editorial handling of W. Dullo are gratefully acknowledged. We also gratefully acknowledge support of M. Hanel for discussions in the field and for providing sample location information of the geochronological samples of Hess et al. (2000) shown in our Fig. 7.

References

  1. Ahorner L (1983) Historical seismicitiy and present-day microearthquake activity of the Rhenish Massif, Central Europe. In: Fuchs K et al (eds) Plateau uplift. Springer, Berlin, pp 198–221CrossRefGoogle Scholar
  2. Alexandrov P, Royer JJ, Deloule E (2001) 331 ± 9 My emplacement age of the Soultz monzogranite (Rhinegraben basement) by U–Pb ion probe dating of samples from 5 km depth. C R Acad Sci Paris Terre Planète 332:747–754. doi: 10.1016/S1251-8050(01)01594-4 Google Scholar
  3. Altenberger U, Oberhänsli R, Stein E, Moghni M (2001) Geochemistry, tectonic setting and geodynamic significance of late orogenic dikes in the Melibocus Massif, Bergsträsser Odenwald. Mineral Petrol 71:209–228. doi: 10.1007/s007100170034 CrossRefGoogle Scholar
  4. Altherr R, Henjes-Kunst F, Langer C, Otto J (1999a) Interaction between felsic and mantle-derived mafic magmas in the Oberkirch Pluton (European Variscides, Schwarzwald, Germany). Contrib Mineral Petrol 137:304–322. doi: 10.1007/s004100050552 CrossRefGoogle Scholar
  5. Altherr R, Henes-Klaiber U, Hegner E, Satir M, Langer C (1999b) Plutonism in the Variscan Odenwald (Germany): from subduction to collision. Int J Earth Sci 88:422–443. doi: 10.1007/s005310050276 CrossRefGoogle Scholar
  6. Anderle H-J (1974) Block tectonic interrelations between northern Upper Rhine graben and southern Taunus mountains. In: Illies H, Fuchs K (eds) Approaches to taphrogenesis. Schweizerbart, Stuttgart, pp 243–253Google Scholar
  7. Anderle H-J (1987) The evolution of the South Hunsrück and Taunus Borderzone. Tectonophysics 134:101–114. doi: 10.1016/0040-1951(87)90317-9 CrossRefGoogle Scholar
  8. Anthes G, Reischmann T (2001) Timing of granitoid magmatism in the eastern mid-German crystalline rise. J Geodyn 31:119–143. doi: 10.1016/S0264-3707(00)00024-7 CrossRefGoogle Scholar
  9. Barth A, Ritter JRR, Wenzel F (2015) Spatial variations of earthquake occurrence and coseismic deformation in the Upper Rhine Graben, Central Europe. Tectonophysics 651–652:172–185. doi: 10.1016/j.tecto.2015.04.004 CrossRefGoogle Scholar
  10. Bartz J (1974) Die Mächtigkeit des Quartärs im Oberrheingraben. In: Illies H, Fuchs K (eds) Approaches to taphrogenesis. Schweizerbartsche Verlagsbuchhandlung, Stuttgart, pp 78–87Google Scholar
  11. Becker A (1999) In situ stress data from the Jura Mountains—new results and interpretation. Terra Nova 11:9–15. doi: 10.1046/j.1365-3121.1999.00215.x CrossRefGoogle Scholar
  12. Becker A, Blümling P, Müller WH (1987) Recent stress field and neotectonics in the Eastern Jura Mountains, Switzerland. Tectonophysics 135:277–288. doi: 10.1016/0040-1951(87)90112-0 CrossRefGoogle Scholar
  13. Behr HJ, Conrad W, Trzebski R (2002) Compilation, LINSSER filtering and interpretation of the gravity map of Germany and adjacent regions at a scale of 1:1,000.000. Z Geol Wiss 30:385–402Google Scholar
  14. Behrmann JH, Hermann O, Horstmann M, Tanner DC, Bertrand G (2003) Anatomy and kinematics of oblique continental rifting revealed: a three-dimensional case study of the southeast Upper Rhine graben (Germany). AAPG Bull 87:1105–1121CrossRefGoogle Scholar
  15. Berg D (1961) Geologie des Schwarzwaldrandes zwischen Badenweiler und Kandern. Ber Naturforschenden Ges Freibg 51:5–40Google Scholar
  16. Bertleff B, Joachim H, Koziorowski G, Leiber J, Ohmert W, Prestel R, Stober I, Strayle G, Villinger E, Werner J (1988) Ergebnisse der Hydrogeothermiebohrungen in Baden–Württemberg. J GLA Baden-Württ 30:27–116Google Scholar
  17. Boenigk W, Frechen M (2006) The Pliocene and Quaternary fluvial archives of the Rhine system. Q Sci Rev 25:550–574. doi: 10.1016/j.quascirev.2005.01.018 CrossRefGoogle Scholar
  18. Bogaard PJ, Wörner G (2003) Petrogenesis of basanitic to tholeitic volcanic rocks from the Miocene Vogelsberg, central Germany. J Petrol 44:569–602. doi: 10.1093/petrology/44.3.569 CrossRefGoogle Scholar
  19. Bonjer K-P (1997) Seismicity pattern and style of seismic faulting at the eastern borderfault of the southern Rhine Graben. Tectonophysics 275:41–69. doi: 10.1016/S0040-1951(97)00015-2 CrossRefGoogle Scholar
  20. Bonjer K-P, Gelbke C, Gilg B, Rouland D, Mayerrosa D, Massinon B (1984) Seismicity and dynamics of the Upper Rhinegraben. J Geophys 55:1–12Google Scholar
  21. Bourgeois O, Ford M, Diraison M, LeCarlier de Veslud C, Gerbault M, Pik R, Ruby N, Bonnet S (2007) Separation of rifting and lithospheric folding signatures in the NW-Alpine foreland. Int J Earth Sci 96:1003–1031. doi: 10.1007/s00531-007-0202-2 CrossRefGoogle Scholar
  22. Boutin R, Montigny R, Thuizat R (1995) Chronologie K–Ar et 39Ar–40Ar du métamorphisme et du magmatisme des Vosges, Comparaison avec les massifs varisques avoisinants. Géol Fr 1:3–25Google Scholar
  23. Brewer MS, Lippolt H-J (1972) Rubidium–Strontium-Altersbeziehungen variscischer Granite des südlichen Schwarzwaldes. Fortschr Miner Beih 59(3):5Google Scholar
  24. Breyer F (1974) Die Entstehungsgeschichte des Südteils des Rheingrabens nach reflexionsseismischen Messungen, geologischen Kartierungen und Tiefbohrungen. Geol Jb Reihe A 20:3–64Google Scholar
  25. Breyer F, Dohr G (1967) Bemerkungen zur Stratigraphie und Tektonik des Rheintalgrabens zwischen Karlsruhe und Offenburg. Abh Geol Landesamt Baden-Württ 6:42–43Google Scholar
  26. Brun JP, Gutscher MA, DEKORP-ECORS Team (1992) Deep crustal structure of the Rhine Graben from DEKORP-ECORS seismic reflection data. Tectonophysics 208:39–47. doi: 10.1016/0040-1951(92)90340-C CrossRefGoogle Scholar
