International Journal of Earth Sciences

, Volume 105, Issue 7, pp 1965–1983 | Cite as

New perspectives on the origin and emplacement of the Late Jurassic Fanos granite, associated with an intra-oceanic subduction within the Neotethyan Axios-Vardar Ocean

  • Maria Michail
  • Kyriaki Pipera
  • Antonios Koroneos
  • Adamantios Kilias
  • Theodoros Ntaflos
Original Paper


The Fanos granite occurs in the Peonias subzone of the eastern Axios-Vardar zone in northern Greece. The Fanos granite is Late Jurassic (158 ± 1 Ma) and trends N–S, intruding the Mesozoic back-arc Guevgueli ophiolitic complex. The intrusive character of the eastern contact of the Fanos granite with the host ophiolitic complex is well preserved. In turn the western contact is overprinted by a few meters thick, west- to southwest-directed semi-ductile thrust zone, of Late Jurassic-Early Cretaceous age. The Fanos granite is dominated by the typical, isotropic granitoid fabric, although in some places the initial magmatic flow fabric is preserved. The main deformation recognized in the Fanos granite occurred in brittle regime and expressed by Tertiary thrust faults and Neogene-Quaternary normal to oblique normal faults. The origin as well as the possible tectonic setting of the Fanos granite is the main topics that we address in our study. Rock samples of the Fanos granite along with the adjusted Kotza Dere quartz diorite were analyzed for major and trace elements and for Sr and Nd isotopes (only the quartz diorite). The geochemical data show that the granite has peraluminous characteristics, high-K calc-alkaline affinities, and I-type features. The Sr initial isotopic values of the Fanos granite are rather low (0.7053–0.7056) while for the quartz diorite range from 0.7066 to 0.7068. The Nd initial isotopic values range from 0.51235 to 0.51240 for the granite and from 0.51222 to 0.51233 for the quartz diorite. The source of the granitic melt is interpreted to be meta-basaltic amphibolites. These amphibolites are the metamorphic products of enriched mantle melts that underplated the oceanic lithosphere. Taking into account our and published structural and geochemical data for the Fanos granite along with the tectonic data of the broader Axios-Vardar zone, we suggest that the studied granitic rocks were formed during an intra-oceanic subduction within the Neotethyan Axios-Vardar ocean. The granite was obducted during the Late Jurassic, together with the Neotethyan ophiolites westwards, on the Paikon Massif, in the eastern margin of the Pelagonian continent.


Intra-oceanic subduction Axios-Vardar zone Guevgueli ophiolites Supra-subduction ophiolites Fanos granite 



The authors express their gratitude to Francesca Castorina (Dipartimento di Scienze della Terra, University of Rome “La Sapienza”), for the isotopic analyses of samples KD-100 and KD-101. Two anonymous referees and Vasileios Chatzaras are thanked for their careful and thoughtful reviews, as well as Paris Xypolias and Gerold Zulauf for editorial assistance. George Christofides and Markos Tranos are thanked for many fruitful discussions.


