International Journal of Earth Sciences

, Volume 106, Issue 2, pp 707–742 | Cite as

An overview on source rocks and the petroleum system of the central Upper Rhine Graben

Original Paper

Abstract

The petroleum system of the Upper Rhine Graben (URG) comprises multiple reservoir rocks and four major oil families, which are represented by four distinct source rock intervals. Based on geochemical analyses of new oil samples and as a review of chemical parameter of former oil fields, numerous new oil–source rock correlations were obtained. The asymmetric graben resulted in complex migration pathways with several mixed oils as well as migration from source rocks into significantly older stratigraphic units. Oldest oils originated from Liassic black shales with the Posidonia Shale as main source rock (oil family C). Bituminous shales of the Arietenkalk-Fm. (Lias α) show also significant source rock potential representing the second major source rock interval of the Liassic sequence. Within the Tertiary sequence several source rock intervals occur. Early Tertiary coaly shales generated high wax oils that accumulated in several Tertiary as well as Mesozoic reservoirs (oil family B). The Rupelian Fish Shale acted as important source rock, especially in the northern URG (oil family D). Furthermore, early mature oils from the evaporitic-salinar Corbicula- and Lower Hydrobienschichten occur especially in the area of the Heidelberg-Mannheim-Graben (oil family A). An overview on potential source rocks in the URG is presented including the first detailed geochemical source rock characterization of Middle Eocene sediments (equivalents to the Bouxwiller-Fm.). At the base of this formation a partly very prominent sapropelic coal layer or coaly shale occurs. TOC values of 20–32 % (cuttings) and Hydrogen Index (HI) values up to 640–760 mg HC/g TOC indicate an extraordinary high source rock potential, but a highly variable lateral distribution in terms of thickness and source rock facies is also supposed. First bulk kinetic data of the sapropelic Middle Eocene coal and a coaly layer of the ‘Lymnäenmergel’ are presented and indicate oil-prone organic matter characterized by low activation energies. These sediments are considered as most important source rocks of numerous high wax oils (oil family B) in addition to the coaly source rocks from the (Lower) Pechelbronn-Schichten (Late Eocene). Migration pathways are significantly influenced by the early graben evolution. A major erosion period occurred during the latest Cretaceous. The uplift center was located in the northern URG area, resulting in SSE dipping Mesozoic strata in the central URG. During Middle Eocene times a second uplift center in the Eifel area resulted in SW-NE-directed shore lines in the central URG and contemporaneous south-southeastern depocenters during marine transgression from the south. This structural setting resulted in a major NNW-NW-directed and topography-driven migration pattern for expelled Liassic oil in the fractured Mesozoic subcrop below sealing Dogger α clays and basal Tertiary marls.

Keywords

Petroleum system Upper Rhine Graben Oil families Source rocks Migration Lias Posidonia Shale 

Supplementary material

531_2016_1330_MOESM1_ESM.docx (99 kb)
Supplementary material 1 (DOCX 98 kb)