  27. Cloos H (1922) Über Ausbau und Anwendung der granit-tektonischen Methode. Abh Preuß Geol Landesanst N.F. 89:1–18Google Scholar
  28. Cuenot N, Charléty J, Dorbath L, Haessler H (2006) Faulting mechanisms and stress regime at the European HDR site of Soultz-sous-Forêts, France. Geothermics 35(5):561–575. doi: 10.1016/j.geothermics.2006.11.007 CrossRefGoogle Scholar
  29. Delouis B, Haessler H, Cisternas A, Rivera L (1993) Stress tensor determination in France and neighbouring regions. Tectonophysics 221(3):413–438. doi: 10.1016/0040-1951(93)90171-F CrossRefGoogle Scholar
  30. Demoulin A, Launoy T, Zippelt K (1998) Recent crustal movements in the southern Black Forest (western Germany). Geol Rundsch 87(1):43–52. doi: 10.1007/s005310050188 CrossRefGoogle Scholar
  31. Derer CE, Schumacher ME, Schäfer A (2005) The northern Upper Rhine Graben: basin geometry and early syn-rift tectono-sedimentary evolution. Int J Earth Sci 94:640–656. doi: 10.1007/s00531-005-0515-y CrossRefGoogle Scholar
  32. Dézes P, Schmid S, Ziegler PA (2004) Evolution of the European Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics 389:1–33. doi: 10.1016/j.tecto.2004.06.011 CrossRefGoogle Scholar
  33. Doebl F (1967) The Tertiary and Pleistocene sediments of the northern and central part of the upper Rhinegraben. Abh GLA Baden-Württ 6:48–54Google Scholar
  34. Doebl F, Bader M (1970) Die Geologie des Gebietes der Kleinen Kalmit (westlich Landau/Pfalz) zur Zeit des Tertiärs. Mitt Poll 17:14–23Google Scholar
  35. Doebl F, Teichmüller R (1979) Zur Geologie und heutigen Geothermik im mittleren Oberrhein-Graben. Fortschr Geol Rheinl Westfal 27:1–17Google Scholar
  36. Dombrowski A, Henjes-Kunst F, Höhndorf A, Kröner A, Okrusch M, Richter P (1995) Orthogneiss in the Spessart crystalline complex, north-west Bavaria: Silurian granitoid magmatism at an active continental margin. Geol Rundsch 84:399–411. doi: 10.1007/BF00260449 CrossRefGoogle Scholar
  37. Dunworth EA, Wilson M (1998) Olivine melilitites of the SW German Tertiary volcanic province: mineralogy and petrogenesis. J Petrol 39:1805–1836. doi: 10.1093/petroj/39.10.1805 CrossRefGoogle Scholar
  38. Durst H (1991) Aspects of exploration history and structural style in the Rhine graben area. Spec Publ Eur Assoc Petrol Geol 1:247–261Google Scholar
  39. Echtler HP, Chauvet A (1991/1992) Carboniferous convergence and subsequent crustal extension in the southern Schwarzwald (SW Germany). Geodin Acta 5:37–49. doi: 10.1080/09853111.1992.11105218
  40. Edel J-B, Fluck P (1989) The upper Rhenish Shield basement (Vosges, Upper Rhinegraben, Black Forest) main structural features deduced from magnetic, gravimetric, and geological data. Tectonophysics 169:303–316. doi: 10.1016/0040-1951(89)90093-0 CrossRefGoogle Scholar
  41. Edel J-B, Arnaud JC, Clauss ML, Papillon E (1996) The Paleozoic basement of the “Süddeutsche Großscholle” derived from gravimetric and magnetic data with emphasis on the Kraichgau terrane. Z Geol Wiss 24:41–54Google Scholar
  42. Edel J-B, Schulmann K, Rotstein Y (2007) The Variscan tectonic inheritance of the Upper Rhine Graben: evidence of reactivations in the Lias, Late Eocene-Oligocene up to the recent. Int J Earth Sci 96:305–326. doi: 10.1007/s00531-006-0092-8 CrossRefGoogle Scholar
  43. Eisbacher GH, Fielitz W (2010) Karlsruhe und seine Region. Samml Geol Führer Gebr Bornträger Stuttg 104:342Google Scholar
  44. Eisbacher GH, Lüschen E, Wickert F (1989) Crustal scale thrusting and extension in the Hercynian Schwarzwald and Vosges, central Europe. Tectonics 8:1–21. doi: 10.1029/TC008i001p00001 CrossRefGoogle Scholar
  45. Eisele J, Gertisser R, Montenari M (2000) Geochemistry and provenance of Devono-Carboniferous volcano-sedimentary sequences from the Southern Vosges Basin and the geodynamic implications for the western Moldanubian Zone. Geol Soc Lond Spec Publ 179:433–444. doi: 10.1144/GSL.SP.2000.179.01.26 CrossRefGoogle Scholar
  46. Ellwanger D, Gabriel G, Simon T, Wielandt-Schuster U, Greiling RO, Hagedorn EM, Hahne J, Heinz J (2008) Long sequence of Quaternary Rocks in the Heidelberg Basin Depocentre. Q Sci J 57:314–337Google Scholar
  47. Evans KF, Moriya H, Niitsuma H, Jones RH, Phillips WS, Genter A, Baria R (2005) Microseismicity and permeability enhancement of hydrogeologic structures during massive fluid injections into granite at 3 km depth at the Soultz HDR site. Geophys J Int 160(1):388–412. doi: 10.1111/j.1365-246X.2004.02474.x Google Scholar
  48. Fäh D, Gisler M, Jaggi B, Kästli P, Lutz T, Masciadri V, Matt C, Mayer-Rosa D, Rippmann D, Schwarz-Zanetti G, Tauber J, Wenk T (2009) The 1356 Basel earthquake: an interdisciplinary revision. Geophys J Int 178:351–374. doi: 10.1111/j.1365-246X.2009.04130.x CrossRefGoogle Scholar
  49. Feciakova Z, Mertz DF, Renne PR (2007) Geodynamic setting of the Tertiary Hocheifel Volcanism I and II. In: Ritter JRR, Christensen UR (eds) Mantle plumes. Springer, Berlin, pp 185–240. doi: 10.1007/978-3-540-68046-8_7 Google Scholar
  50. Flöttmann T, Oncken O (1992) Constraints on the evolution of the Mid German Crystalline Rise—a study of outcrop west of the river Rhine. Geol Rundsch 81:515–543. doi: 10.1007/BF01828613 CrossRefGoogle Scholar
  51. Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries, and plate tectonic evolution. Geol Soc Lond Spec Publ 179:35–61. doi: 10.1144/GSL.SP.2000.179.01.05 CrossRefGoogle Scholar
  52. Frietsch M, Groos JC, Ritter JRR (2015) Detection and delineation of a fracture zone with observation of seismic shear wave anisotropy in the Upper Rhine Graben, SW Germany. Pure Appl Geophys 172:267–282. doi: 10.1007/s00024-014-0899-3 CrossRefGoogle Scholar
  53. Fuhrmann T, Westerhaus M, Zippelt K, Heck B (2014) Vertical displacement rates in the Upper Rhine Graben area derived from precise leveling. J Geodyn 88:773–787. doi: 10.1007/s00190-014-0721-0 CrossRefGoogle Scholar