  1. Anders B, Reischmann T, Poller U, Kostopoulos D (2005) Age and origin of granitic rocks of the eastern Vardar Zone, Greece: new constraints on the evolution of the Internal Hellenides. J Geol Soc 162(5):857–870CrossRefGoogle Scholar
  2. Baroz F, Bebien J, Ikenne M (1987) An example of high-pressure low-temperature metamorphic rocks from an island-arc: the Paikon series (Innermost Hellenides, Greece). J Metamorph Geol 5:509–527CrossRefGoogle Scholar
  3. Beard JS, Lofgren GE, Sinha AK, Tollo RP (1994) Partial melting of apatite- bearing charnokite, granulite and diorite: melt compositions, restite mineralogy and petrologic implications. J Geoph Res 99:21591–21603CrossRefGoogle Scholar
  4. Bebien L (1982) L’association ignée de Guevgueli (Macédoine Grèce), expression d’un magmatisme ophiolitique dans une déchirure continentale. These d’ Etat, Nancy, p 468Google Scholar
  5. Bebien J, Platevoet B, Mercier J (1994) Geodynamic significance of the Paikon massif in the Hellenides; contribution of the volcanic rock studies. Bull Geol Soc Greece 30(1):63–67Google Scholar
  6. Bernoulli D, Laubscher H (1972) The palinspastic problem of the Hellenides. Eclogae Geol Helv 65:107–118Google Scholar
  7. Blumenfeld P (1983) Le ‘tuilage des mégacristaux’, un critère d’écoulement rotationnel pour les fluidalités des roches magmatiques. Applications au granite de Barbey-Seroux (Vosges, France). Bull Soc Géol Fr 25:309–318CrossRefGoogle Scholar
  8. Bonneau M, Godfriaux I, Moulas Y, Fourcade E, Masse J (1994) Stratigraphie et structure de la bordure orientale de la double fenêtre du Paikon (Macédoine, Grèce). Bull Géol Soc Gr 30(1):105–114Google Scholar
  9. Borsi S, Ferrara G, Mercier J, Tongiorgi E (1966) Age stratigraphique et radiométrique Jurassique supérieur d` un granite des zones internes des Hellénises (granite de Fanos, Macédoine, Grèce). Rev Geogr Phys Geol Dyn 8:279–287Google Scholar
  10. Bortolotti V, Chiari M, Marroni M, Pandolfi L, Principi G, Saccani E (2013) Geodynamic evolution of ophiolites from Albania and Greece (Dinaric-Hellenic belt): one, two, or more oceanic basins? Int J Earth Sci 102(3):783–811CrossRefGoogle Scholar
  11. Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Hederson P (ed) Rare earth element geochemistry. Elsevier, New York, pp 63–114CrossRefGoogle Scholar
  12. Božović M, Prelević D, Romer RL, Barth M, Van Den Bogaard P, Boev B (2013) The demir kapija ophiolite, Macedonia (FYROM): a Snapshot of subduction initiation within a back-arc. J Petrol 54:1427–1453CrossRefGoogle Scholar
  13. Brown SA, Robertson AH (2003) Sedimentary geology as a key to understanding the tectonic evolution of the Mesozoic-Early Tertiary Paikon Massif, Vardar suture zone, N Greece. Sediment Geol 160(1):179–212CrossRefGoogle Scholar
  14. Brown SA, Robertson AH (2004) Evidence for Neotethys rooted within the Vardar suture zone from the Voras Massif, northernmost Greece. Tectonophysics 381(1):143–173CrossRefGoogle Scholar
  15. Burg JP (2012) Rhodope: from Mesozoic convergence to Cenozoic extension. Review of petro-structural data in the geochronological frame. J Virtual Explor 42(1):1–44Google Scholar
  16. Christofides G, Soldatos T, Koroneos A (1990) Geochemistry and evolution of the Fanos granite, N. Greece. Mineral Petrol 43(1):49–63CrossRefGoogle Scholar
  17. Dimo A (1997) Le mécanisme de mise en place des ophiolites d’ Albanie. Dissertation, University of Paris -Sud, Paris, p 308Google Scholar
  18. Downes H, Dupuy C, Leyreloup AF (1990) Crustal evolution of the Hercynian belt of Western Europe: evidence from lower-crustal granulitic xenoliths (French Massif Central). Chem Geol 83:209–231CrossRefGoogle Scholar
  19. Duyster J (2000) StereoNett. Microsoft Corp., Universität Bochum, BochumGoogle Scholar
  20. Frisch W (1980) Plate motions in the Alpine region and their correlation to the opening of the Atlantic ocean. Geol Rundsch 70:402–411CrossRefGoogle Scholar
  21. Frisch W, Meschede M (2007) Plattentektonik, Kontinentverschiebung und Gebirgsbildung 2. Überarb. Auflage, Primus Verlag u. Wiss, Buchges, Darmstadt, p 196Google Scholar
  22. Froitzheim N, Jahn-Awe S, Frei D, Wainwright AN, Maas R, Georgiev N, Nagel JT, Pleuger J (2014) Age and composition of meta-ophiolite from the Rhodope Middle Allochthon (Satovcha, Bulgaria): a test for the maximum-allochthony hypothesis of the Hellenides. Tectonics 33(8):1477–1500CrossRefGoogle Scholar
  23. Galeos A, Pomoni-Papaioannou F, Tsaila-Monopolis S, Turnsek D, Ioakim C (1994) Upper Jurassic-Lower Cretaceous molassic-type sedimentation in the western part of the Almopias subzone, Aridhea Loutra unit (northern Greece). Bull Geol Soc Greece 30(1):171–184Google Scholar
  24. Gawlick HJ, Frisch W, Hoxha L, Dumitrica P, Krystyn L, Lein R, Missoni S, Schlagintweit F (2008) Mirdita Zone ophiolites and associated sediments in Albania reveal Neotethys Ocean origin. Intern J Earth Sci 97:865–881CrossRefGoogle Scholar