References

  1. Bauersachs T, Schouten S, Schwark L (2014) Characterization of the sedimentary organic matter preserved in Messel oil shale by bulk geochemistry and stable isotopes. Palaeogeogr Palaeoclimatol Palaeoecol 410(15):390–400CrossRefGoogle Scholar
  2. Bloos G, Dietl G, Schweigert G (2005) Der Jura Süddeutschlands in der Stratigraphischen Tabelle von Deutschland 2002. Newsl Stratigr 41(1–3):263–277CrossRefGoogle Scholar
  3. Blümel G, Eder M, Gerling P, Ploethner D, Ranke U, Trippler K (1989) Application of hydraulic theory in petroleum exploration. Erdöl Kohle Erdgas Petrochem 42–1:38Google Scholar
  4. Blumenroeder J (1962) Le Pétrole en Alsace. Abh geol Landesamt Baden-Württemberg 4:41–62Google Scholar
  5. Blümling P, Bernier F, Lebon P, Martin D (2007) The Excavation-damaged zone in clay formations—time-dependent behaviour and influence on performance assessment. Phys Chem Earth Parts A/B/C 32(8–14):588–599CrossRefGoogle Scholar
  6. Böcker J, Littke R (2014) Source rock characterisation and thermal maturity of the Rupelian Fish Shale (Bodenheim Fm./Hochberg Subfm.) in the central Upper Rhine Graben. Z Dt Ges Geowiss 165:247–274Google Scholar
  7. Böcker J, Littke R (2015) Thermal maturity and petroleum kitchen areas of Liassic Black Shales (Lower Jurassic) in the central Upper Rhine Graben, Germany. Int J Earth Sci (Geol Rundsch). doi:10.1007/s00531-015-1188-9 Google Scholar
  8. Böcker J, Forster A, Littke R (2014) Modelling the hydrocarbon generation potential of source rocks in the Upper Rhine Graben, Germany. Presentation DGMK/ÖGEW conference (25.5.2014—Celle)Google Scholar
  9. Boigk H (1981) Erdöl und Erdgas in der Bundesrepublik Deutschland. Enke Verlag, StuttgartGoogle Scholar
  10. Bruss D (2000) Zur Herkunft der Erdöle im mittleren Oberrheingraben und ihre Bedeutung für die Rekonstruktion der Migrationsgeschichte und der Speichergesteine. Dissertation, University Erlangen-Nürnberg, Ber Forschungszentrums Jülich 3831Google Scholar
  11. Derer CE (2003) Tectono-sedimentary evolution of the northern Upper Rhine Graben (Germany) with special regard to the early syn-rift stage. Dissertation, Rheinische Friedrich-Wilhelms-Universität BonnGoogle Scholar
  12. Dèzes P, Schmid SM, Ziegler PA (2004) Evolution of the European Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics 389:1–33CrossRefGoogle Scholar
  13. Dill HG, Sachsenhofer R, Grecula P, Sasvari T, Palinkas LA, Borojevic-Sostaric S, Strmic- Palinkas S, Prochaska W, Garuti G, Zaccarini F, Arbouille D, Schulz HM (2008) Fossil fuels, ore and industrial minerals. In: McCann T (ed) The geology of Central Europe. Volume 2: Mesozoic and Cenozoic. Geological Society, London, pp 1341–1449Google Scholar
  14. Doebl F, Teichmüller R (1979) Zur Geologie und heutigen Geothermik im mittleren Oberrhein-Graben. Fortschr Geol Rheinld Westfalen 27:1–17Google Scholar
  15. Eglinton G, Hamilton RJ (1963) The distribution of alkanes. In: Swain T (ed) Chem plant taxon. Academic Press, New York, pp 187–208CrossRefGoogle Scholar
  16. Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322–1335CrossRefGoogle Scholar
  17. Eisbacher GH, Fielitz W (2010) Karlsruhe und seine Region. Sammlung geologischer Führer, Band 103. Borntraeger, StuttgartGoogle Scholar
  18. Eseme E (2006) Oil shales: compaction, petroleum generation and expulsion. Dissertation, RWTH Aachen UniversityGoogle Scholar
  19. Espitalié J, Deroo G, Marquis F (1985) La pyrolyse Rock-Eval et ses applications. Revue de l‘Institut Français du Petrole 40:563–579CrossRefGoogle Scholar
  20. Feßmann J, Orth H (2002) Angewandte Chemie und Umwelttechnik für Ingenieure. Ecomed Verlagsgesellschaft AG & Co, KG, p 255Google Scholar