  54. Fuhrmann T, Cuenca MC, Knöpfler A, van Leijen FJ, Mayer M, Westerhaus M, Hanssen RF, Heck B (2015) Estimation of small surface displacements in the Upper Rhine Graben area from a combined analysis of PS-InSAR, levelling and GNSS data. Geophys J Int 203:614–631. doi: 10.1093/gji/ggv328 CrossRefGoogle Scholar
  55. Gaßner L, Groos JC, Ritter JRR (2014) Herdflächenanalyse induzierter Erdbeben in der Südpfalz: Reaktivierung präexistenter Bruchflächen und Spannungszustand, Rheinland-Pfalz. Mainz Geowiss Mitt 42:195–214Google Scholar
  56. Geissler WH, Sodoudi F, Kind R (2010) Thickness of the central and eastern European lithosphere as seen by S receiver functions. Geophys J Int 181:604–634. doi: 10.1111/j.1365-246X.2010.04548.x Google Scholar
  57. Genser H (1959) Stratigraphie und Tektonik der Vorbergzone am südwestlichen Schwarzwaldrand zwischen Staufen und Badenweiler. Ber Naturforschenden Ges Freibg 49:59–112Google Scholar
  58. Geyer OF, Nitsch E, Simon T (2011) Geologie von Baden-Württemberg. Schweizerbart, Stuttgart, p 627Google Scholar
  59. Glahn A, Granet M (1992) 3-D structure of the lithosphere beneath the southern Rhine Graben area. Tectonophysics 208:149–158. doi: 10.1016/0040-1951(92)90341-3 CrossRefGoogle Scholar
  60. Glahn A, Granet M, Achauer U, Liotier Y, Slack PD, Wittlinger G (1993) Southern Rhine Graben: small wavelength tomographic study and implications for the dynamic evolution of the graben. Geophys J Int 113(2):399–413. doi: 10.1111/j.1365-246X.1993.tb00896.x CrossRefGoogle Scholar
  61. Grad M, Tiira T, ESC Working Group (2009) The Moho depth map of the European Plate. Geophys J Int 176:279–292. doi: 10.1111/j.1365-246X.2008.03919.x CrossRefGoogle Scholar
  62. Greiling RO, Verma PK (2001) Strike-slip tectonics and granitoid emplacement: an AMS fabric study from the Odenwald crystalline complex, SW Germany. Mineral Petrol 72:165–184. doi: 10.1007/s007100170032 CrossRefGoogle Scholar
  63. Grimm MC (2005) Beiträge zur Lithostratigraphie des Paläogens und Neogens im Oberrheingebiet (Oberrheingraben, Mainzer Becken, Hanauer Becken). Geol Jb Hess 132:79–112Google Scholar
  64. Grimm KI (2011) Stratigraphie von Deutschland. Tertiär, Teil I (Oberrreingraben). SDGG 75:57–132Google Scholar
  65. Grimmer JC, Eisbacher GH, Fielitz W, Hanel M (2014) Late Variscan syn-tectonic emplacement of the Nordschwarzwald Granite Complex during lithosphere-scale E–W-extension-transtension (SW-Germany): constraints from structural and rock magnetic fabric data. SDGG 85:607Google Scholar
  66. Groschopf R (1988) Erläuterungen zu Blatt 7914 Sankt Peter. GLA Baden-Württemberg, Stuttgart, p 98Google Scholar
  67. Güldenpfennig M (1991) Petrographie und Geochemie unterkarbonischer Grauwacken und Vulkanite der Zone von Badenweiler–Lenzkirch in der Umgebung von Präg, Südschwarzwald. Jh GLA Baden-Württ 33:5–32Google Scholar
  68. Güldenpfennig M (1998) Zur geotektonischen Stellung unterkarbonischer Grauwacken und Vulkanite der Zone von Badenweiler–Lenzkirch (Südschwarzwald). Z Dtsch Ges Geowiss 149:213–232Google Scholar
  69. Hagedorn B, Lippolt H-J (1994) Isotopische Alter von Zerrüttungszonen als Altersschranken der Freiamt-Sexau-Mineralisation (Mittlerer Schwarzwald). Abh GLA Baden-Württ 14:205–219Google Scholar
  70. Haimberger R, Hoppe A, Schäfer A (2005) High-resolution seismic survey on the Rhine River in the northern Upper Rhine Graben. Int J Earth Sci 94(4):657–668. doi: 10.1007/s00531-005-0514-z CrossRefGoogle Scholar
  71. Hann HP, Sawatzki G (1998) Deckenbau und Sedimentationsalter im Grundgebirge des Südschwarzwalds/SW-Deutschland. Z Dtsch Ges Geowiss 149:183–195Google Scholar
  72. Hann HP, Sawatzki G (2000) Neue Daten zur Tektonik des Südschwarzwalds. Jber Mitt Oberrrhein Geol Ver 82:363–376. doi: 10.1127/jmogv/82/2000/363 Google Scholar
  73. Hann HP, Sawatzki G, Vaida M (1995) Chitinozoen und Acritarchen des Ordoviziums aus metamorphen Grauwacken der Zone von Badenweiler–Lenzkirch, Schwarzwald, SW-Deutschland. N Jb Geol Paläont Mh 1995:375–383Google Scholar
  74. Hann HP, Chen F, Zedler H, Frisch W, Loeschke J (2003a) The Randgranit in the southern Schwarzwald and its geodynamic significance in the Variscan belt of SW Germany. Int J Earth Sci 92:821–842. doi: 10.1007/s00531-003-0361-8 CrossRefGoogle Scholar
  75. Hann HP, Chen F, Zedler H, Sawatzki G (2003b) Zircon ages and geochemistry of metavolcanic layers from the northern Badenweiler–Lenzkirch Zone (southern Schwarzwald, Germany). N Jb Geol Paläont Abh 230:451–469Google Scholar
  76. Hauber L (1993) Der südliche Rheingraben und seine geothermische Situation. Bull Ver Schweiz Petrol Geol Ing 60:53–69Google Scholar
  77. Hegner E, Kölbl-Ebert M, Loeschke J (1998) Post-collisional Variscan lamprophyres (Black Forest, Germany): 40Ar/39Ar phlogopite dating, Nd, Pb, Sr isotope, and trace element characteristics. Lithos 45:395–411. doi: 10.1016/S0024-4937(98)00041-3 CrossRefGoogle Scholar
  78. Hegner E, Chen F, Hann HP (2001) Chronology of basin closure and thrusting in the internal zone of the Variscan belt in the Schwarzwald, Germany: evidence from zircon ages, trace element geochemistry, and Nd isotopic data. Tectonophysics 332:169–184. doi: 10.1016/S0040-1951(00)00254-7 CrossRefGoogle Scholar
  79. Hegner E, Gruler M, Hann HP, Chen F, Güldenpfennig M (2005) Testing tectonic models with geochemical parameters in greywacke. J Geol Soc Lond 162:87–96. doi: 10.1144/0016-764904-029 CrossRefGoogle Scholar
  80. Heidbach O, Tingay M, Barth A, Reinecker J, Kurfeß D, Müller B (2010) Global crustal stress pattern based on the World Stress Map database release 2008. Tectonophysics 482:3–15. doi: 10.1016/j.tecto.2009.07.023 CrossRefGoogle Scholar
  81. Heitele H (1988) Die tektonischen Voraussetzungen für das Auftreten von Mineralwässern am pfälzischen Oberrheingrabenrand nach neueren Bohrergebnissen. Mitt Pollichia 75:101–112Google Scholar