  21. Frimmel A (2003) Hochauflösende Untersuchungen von Biomarkern an epikontinentalen Schwarzschiefern des Unteren Toarciums (Posidonienschiefer, Lias ε) von SW-Deutschland. Dissertation, Eberhard-Karls-Universität TübingenGoogle Scholar
  22. Gamintchi A (1979) Eine vergleichende Untersuchung zur Kohlenwasserstoffgenese im Rheintalgraben (SW-Deutschland), im Moghan-Becken (NW-lran) und im Sarakhs-Gebiet (NE-Iran). Dissertation, RWTH Aachen UniversityGoogle Scholar
  23. Gawenda P (2011) Germany—overview about renewed petroleum activities. In: Wagner K (ed) AAPG-European Region Newsletter, pp 4–9Google Scholar
  24. Genter A, Evans K, Cuenot N, Fritsch D, Sanjuan B (2010) Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS). C R Geosci 342:502–516CrossRefGoogle Scholar
  25. Gerling P (1988) Entwicklung und Anwendung einer erdölgeologisch-geochemischen Explorationsmethode unter besonderer Berücksichtigung der Hydraulik im Pechelbronner Gebiet - Fachbericht Organisch-geochemische Untersuchungen.- BMFT-Forschungsvorhaben, 032 6476 A: 23 S.; Hannover (Bundesanstalt für Geowissenschaften und Rohstoffe)Google Scholar
  26. Geyer OF, Gwinner MP (2011) Geologie von Baden-Württemberg [Geology of the State of Baden-Württemberg, Germany], 5th edn. Schweizerbart, StuttgartGoogle Scholar
  27. Grimm KI, Grimm MC, Köthe A, Schindler T (2002) Der „Rupelton“(Rupelium, Oligozän) der Tongrube Bott-Eder bei Rauenberg (Oberrheingraben, Deutschland). Inst Senckenberg 237:229–253Google Scholar
  28. Grimm MC, Wielandt-Schuster U, Hottenrott M, Grimm KI, Radtke G (2011) Oberrheingraben. In: Deutsche Stratigraphische Kommission (ed) Stratigraphie von Deutschland IX; Tertiär, Teil 1: Oberrheingraben und benachbarte Tertiärgebiete. Schriftenr Dt Ges Geowiss 75:57–132Google Scholar
  29. Hedberg HD (1968) Significance of high wax oils with respect to genesis of petroleum. AAPG Bull 52:736–750Google Scholar
  30. Heitzmann P, Bossart P (2001) Das Mont-Terri-Projekt Untersuchungen über den Opalinuston im internationalen Felslabor. Bull Angew Geol 6:183–197Google Scholar
  31. Hettich M (1974) Ein Vollständiges Rhät/Lias-Profil aus der Langenbrückener Senke, Baden-Württemberg (Kernbohrung Mingolsheim 1968). Geol Jahrbuch A16:75–105Google Scholar
  32. Hillebrand T, Leythaeuser D (1992) Reservoir geochemistry of the Stockstadt oilfield. Org Geochem 19:119–131CrossRefGoogle Scholar
  33. Hollerbach A (1980a) Vorkommen und Bedeutung von terpenoiden Chemofossilien in Erdölen und Sedimenten. Habilitation, RWTH Aachen, AachenGoogle Scholar
  34. Hollerbach A (1980b) Charakteristische Kohlenwasserstoffe in Evaporaten. Erdöl Kohle Erdgas Petrochem 33:7Google Scholar
  35. Hollerbach A (1985) Grundlagen der organischen Geochemie. Springer, BerlinCrossRefGoogle Scholar
  36. Horn P, Lippolt HJ, Todt W (1972) Kalium-Argon-Altersbestimmungen an tertiären Vulkaniten des Oberrheingrabens: I Gesteinsalter. Eclogae Geol Helv 65:131–156Google Scholar
  37. Hunt JM (1996) Petroleum geochemistry and geology. Freeman & Co, New York, p 743Google Scholar
  38. Lafargue E, Marquis F, Pillot D (1998) Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Revue de l’Institut Français du Pétrole 53:421–437CrossRefGoogle Scholar
  39. Lampe C, Schwark L (2012) Using geochemical analyses to identify a spatial maturity anomaly—an example from the Upper Rhine Graben, Germany. In: Analyzing the thermal history of sedimentary basins: methods and case studies. SEPM Spec Publ 103:187–198Google Scholar
  40. Langford FF, Blanc-Valleron MM (1990) Interpreting rock-eval pyrolysis data using graphs of pyrolysable hydrocarbons vs. Total organic carbon. AAPG Bull 74:799–804Google Scholar