  82. Henk A (1993) Subsidenz und Tektonik des Saar-Nahe-Beckens (SW-Deutschland). Geol Rundsch 82:3–19. doi: 10.1007/BF00563266 CrossRefGoogle Scholar
  83. Henk A (1995) Late Variscan exhumation histories of the southern Rhenohercynian Zone and western Mid-German Crystalline Rise: results from thermal modelling. Geol Rundsch 84:578–590. doi: 10.1007/BF00284522 CrossRefGoogle Scholar
  84. Hermann E (2005) Geologie und Tektonik des paläozoischen Sockels im oberen Murgtal (Baiersbronn, SW-Deutschland). Diploma thesis, University of Karlsruhe, 99 ppGoogle Scholar
  85. Hess JC, Schmidt G (1989) Zur Altersstellung der Kataklasite im Bereich der Otzberg Zone, Odenwald. Geol Jb Hess 117:69–77Google Scholar
  86. Hess JC, Hanel M, Arnold M, Gaiser A, Prowatke S, Stadler S, Kober B (2000) Variscan magmatism at the northern margin of the Moldanubian Vosges and Schwarzwald I. Ages of intrusion and cooling history. Eur J Min Bh 12:79Google Scholar
  87. Hincke E (2011) Deformierte Granite im Südschwarzwald als Indikatoren lokaler variskischer Deformationszonen. Dissertation University of Hamburg, 129 pGoogle Scholar
  88. Hinsken S, Ustaszewski K, Wetzel A (2007) Graben width controlling sedimentation: the Palaeogene southern Upper Rhine Graben as an example. Int J Earth Sci 96:979–1002. doi: 10.1007/s00531-006-0162-y CrossRefGoogle Scholar
  89. Hinsken S, Schmalholz SM, Ziegler PA, Wetzel A (2011) Thermo-tectono-stratigraphic forward modelling of the Upper Rhine Graben in reference to geometric balancing: brittle crustal extension on a highly viscous mantle. Tectonophysics 509:1–13. doi: 10.1016/j.tecto.2010.12.006 CrossRefGoogle Scholar
  90. Hinzen K-G (2003) Stress field in the Northern Rhine area, Central Europe, from earthquake fault plane solutions. Tectonophysics 377:325–356. doi: 10.1016/j.tecto.2003.10.004 CrossRefGoogle Scholar
  91. Homuth B, Rümpker G, Deckert H, Kracht M (2014) Seismicity of the northern Upper Rhine Graben—constraints on the present-day stress field from focal mechanisms. Tectonophysics 632:8–20. doi: 10.1016/j.tecto.2014.05.037 CrossRefGoogle Scholar
  92. Horn P, Lippolt H-J, Todt W (1972) Kalium–Argon-Altersbestimmungen an tertiären Vulkaniten des Oberrhein-Grabens. I. Gesamtgesteinsalter. Eclogae Geol Helv 65:131–156Google Scholar
  93. Illies H (1965) Bauplan und Baugeschichte des Oberrheingrabens. Oberrh Geol Abh 14:1–54Google Scholar
  94. Illies H, Greiner G (1976) Regionales Stress-Feld und Neotektonik in Mitteleuropa. Oberrh Geol Abh 25:1–40Google Scholar
  95. Jodocy M, Stober I (2010) Geologisch-geothermische Tiefenprofile für den südlichen Teil des Oberrheingrabens in Baden-Württemberg. Z Geol Wiss 38:3–25Google Scholar
  96. Kalt A, Altherr R, Hanel M (2000) The Variscan basement of the Schwarzwald. Beih Eur J Min 12(2):1–43Google Scholar
  97. Kastrup U, Zoback ML, Deichmann N, Evans KF, Giardini D, Michael AJ (2004) Stress field variations in the Swiss Alps and the northern Alpine foreland derived from inversion of fault plane solutions. J Geophys Res 109:B01402. doi: 10.1029/2003JB002550 CrossRefGoogle Scholar
  98. Kirsch H, Kober B, Lippolt HJ (1988) Age of intrusion and rapid cooling of the Frankenstein gabbro (Odenwald, SW-Germany) evidenced by 40Ar/39Ar and single-zircon 207Pb/206Pb measurements. Geol Rundsch 77(3):693–711. doi:  10.1007/BF01830178 CrossRefGoogle Scholar
  99. Kirschner S, Ritter JRR, Wawerzinek B (2011) Teleseismic wave front anomalies at a continental rift: no mantle anomaly below the Central Upper Rhine Graben. Geophys J Int 186:447–461. doi: 10.1111/j.1365-246X.2011.05071.x CrossRefGoogle Scholar
  100. Kober B, Kalt A, Hanel M, Pidgeon RT (2004) SHRIMP dating of zircons from high-grade metasediments of the Schwarzwald/SW-Germany and implications for the evolution of the Moldanubian basement. Contrib Min Pet 147(3):330–345. doi: 10.1007/s00410-004-0560-8 CrossRefGoogle Scholar
  101. Korn D (1929) Tektonische und gefügeanalytische Untersuchungen im Grundgebirge des Böllsteiner Odenwaldes. N Jb Min Geol Paläo B Beil 62:171–234Google Scholar
  102. Kowalczyk G (1983) Das Rotliegende zwischen Taunus und Spessart. Geol Abh Hess 84:1–99Google Scholar
  103. Kratinova Z, Schulmann K, Edel J-B, Tabaud A-S (2012) AMS record of brittle dilation, viscous-stretching and gravity-driven magma ascent in area of magma-rich crustal extension (Vosges Mts., NE France). Int J Earth Sci 101:803–817. doi: 10.1007/s00531-011-0711-x CrossRefGoogle Scholar
  104. Krecher M, Behrmann JH (2004) Tectonics of the Vosges (NE France) and the Schwarzwald (SW Germany): evidence from Devonian-Carboniferous active margin basins and their deformation. Geotecton Res 95:61–86. doi: 10.1127/1864-5658/07/0095-0061 CrossRefGoogle Scholar
  105. Krecher M, Behrmann JH, Müller-Sigmund H (2007) Sedimentology and tectonic setting of Devonian-Carboniferous turbidites and debris flow deposits in the Variscan Vosges Mountains (Markstein Group, NE-France). Z Dtsch Ges Geowiss 158:1063–1087. doi: 10.1127/1860-1804/2007/0158-1063 Google Scholar
  106. Krohe A (1991) Emplacement of synkinematic plutons in the Variscan Odenwald (Germany) controlled by transtensional tectonics. Geol Rundsch 80:391–409. doi: 10.1007/BF01829373 CrossRefGoogle Scholar
  107. Krohe A (1992) Structural evolution of intermediate crustal rocks in a strike-slip and extensional setting (Variscan Odenwald, SW Germany): differential upward transport of metamorphic complexes and changing deformation mechanisms. Tectonophysics 206:357–386. doi: 10.1016/0040-1951(92)90443-A CrossRefGoogle Scholar
  108. Krohe A (1996) Variscan tectonics of central Europe: postaccretionary intraplate deformation of weak continental lithosphere. Tectonics 15:1364–1388. doi: 10.1029/96TC01110 CrossRefGoogle Scholar
  109. Krohe A, Eisbacher GH (1988) Oblique crustal detachment in the Variscan Schwarzwald, southwestern Germany. Geol Rundsch 77(1):25–43. doi: 10.1007/BF01848674 CrossRefGoogle Scholar
  110. Kümmerle E, Seidenschwann G (1993) Erläuterungen Geol. Karte Hessen 1: 25,000, Bl. Nr.5818 Frankfurt a.M. Ost. Hess Landesamt Bodenforschung: 307 ppGoogle Scholar
  111. Laubscher H (1982) Die Südostecke des Rheingrabens—ein kinematisches und dynamisches Problem. Eclogae Geol Helv 75(1):101–116Google Scholar
  112. Laubscher H (1987) Die tektonische Entwicklung der Nordschweiz. Eclogae Geol Helv 80:287–303Google Scholar
  113. Laubscher H (2001) Plate interactions at the southern end of the Rhine graben. Tectonophysics 343(1):1–19. doi: 10.1016/S0040-1951(01)00193-7 CrossRefGoogle Scholar
  114. Laubscher H (2003) The Miocene dislocations in the northern foreland of the Alps: oblique subduction and its consequences (Basel area, Switzerland-Germany). Jber Mitt Oberrh Geol Ver NF 85:432–439Google Scholar
  115. Laue S, Reischmann T (1994) Petrographie und Geochemie variszischer Intrusiva der westlichen Rheingrabenschulter. Mitt Pollichia 81:195–214Google Scholar
  116. Leydecker G (2011) Erdbebenkatalog für Deutschland mit Randgebieten für die Jahre 800 bis 2008. Geol Jb E59, Schweitzerbart’sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  117. Link K (2010) Die thermotektonische Entwicklung des Rheingraben-Gebietes seit der Kreide. Dissertation, University of Freiburg, 318 ppGoogle Scholar
  118. Lippolt H-J (1986) Nachweis altpaläozoischer Primäralter (Rb–Sr) und karbonischer Abkühlungsalter (K–Ar) der Muskovit–Biotit–Gneise des Spessarts und der Biotit–Gneise des Böllsteiner Odenwalds. Geol Rundsch 75:569–583. doi: 10.1007/BF01820632 CrossRefGoogle Scholar
  119. Lippolt H-J, Baranyi J, Todt W (1975) Die Kalium–Argon Alter der post-permischen Vulkanite des nordöstlichen Oberrheingrabens. Aufschluss Sonderband 27:205–212Google Scholar
  120. Lippolt H-J, Hradetzky H, Hautmann S (1994) K-Ar dating of amphibole-bearing rocks in the Schwarzwald, SW Germany: I. 40Ar/39Ar age constraints to Hercynian HT-metamorphism. N Jb Min Mh 10:433–448Google Scholar
  121. Loeschke J, Güldenpfennig M, Hann HP, Sawatzki G (1998) Die Zone von Badenweiler–Lenzkirch (Schwarzwald): Eine variskische Suturzone. Z Dtsch Ges Geowiss 149:197–212Google Scholar
  122. Lüschen E, Wenzel F, Sandmeier KJ, Menges D, Rühl T, Stiller M, Janoth W, Keller F, Söllner W, Thomas R, Krohe A, Stenger R, Fuchs K, Wilhelm H, Eisbacher GH (1987) Near-vertical and wide-angle seismic surveys in the Black Forest, SW-Germany. In: Emmermann R et al (eds) The German continental deep drilling program (KTB). Springer, Berlin, pp 297–362. doi: 10.1007/978-3-642-74588-1_14 Google Scholar
  123. Lutz F (2015) Seismizität und Tektonik im südlichen Oberrheingraben. Bachelorarbeit, Karlsruher Institut für Technologie, Geophysikalisches Institut, 46 ppGoogle Scholar
  124. Lutz M, Cleintuar M (1999) Geological results of a hydrocarbon exploration campaign in the southern Upper Rhine Graben. Bull Appl Geol 4:3–80Google Scholar
  125. Mälzer H (1988) Regional and local kinematics in SW-Germany by geodetic methods—geophysical and geological interpretation. J Geodyn 9/2:141–151CrossRefGoogle Scholar
  126. Marell D (1989) Das Rotliegende zwischen Odenwald und Taunus. Geol Abh Hess 89:1–128Google Scholar
  127. Marschall HR, Kalt A, Hanel M (2003) P–T-evolution of a Variscan lower crustal segment: a study of granulites from the Schwarzwald, Germany. J Petrol 44(2):227–253. doi: 10.1093/petrology/44.2.227 CrossRefGoogle Scholar
  128. Matter A (1987) Faziesanalyse und Ablagerungsmilieu der Permokarbons im Nordschweizer Trog. Eclogae Geol Helv 80:345–367Google Scholar
  129. Maurin JC, Niviére B (2000) Extensional forced folding and decollement of the prerift series along the Rhine graben and their influence on the geometry of the synrift sequences. Geol Soc Lond Spec Publ 169:73–86CrossRefGoogle Scholar
  130. Mayer G, Mai M, Plenefisch T, Echtler H, Lüschen E, Wehrle V, Bonjer K-P, Prodehl C, Fuchs K (1997) The deep crust of the southern Rhinegraben: reflectivity and seismicity as images of dynamic processes. Tectonophysics 275:15–40. doi: 10.1016/S0040-1951(97)00014-0 CrossRefGoogle Scholar
  131. Mazurek M, Meyer J, Peters T (1992) The crystalline basement of Northern Switzerland. Eclogae Geol Helv 85:767–769Google Scholar
  132. Mehnert KR (1953) Petrographie und Abfolge der Granitisation im Schwarzwald. N Jb Min Abh 85:59–140Google Scholar
  133. Meier L, Eisbacher GH (1991) Crustal kinematics and deep structure of the northern Rhine Graben, Germany. Tectonics 10(3):621–630. doi: 10.1029/91TC00142 CrossRefGoogle Scholar
  134. Meissner R, Bortfeld RK (1990) DEKORP-Atlas. Results of Deutsches Kontinentales Reflexionsseismisches Programm. Springer, 21 pp. doi: 10.1007/978-3-642-75662-7
  135. Meixner J, Schill E, Grimmer JC, Gaucher E, Kohl T, Klingler J (2016) Structural control of geothermal reservoirs in extensional tectonic settings: an example from the Upper Rhine Graben. J Struct Geol 82:1–15. doi: 10.1016/j.jsg.2015.11.003 CrossRefGoogle Scholar
  136. Montenari M, Maas R (1996) Die metamorphen Schiefer der Badenweiler–Lenzkirch-Zone/Südschwarzwald—Paläontologische Altersstellung (Acritarchen und Chitinozoen) und Tektonik. Ber Naturforschenden Ges Freibg 84(85):33–79Google Scholar
  137. Müller B, Wehrle V, Zeyen H, Fuchs K (1997) Short-scale variations of tectonic regimes in the western European stress province north of the Alps and Pyrenees. Tectonophysics 275:199–219. doi: 10.1016/S0040-1951(97)00021-8 CrossRefGoogle Scholar