  41. LBEG (1952, 1953, 1954, 1956, 1957, 1958, 1959, 1960–2015) Erdöl und Erdgas in der Bundesrepublik Deutschland 2014 (Yearly report). Landesamt für Bergbau, Energie und Geologie, Hannover. – Former yearly reports with different titles, e.g. 1954: Bericht über den Erdölbohr- und Förderverlauf im Jahre 1953 in Westdeutschland. Amt für Bodenforschung, Hannover. 1980: Bericht über den Erdöl- und Erdgas- Bohr- und Förderverlauf im Jahre 1979 in der Bundesrepublik Deutschland. Niedersächsisches Landesamt für Bodenforschung (NLfB), Hannover. http://www.lbeg.niedersachsen.de/erdoel-erdgas-jahresbericht/jahresbericht-erdoel-und-erdgas-in-der-bundesrepublik-deutschland-936.html
  42. Levi H (1962) Die Produktionsgeschichte der Erdöllagerstätte von Pechelbronn unter besonderer Berücksichtigung ihres bergmännischen Abbaus. Erdöl Kohle Erdgas Petrochem 15(3):169–176Google Scholar
  43. Leythaeuser D, Rückheim J (1989) Heterogeneity of oil composition within a reservoir as a reflection of accumulation history. Geochim Cosmochim Acta 53:2119–2123CrossRefGoogle Scholar
  44. Littke R, Baker DR, Rullkötter J (1997) Deposition of petroleum source rocks. In: Welte DH, Horsfield B, Baker DR (eds) Petroleum and basin evolution. Springer, Heidelberg, pp 271–333CrossRefGoogle Scholar
  45. Littke R, Urai JL, Uffmann AK, Risvanis F (2012) Reflectance of dispersed vitrinite in Palaeozoic rocks with and without cleavage: implications for burial and thermal history modeling in the Devonian of Rursee area, northern Rhenish Massif, Germany. Int J Coal Geol 89:41–50CrossRefGoogle Scholar
  46. Lorenz V, Lutz H (2004) Das quartäre Meerfelder Maar, das eozäne Eckfelder Maar bei Manderschied und die eozänen Flussablagerungen von Gut Heeg in der Westeifel (Exkursion E am 15. April 2004). Jber Mittl Oberrhein Geol Ver NF 86:125-185, Stuttgart. From: Steingötter K (2005) Geologie von Rheinland-Pfalz: Schweizerbart, Stuttgart, p 400Google Scholar
  47. Lutz M, Cleintuar M (1999) Geological results of a hydrocarbon exploration campaign in the southern Upper Rhine Graben (Alsace Centrale, France). Bull Appl Geol 4:3–80Google Scholar
  48. Lutz H, Lorenz V, Engel T, Häfner F, Haneke J (2013) Paleogene phreatomagmatic volcanism on the western main fault of the northern Upper Rhine Graben (Kisselwörth diatreme and Nierstein-Astheim Volcanic System, Germany). Bull Volcanol 75:741CrossRefGoogle Scholar
  49. Mauthe G, Brink HJ, Burri P (1993) Kohlenwasserstoffvorkommen und –potential im deutschen Teil des Oberrheingrabens. Bull Vereinigung Schweiz Petrol-Geolog Ing 60(137):15–29Google Scholar
  50. Meier PM, Trick T, Blümling P, Volckaert G (2002) Self-healing of fractures within the EDZ at the Mont Terri rock laboratory: Results after one year of experimental work. In: Hoteit N et al (eds) Proceedings of international workshop on geomechnaics. Hydromechanical and thermohydromechanical behaviour of deep argillaceous rocks, Paris, 11–12 Oct 2000. Swets & Zeitlinger, LisseGoogle Scholar
  51. Ménillet F, Vogt H, Reichelt R et al (1979) Carte géologique France (1/50 000), feuille Bouxwiller (197) Orléans : BRGM. Notice explicative par Ménillet F, Vogt H, Boudot JP, Petry F, Thévenin A, Geissert F, Schwoerer P (1979), p 59Google Scholar
  52. Micklich N, Hildebrandt L (2005) The Frauenweiler clay pit (“Grube Unterfeld”). Kaupia 14:113–118Google Scholar
  53. Nix T (2003) Untersuchung der ingenieurgeologischen Verhältnisse der Grube Messel (Darmstadt) im Hinblick auf die Langzeitstabilität der Grubenböschungen. Dissertation, TU DarmstadtGoogle Scholar
  54. Pepper AS, Corvi PJ (1995) Simple kinetic models of petroleum formation. Part III: modelling an open system. Marine Petrol Geol 12:417–452CrossRefGoogle Scholar
  55. Peters KE, Walters CC, Moldowan M (2005a) The biomarker guide volume—biomarkers and isotopes in the environment and human history, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  56. Peters KE, Walters CC, Moldowan JM (2005b) The biomarker guide volume 2—biomarkers and isotopes in petroleum exploration and earth history. Cambridge University Press, CambridgeGoogle Scholar
  57. Plein E (1993) Vorrasuetzung und Grenzen der Bildung von Kohlenwasserstoff-Lagerstätten im Oberrheingraben. Jber Mitt Oberrhein Geol Ver NF 75:227–253Google Scholar
  58. Pribnow D, Schellschmidt R (2000) Thermal tracking of Upper Crustal fluid flow in the Rhine Graben. Geophys Res Lett 27:1957–1960CrossRefGoogle Scholar
  59. Radke M, Welte DH, Willsch H (1991) Distribution of alkylated aromatic hydrocarbons and dibenzothiophenes in rocks of the Upper Rhine Graben. Chem Geol 93:325–341CrossRefGoogle Scholar
  60. Rice DD (1993) Biogenic gas: controls, habitat, and resource potential. In Howell DG et al (eds) The future of erzergy gases. U.S. Geological Survey professional paper 1570. U.S. Government Printing Office, Washington, DC, pp 583–606Google Scholar
  61. Richard A (1994) Petroleum exploration in the French Rhine Graben. In: Mascle A (ed) Hydrocarbon and petroleum geology of France. Spec Publ Europ Ass Petrol Geosci 4:361–363Google Scholar
  62. Röhl HJ, Schmid-Röhl A (2005) Lower Toarcian (Upper Liassic) Black Shales of the central European epicontinental basin: a sequence stratigraphic case study from the SW German Posidonia Shale. In: The deposition of organic-carbon-rich sediments: models, mechanisms, and consequences. SEPM Spec Publ 82:165–189Google Scholar
  63. Röhl HJ, Schmid-Röhl A, Oschmann W, Frimmel A, Schwark L (2001) The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeogr Palaeoclimatol Palaeoecol 165:27–52CrossRefGoogle Scholar
  64. Rückheim J (1989) Migrations- und Akkumulationsgeschichte der Erdöle des nördlichen Oberrheingrabens und deren Beziehung zur Diagenese der klastischen Speichergesteine. Dissertation, RWTH Aachen University, Ber Forschungszentrums Jülich 2307Google Scholar
  65. Rullkötter J, Leythaeuser D, Horsfield B, Littke R, Radke M, Welte DH et al (1988) Organic matter maturation under the influence of a deep intrusive heat source: a natural experiment for quantization of hydrocarbon generation and expulsion from a petroleum source rock (Toarcian shale, northern Germany). Org Geochem 13:847–856CrossRefGoogle Scholar
  66. Sachse VF, Littke R, Heim H, Kluth O, Schober J, Boutib L, Jabour H, Ferdinand Perssen F, Sindern S (2011) Petroleum source rocks of the Tarfaya Basin and adjacent areas, Morocco. Org Geochem 42(3):209–227CrossRefGoogle Scholar
  67. Schad A (1962a) Voraussetzungen für die Bildung von Erdöllagerstätten im Rheingraben. Abh geol Landesamt Baden-Württemberg 4:29–40Google Scholar
  68. Schad A (1962b) Das Erdölfeld Landau. Abh geol Landesamt Baden –Württemberg 4:81–102Google Scholar
  69. Schäfer P (2012) Mainzer Becken – Sammlung geologischer Führer Band 79, 2nd edn. Gebr, BornträgerGoogle Scholar
  70. Schumacher ME (2002) Upper Rhine Graben: role of preexisting structures during rift evolution. Tectonics 21(1):1–17CrossRefGoogle Scholar
  71. Schwarz M, Becker A, Schäfer A (2011) Seismische Leithorizonte im nordöstlichen Saar-Nahe-Becken. Erdöl Erdgas Kohle 127(1):28–34Google Scholar
  72. Sittler C (1985) Les Hydrocarbures d’Alsace dans le context historique et géodynamique du fossé Rhénan [The case history of oil occurrence in the Rhine Rift Valley]. Bull Centres Rech Explor-Prod Elf-Aquitaine 9(2):335–371Google Scholar