  138. Nasir S, Okrusch M, Kreuzer H, Lenz H, Höhndorf A (1991) Geochronology of the Spessart crystalline complex, mid-German crystalline rise. Mineral Petrol 44:39–55. doi: 10.1007/BF01167099 CrossRefGoogle Scholar
  139. Okrusch M (1995) Metamorphic evolution. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of central and eastern Europe. Springer, Berlin, pp 201–213. doi: 10.1007/978-3-642-77518-5_21 CrossRefGoogle Scholar
  140. Oncken O (1997) Transformation of a magmatic arc and an orogenic root during oblique collision and its consequences for the evolution of the Variscan Variscides (Mid-German Crystalline Rise). Geol Rundsch 86:2–20. doi: 10.1007/s005310050118 CrossRefGoogle Scholar
  141. Peters G, van Balen R (2007) Pleistocene tectonics inferred from fluvial terraces of the northern Upper Rhine Graben. Tectonophysics 430:41–65. doi: 10.1016/j.tecto.2006.10.008 CrossRefGoogle Scholar
  142. Plaumann S, Groschopf R, Schädel K (1986) Kompilation einer Schwerekarte und einer geologischen Karte für den mittleren und nördlichen Schwarzwald mit einer Interpretation gravimetrischer Detailvermessungen. Geol Jb E33:15–30Google Scholar
  143. Plein E (1992a) Das Erdölfeld Eich-Königsgarten. Jber Mitt Oberrrhein Geol Ver 74:41–54Google Scholar
  144. Plein E (1992b) Die Erdgasspeicher Hähnlein/Stockstadt. Jber Mitt Oberrh Geol Ver 74:73–83Google Scholar
  145. Plenefisch T, Bonjer K-P (1997) The stress field in the Rhine Graben area inferred from earthquake focal mechanisms and estimation of frictional parameters. Tectonophysics 275:71–97. doi: 10.1016/S0040-1951(97)00016-4 CrossRefGoogle Scholar
  146. Prodehl C, Mueller S, Glahn A, Gutscher M, Haak V (1992) Lithospheric cross sections of the European Cenozoic rift system. Tectonophysics 208:113–138. doi: 10.1016/0040-1951(92)90339-8 CrossRefGoogle Scholar
  147. Prodehl C, Mueller S, Haak V (1995) The European Cenozoic rift system. In: Olsen KH (ed) Continental rifts: evolution, structure, tectonics. Developments in geotectonics, vol 25. Elsevier, pp 133–212Google Scholar
  148. Reischmann T, Anthes G (1996) Geochronology of the mid-German crystalline rise west of the River Rhine. Geol Rundsch 85:761–774. doi: 10.1007/BF02440109 CrossRefGoogle Scholar
  149. Reischmann T, Anthes G, Jaeckel P, Altenberger U (2001) Age and origin of the Böllsteiner Odenwald. Mineral Petrol 72:29–44. doi: 10.1007/s007100170025 CrossRefGoogle Scholar
  150. Ritter JRR, Wagner M (2008) High-resolution SKS anisotropy indicates asthenospheric flow below SW Germany. Geophys Res Abs 10:03951Google Scholar
  151. Ritter JRR, Wagner M, Bonjer K-P, Schmidt B (2009) The 2005 Heidelberg and Speyer earthquakes and their relationship to active tectonics in the central Upper Rhine Graben. Int J Earth Sci 98(3):697–705. doi: 10.1007/s00531-007-0284-x CrossRefGoogle Scholar
  152. Rittmann KL (1984) Argon in Hornblende, Biotit und Muscovit bei der geologischen Abkühlung—40Ar/39Ar-Untersuchungen. Dissertation, University of Heidelberg, 278 pGoogle Scholar
  153. Roll A (1979) Versuch einer Volumenbilanz des Oberrheintalgrabens und seiner Schultern. Geol Jb A 52:1–82Google Scholar
  154. Rothausen K, Sonne V (1984) Mainzer Becken. Sammlung geol. Führer 79, Gebr. Bornträger, Stuttgart, 202 pGoogle Scholar
  155. Rotstein Y, Schaming M (2008) Tectonic implications of faulting styles along a rift margin: the boundary between the Rhine Graben and the Vosges Mountains. Tectonics 27:TC2001. doi: 10.1029/2007TC002149 CrossRefGoogle Scholar
  156. Rotstein Y, Behrmann JH, Lutz M, Wirsing G, Luz A (2005a) Tectonic implications of transpression and transtension: Upper Rhine Graben. Tectonics 24:TC6001. doi: 10.1029/2005TC001797 Google Scholar
  157. Rotstein Y, Schaming M, Rousse S (2005b) Tertiary tectonics of the Dannemarie Basin, upper Rhine graben, and regional implications. Int J Earth Sci 94:669–679. doi: 10.1007/s00531-005-0473-4 CrossRefGoogle Scholar
  158. Schad A (1962) Voraussetzungen für die Bildung von Erdöllagerstätten im Rheingraben. Abh GLA Baden-Württ 4:29–40Google Scholar
  159. Schad A (1964) Feingliederung des Miozäns und die Deutung der nacholigozänen Bewegungen im Mittleren Rheingraben. Abh GLA Baden-Württ 5:1–56Google Scholar
  160. Schäfer A, Korsch RJ (1998) Formation and sediment fill of the Saar-Nahe basin (Permo-Carboniferous, Germany). Z Dtsch Ges Geowiss 149(2):233–269Google Scholar
  161. Schälicke W (1975) Die Otzberg-Zone. Aufschluss Sonderband 27:47–57Google Scholar
  162. Schaltegger U (1997) The age of an Upper Carboniferous/Lower Permian sedimentary basin and its hinterland as constrained by U–Pb dating of volcanic and detrital zircons (northern Switzerland). Schweiz Miner Petrogr Mitt 77:101–111Google Scholar
  163. Schaltegger U (2000) U–Pb geochronology of the Southern Black Forest Batholith (Central Variscan Belt): timing of exhumation and granite emplacement. Int J Earth Sci 88:814–828. doi: 10.1007/s005310050308 CrossRefGoogle Scholar
  164. Schaltegger U, Schneider J-L, Maurin JC, Corfu F (1996) Precise U–Pb chronometry of 345–340 Ma old magmatism related to syn-convergence extension in the Southern Vosges (Central Variscan Belt). Earth Plan Sci Lett 144:403–419. doi: 10.1016/S0012-821X(96)00187-2 CrossRefGoogle Scholar
  165. Schleicher H (1978) Petrologie der Granitporphyre des Schwarzwalds. Neues Jb Min Abh 132:153–181Google Scholar
  166. Schleicher H (1994) Collision-type granitic melts in the context of thrust tectonics and uplift history (Triberg granite complex, Schwarzwald, Germany). N Jb Min Abh 166:211–237Google Scholar
  167. Schleicher H, Fritsche R (1978) Zur Petrologie des Triberger Granites (Mittlerer Schwarzwald). Jh GLA Baden-Württ 20:15–41Google Scholar
  168. Schleicher H, Keller J (1991) Isotopengeochemie der Alkalivulkanite und Karbonatite des Kaiserstuhls: Aussagen zur Magmengenese und zur isotopischen Zusammensetzung des Erdmantels. Jh GLA Baden-Württ 33:33–57Google Scholar
  169. Schmid SM, Slejko D (2009) Seismic source characterization of the Alpine foreland in the context of a probabilistic seismic hazard analysis by PEGASOS Expert Group 1 (EG1a). Swiss J Geosci 102:121–148. doi: 10.1007/s00015-008-1300-2 CrossRefGoogle Scholar
  170. Schmitt AK, Marks MA, Nesbor HD, Markl G (2007) The onset and origin of differentiated Rhine Graben volcanism based on U–Pb ages and oxygen isotopic composition of zircon. Eur J Miner 19:849–857. doi: 10.1127/0935-1221/2007/0019-1776 CrossRefGoogle Scholar
  171. Schnaebele R (1948) Monographie géologique du champ pétrolifère de Pechelbronn. Mem Serv Carte Geol Alsace 7:1–254Google Scholar
  172. Schneider J-L, Edel J-B (1995) Der permische Vulkanismus der Nordvogesen (Niedeck–Donon–Massiv). Jber Mitt Oberrh Geol Ver 77:201–221. doi: 10.1127/jmogv/77/1995/201 Google Scholar
  173. Schneider J-L, Maas R, Gall J-C, Duringer P (1989) L’événement intraviséen dans la zone moldanubienne de la chaîne varisque d’Europe: les données des formations volcano-sédimentaires dévono-dinantiennes du Massif Central Francais, des Vosges du Sud (France) et de la Forêt Noire (R.F.A.). Geol Rundsch 78:555–570. doi: 10.1007/BF01776191 CrossRefGoogle Scholar
  174. Schubert W, Lippolt H-J, Schwarz W (2001) Early to middle Carboniferous hornblende 40Ar/39Ar ages of amphibolites and gabbros from the Bergsträsser Odenwald. Mineral Petrol 72:113–132. doi: 10.1007/s007100170029 CrossRefGoogle Scholar
  175. Schuler C, Steiger RH (1978) On the genesis of feldspar megacrysts in granites: a Rb±Sr isotopic study. In: Zartman RE (ed) ICOG 4 Abstract, pp 386–387Google Scholar
  176. Schulmann K, Schaltegger U, Jezek K, Thompson AB, Edel J-B (2002) Rapid burial and exhumation during orogeny: thickening and synconvergent exhumation of thermally weakened and thinned crust (Variscan Orogen in western Europe). Am J Sci 302:856–879. doi: 10.2475/ajs.302.10.856 CrossRefGoogle Scholar
  177. Schumacher ME (2002) Upper Rhine Graben: role of preexisting structures during rift evolution. Tectonics 21:TC1006. doi: 10.1029/2001TC900022 CrossRefGoogle Scholar
  178. Schwarz M, Henk A (2005) Evolution and structure of the Upper Rhine Graben: insights from three-dimensional thermomechanical modelling. Int J Earth Sci 94:732–750. doi: 10.1007/s00531-004-0451-2 CrossRefGoogle Scholar
  179. Sebert M, Wimmenauer W (1997) Metagabbros and meta-anorthosites in the Southern Black Forest (Germany)—fragments of an ancient layered intrusion? Jh GLA Baden-Württ 34:193–212Google Scholar
  180. Seiberlich CKA, Ritter JRR, Wawerzinek B (2013) Topography of the lithosphere-asthenosphere boundary below the Upper Rhine Graben Rift and the volcanic Eifel region, Central Europe. Tectonophysics 603:222–236. doi: 10.1016/j.tecto.2013.05.034 CrossRefGoogle Scholar
  181. Simon K (1990) Hydrothermal alteration of Variscan granites, southern Schwarzwald, Federal Republic of Germany. Contrib Mineral Petrol 105:177–196. doi: 10.1007/BF00678985 CrossRefGoogle Scholar
  182. Sittig E (2003) Die Lichtental-Formation von Baden-Baden und das Normalprofil des Schwarzwälder Rotliegenden. Jh LGRB Baden-Württ 39:177–238Google Scholar
  183. Sittler C (1967) Le soubassement et le remplissage sédimentaire du Fossé Rhénan au niveau du Bassin de Pechelbronn et du Seuil d’Erstein. Coupes Géologiques à travers le Fossé Rhénan. In: Rothé J, Sauer K (eds) The Rhinegraben Progress Report 1967, International Upper Mantle Project, Scientific Report No. 13, Abh GLA Baden-Württemberg, vol 6, pp 69–81Google Scholar
  184. Skrzypek E, Tabaud A-S, Edel J-B, Schulmann K, Cocherie A, Guerrot C, Rossi P (2012) The significance of Late Devonian ophiolites in the Variscan orogen: a record from the Vosges Klippen Belt. Int J Earth Sci 101:951–972. doi: 10.1007/s00531-011-0709-4 CrossRefGoogle Scholar
  185. Sommermann AE (1993) Zirkonalter aus dem Granit der Bohrung Saar 1. Beih Eur J Miner 5:145Google Scholar
  186. Stein E (2000) Zur Platznahme von Granitoiden—Vergleichende Fallstudien zu Gefügen und Platznahmemechanismen aus den White-Inyo Mountains, California, USA und dem Bergsträsser Odenwald. Geotekton Forsch 93:1–344Google Scholar
  187. Stenger R (1979) Petrographie und Geochemie der endogenen Einschlüsse im Albtalgranit (Südschwarzwald). Jh GLA Baden-Württ 21:89–106Google Scholar
  188. Straub EW (1962) Die Erdöl- und Erdgaslagerstätten in Hessen und Rheinhessen. Abh Geol Landesamt Baden-Württ 4:123–136Google Scholar
  189. Tesauro M, Höllenstein C, Egli R, Geiger A, Kahle HG (2005) Continuous GPS and broad-scale deformation across the Rhine Graben and the Alps. Int J Earth Sci 94(4):525–537. doi: 10.1007/s00531-004-0453-0 CrossRefGoogle Scholar
  190. Thury M, Diebold P (1987) Überblick über das geologische Untersuchungsprogramm der Nagra in der Nordschweiz. Eclogae Geol Helv 80:271–286Google Scholar
  191. Timar-Geng Z, Fügenschuh B, Schaltegger U, Wetzel A (2004) The impact of the Jurassic hydrothermal activity on zircon fission track data from the southern Upper Rhine Graben area. Schweiz Miner Petrogr Mitt 84:257–269. doi: 10.5169/seals-63749 Google Scholar
  192. Timar-Geng Z, Fügenschuh B, Wetzel A, Dresmann H (2006) Low-temperature thermochronology of the flanks of the southern Upper Rhine Graben. Int J Earth Sci 95:685–702. doi: 10.1007/s00531-005-0059-1 CrossRefGoogle Scholar
  193. Todt WA (1976) Zirkon-U/Pb-Alter des Malsburg-Granits vom Südschwarzwald. N Jb Min Mh 12:532–544Google Scholar
  194. Todt WA, Altenberger U, von Raumer JF (1995) U–Pb data on zircons for the thermal peak of metamorphism in the Variscan Odenwald, Germany. Geol Rundsch 84:466–472. doi: 10.1007/BF00284514 Google Scholar