  73. Sofer Z (1984) Stable carbon isotope compositions of crude oils: application to source depositional environments and petroleum alteration. AAPG Bull 68(1):31–49Google Scholar
  74. Sokol G, Nitsch E (2013) GeORG-Projektteam - Geopotenziale des tieferen Untergrundes im Oberrheingraben, Fachlich-Technischer Abschlussbericht des Interreg-Projekts GeORG - Teil 1-4. Herausgegeben von Landesamt für Geologie, Rohstoffe und Bergbau (RP Freiburg, Baden-Württemberg), Landesamt für Geologie und Bergbau Rheinland-Pfalz (Mainz), Bureau de recherches géologiques et minières (Orléans et Strasbourg), Abteilung Angewandte & Umweltgeologie (AUG) der Universität Basel.—Internet (PDF-Dokument: http://www.geopotenziale.eu)
  75. Song J, Littke R, Weniger P, Ostertag-Henning C, Nelskamp S (2015) Shale oil potential and thermal maturity of the Lower Toarcian Posidonia Shale in NW Europe. Int J Coal Geol 151:127–153CrossRefGoogle Scholar
  76. STDKe (2012) Deutsche Stratigraphische Kommission (Ed; Coordination and Layout: Menning M, Hendrich A) Stratigraphic Table of Germany Compact 2012 (STDKe 2012), Potsdam (GFZ)Google Scholar
  77. Steingötter K (2005) Geologie von Rheinland-Pfalz. Schweizerbart, StuttgartGoogle Scholar
  78. Straub EW (1955) Über einen Fund von fraglichem Mitteleozän im Erdölfeld Stockstadt bei Darmstadt. Notizbl Hessischen Landesamtes Bodenforsch 83:220–227Google Scholar
  79. Straub EW (1962) Die Erdöl- und Erdgaslagerstätten in Hessen und Rheinhessen. Abh geol Landesamt Baden-Württemberg 4:123–136Google Scholar
  80. Summons RE, Barrow RA, Capon RJ, Hope JM, Stranger C (1993) The structure of a new C25 isoprenoid alkene biomarker from diatomaceous microbial commmunities. Aust J Chem 46:907–915CrossRefGoogle Scholar
  81. Villemin T, Alvarez F, Angelier J (1986) The Rhinegraben: extension, subsidence and shoulder uplift. Tectonophysics 128:47–59CrossRefGoogle Scholar
  82. Wang Z, Stout SA, Fingas M (2006) Forensic fingerprinting of biomarkers for oil spill characterisation and source identification. Environ Forens 7(2):105–146CrossRefGoogle Scholar
  83. Waples DW, Haug P, Welte DH (1974) Occurrence of a regular C25 isoprenoid hydrocarbon in Tertiary sediments representing a lagoonal-type, saline environment. Geochim Cosmochim Acta 38:381–387CrossRefGoogle Scholar
  84. Welte D (1979) Organisch-geochemische Untersuchungen zur Bildung von Erdöl-Kohlenwasserstoffen an Gesteinen des mittleren Oberrhein-Grabens. Fortschr Geol Rheinld Westf (Krefeld) 27:51–73Google Scholar
  85. Welte DH, Waples DW (1973) Über die Bevorzugung geradzahliger n-Alkane in Sedimentgesteinen. Naturwiss 60:516–517CrossRefGoogle Scholar
  86. Welte DH, Hagemann HW, Hollerbach A, Leythaeuser D (1975) Correlation between petroleum and source rock. Ninth world petroleum congress, Tokyo (Applied Science Publishers Ltd), pp 179–191Google Scholar
  87. Wirth E (1962) Geschichte und wirtschaftliche Bedeutung der Erdöl- und Erdgasgewinnung in der Oberrheinebene. Abh geol Landesamt Baden-Württemberg 4:13–28Google Scholar
  88. Ziegler PA (1992) European Cenozoic rift system. Tectonophysics 208:91–111CrossRefGoogle Scholar
  89. Ziegler PA, Dèzes P (2007) Cenozoic uplift of Variscan Massifs in the Alpine foreland: timing and controlling mechanisms. Glob Planet Change 58:237–269CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Geology and Geochemistry of Petroleum and Coal, Energy and Mineral Resources Group (EMR)RWTH AachenAachenGermany
  2. 2.ENGIE E&P Deutschland GmbHLingenGermany

Personalised recommendations