  195. Ustaszewski K, Schumacher ME, Schmid SM (2005) Simultaneous normal faulting and extensional flexuring during rifting: an example from the southernmost Upper Rhine Graben. Int J Earth Sci 94:680–696. doi: 10.1007/s00531-004-0454-z CrossRefGoogle Scholar
  196. Valley B, Evans KF (2009) Stress orientation to 5 km depth in the basement below Basel (Switzerland) from borehole failure analysis. Swiss J Geosci 102:467–480. doi: 10.1007/s00015-009-1335-z CrossRefGoogle Scholar
  197. Villemin T, Alvarez F, Angelier J (1986) The Rhinegraben: extension, subsidence and shoulder uplift. Tectonophysics 128:47–59. doi: 10.1016/0040-1951(86)90307-0 CrossRefGoogle Scholar
  198. Voigt-Kirsch G (1990) Geologische und geochronologische Arbeiten im Kristallin der oberen Murg im Nordschwarzwald. Dissertation, University of Heidelberg, 280 ppGoogle Scholar
  199. Von Seckendorff V, Timmermann MJ, Kroner MJ, Wrobel P (2004) New 40Ar/39Ar ages and geochemistry of late Carboniferous—early Permian lamprophyres and related volcanic rocks in the Saxothuringian Zone of the Variscan Orogeny (Germany). Geol Soc Lond Spec Publ 223:335–360. doi: 10.1144/GSL.SP.2004.223.01.15 CrossRefGoogle Scholar
  200. Wager R (1929) Tektonische Untersuchungen an einem Teil der Nordschwarzwälder Granite. Badische Geol Abh 1:119–138Google Scholar
  201. Wagner M (2007) Anisotropie-Untersuchungen am Mittleren Oberrhein. Diplomarbeit, Geophysikalisches Institut, Universität Karlsruhe (TH), 93 ppGoogle Scholar
  202. Wagner GA, Storzer D (1975) Spaltspuren und ihre Bedeutung für die thermische Geschichte des Odenwaldes. Aufschluss Sonderband 27:79–86Google Scholar
  203. Wagner GA, Michalski I, Zaun P (1989) Apatite fission track dating of the Central European basement. In: Emmermann R, Wohlenberg J (eds) The German continental deep drilling program. Springer, Berlin, pp 501–526Google Scholar
  204. Walker KT, Bokelmann GHR, Klemperer S, Bock G (2007) Seismic anisotropy in the asthenosphere beneath the Eifel region, western Germany. In: Ritter JRR, Christensen UR (eds) Mantle plumes. Springer, Berlin, pp 439–464CrossRefGoogle Scholar
  205. Werchau A, Schleicher H, Kramm U (1989) Erste Altersbestimmung an Monaziten des Schwarzwaldes. Eur J Miner 1:198Google Scholar
  206. Werner W, Dennert V (2004) Lagerstätten und Bergbau im Schwarzwald. LGRB Baden-Württ, Freiburg 334 pp Google Scholar
  207. Werner W, Franzke H-J (1994) Tektonik und Mineralisation der Hydrothermalgänge am Schwarzwaldrand im Bergbaurevier Freiamt-Sexau. Abh GLA Baden-Württ 14:27–98Google Scholar
  208. Wickert F, Eisbacher GH (1988) Two-sided Variscan thrust tectonics in the Vosges Mountains, northeastern France. Geodin Acta 2:101–120. doi: 10.1080/09853111.1988.11105160 CrossRefGoogle Scholar
  209. Will TM, Schmädicke E (2001) A first report of retrogressed eclogites in the Odenwald crystalline complex: evidence for high-pressure metamorphism in the Mid-German crystalline rise, Germany. Lithos 59:109–125. doi: 10.1016/S0024-4937(01)00059-7 CrossRefGoogle Scholar
  210. Will TM, Lee S-H, Schmädicke E, Frimmel HE, Okrusch M (2015) Variscan terrane boundaries in the Odenwald–Spessart basement, Mid-German Crystalline Zone: new evidence from ocean ridge, intraplate and arc-derived metabasaltic rocks. Lithos 220–223:23–42. doi: 10.1016/j.lithos.2015.01.018 CrossRefGoogle Scholar
  211. Willner AP, Massonne HJ, Krohe A (1991) Tectono-thermal evolution of a part of a Variscan magmatic arc: the Odenwald in the Mid-German crystalline rise. Geol Rundsch 80:369–389. doi: 10.1007/BF01829372 CrossRefGoogle Scholar
  212. Wilson M, Downes H (1992) Mafic alkaline magmatism associated with the European Cenozoic rift system. Tectonophysics 208:173–182. doi: 10.1016/0040-1951(92)90343-5 CrossRefGoogle Scholar
  213. Wimmenauer W, Hanel M (1997) Die Fortsetzung der Randgranit-Assoziation nach Nordosten und Norden. Jh GLA Baden-Württ 37:7–24Google Scholar
  214. Wimmenauer W, Stenger R (1989) Acid and intermediate HP metamorphic rocks in the Schwarzwald (Federal Republic of Germany). Tectonophysics 157:109–116. doi: 10.1016/0040-1951(89)90344-2 CrossRefGoogle Scholar
  215. Wirth E (1962) Die Erdöllagerstätten Badens. Abh GLA Baden-Württ 4:63–80Google Scholar
  216. Wirth E (1964) Feingliederung des Miozäns und die Deutung der nacholigozänen Bewegungen im Mittleren Rheingraben. Abh GLA Baden-Württ 5:1–56Google Scholar
  217. Wittmann O (1957) Geologie der Lörracher Flexurschollen. Jh GLA Baden-Württ 2:219–289Google Scholar
  218. Zeis S, Gajewski D, Prodehl C (1990) Crustal structure of southern Germany from seismic refraction data. Tectonophysics 176:59–86. doi: 10.1016/0040-1951(90)90259-B CrossRefGoogle Scholar
  219. Ziegler PA, Dézes P (2005) Evolution of the lithosphere in the area of the Rhine Rift System. Int J Earth Sci 94:594–614. doi: 10.1007/s00531-005-0474-3 CrossRefGoogle Scholar
  220. Ziegler P, Fraefel M (2009) Response of drainage systems to Neogene evolution of the Jura fold-thrust belt and Upper Rhine Graben. Swiss J Geosci 102:57–75. doi: 10.1007/s00015-009-1306-4 CrossRefGoogle Scholar
  221. Ziegler PA, Schumacher ME, Dézes P, van Wees J-D, Cloethingh S (2004) Post- Variscan evolution of the lithosphere in the Rhine Graben area: constraints from subsidence modelling. Geol Soc Lond Spec Publ 225:289–317. doi: 10.1144/GSL.SP.2004.223.01.13 CrossRefGoogle Scholar
  222. Zucca JJ (1984) The crustal structure of the southern Rhinegraben from re-interpretation of seismic refraction data. J Geophys 55:13–22Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • J. C. Grimmer
    • 1
  • J. R. R. Ritter
    • 2
  • G. H. Eisbacher
    • 1
  • W. Fielitz
    • 3
  1. 1.Institute of Applied GeosciencesKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Geophysical InstituteKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  3. 3.Institute of Earth SciencesUniversity of HeidelbergHeidelbergGermany

Personalised recommendations