  25. Godfriaux J (1968) Etude géologique de la région de l’ Olympe (Grèce). An Géol de Pays Hellénique 19:1–271Google Scholar
  26. Godfriaux I, Ricou LE (1991) Le Paicon, une fenêtre tectonique dans les Hellénides Internes (Macédoine, Grèce). Comptes Rendus de l’Académie des Sciences, Paris 313(2):1479–1484Google Scholar
  27. IGME (1982) Geological map of Greece, sheet Skra, scale 1:50.000. Institute of Geology and Mineral Exploration, AthensGoogle Scholar
  28. IGME (1993) Geological map of Greece, sheet Evzoni, scale 1:50.000. Institute of Geology and Mineral Exploration, AthensGoogle Scholar
  29. Jacobshagen V, Dürr F, Kockel K, Kopp KO, Kowalczyk G, Berckhemer H, Buttner D (1978) Structure and geodynamic evolution of the Aegean region. In: Cloos H, Roeder D, Schmidt K (eds) Alps, apennines, hellenides. IUGG, Stuttgart, pp 537–564Google Scholar
  30. Jahn-Awe S, Froitzheim N, Nagel TJ, Frei D, Georgiev N, Pleuger J (2010) Structural and geochronological evidence for Paleogene thrusting in the western Rhodopes, SW Bulgaria: elements for a new tectonic model of the Rhodope Metamorphic Province. Tectonics 29(TC3008):1–30Google Scholar
  31. Jolivet L, Rimmele G, Oberhansli R, Goffe B, Candan O (2004) Correlation of syn-orogenic tectonic and metamorphic events in the Cyclades, the Lycian nappes and the Menderes massif. Geodynamic implications. Bull Soc Geol Fr 175(3):217–238CrossRefGoogle Scholar
  32. Jones G, Robertson AHF (1991) Tectonostratigraphy and evolution of the Mesozoic Pindos ophiolite and related units, Northewestern Greece. J Geol Soc Lond 148:267–288CrossRefGoogle Scholar
  33. Karamata S (2006) The geological development of the Balkan Peninsula related to the approach, collision and compression of Godwana and Eurasian units. In: Robertson AHF, Mountrakis D (eds) Tectonic development of the eastern mediterranean region. Geological Society of London, Special Publication, vol 260, pp 373–412Google Scholar
  34. Katrivanos E, Kilias A, Mountrakis D (2013) Kinematics of deformation and structural evolution of the Paikon Massif (Cental Macedonia, Greece): a Pelagonian tectonic window? N Jb Geol Palaont Abh 269(2):149–171CrossRefGoogle Scholar
  35. Katrivanos E, Kilias A, Mountrakis D (2015) Paikon and Tzena terranes (Axios zone, Greece): can they be correlated? International conference, SCinTE 2015, Athens, pp 15–19Google Scholar
  36. Kilias A (1995) Tectonic evolution of the Olympus-Ossa mountains: emplacement of the blueschists unit in eastern Thessaly and exhumation of Olympus-Ossa carbonate dome as a result of tertiary extension (Central Greece). Mineral Wealth 96:7–22Google Scholar
  37. Kilias A, Frisch W, Avgerinas A, Dunkl I, Falalakis G, Gawlick HJ (2010) Alpine architecture and kinematics of deformation of the northern Pelagonian nappe pile in the Hellenides. Austrian J Earth Sci 103(1):4–28Google Scholar
  38. Koroneos A (2010) Petrogenesis of the Upper Jurassic Monopigadon pluton related to the Vardar-Axios ophiolites (Macedonia, northern Greece) and its geotectonic significance. Chem Erde 70:221–241CrossRefGoogle Scholar
  39. Kostaki G, Kilias A, Gawlick H-J, Schlagintweit F (2013) Kimmeridgian-Tithonian shallow-water platform clasts from mass flows on top of the Vardar/Axios ophiolites. Bull Geol Soc Greece, XLVII, pp 1–10Google Scholar
  40. Kostaki G, Kilias A, Gawlick H-J, Schlagintweit F (2014) Component analysis in the vardar/axios zone of northern greece reveals an eroded late jurassic carbonate platform comparable to those of the Eastern Alps/Western Carpathian, Dinarides, Albanides and Hellenides. XX CBGA. Bul Shk Gjeol 1:85–88Google Scholar
  41. Langmuir CH, Jr VockeRD, Gilbert NH, Stanley RH (1978) A general mixing equation with applications to Icelandic basalts, Earth Planet. Sci Lett 37:380–392Google Scholar
  42. Meinhold G, Kostopoulos D, Reischmann T, Frei D, Boudacher-Fadel MK (2009) Geochemistry, provenance and stratigraphic age of metasedimentary rocks from the eastern Vardar zone, Northern Greece. Paleogeogr Palaeontol Palaeoecol 277:199–225CrossRefGoogle Scholar
  43. Mercier J (1966) Mouvements orogéniques et magmatisme d` âge Jurassique Superieur-Eocretace dans les zones internes des Hellénides (Macédoine, Grèce). Rev Géogr Phys Géol Dyn 8:265–278Google Scholar
  44. Mercier J (1968) Étude géologique des zones internes des Hellénides en Macédoine centrale (Grèce). Contribution é l’ étude du métamorphisme et de l’ évolution magmatique des zones internes des Hellénides. Ann Geol Pays Hellénique 20:1–792Google Scholar
  45. Michard A, Feinberg H, Montigny R (1998) Supra-ophiolitic formations from the Thessaloniki Nappe (Greece) and associated magmatism; an intra-oceanic subduction predates the Vardar obduction. C R Acad Sci Paris Ser II 327(7):493–499Google Scholar
  46. Montel JM, Vielzeuf D (1997) Partial melting of metagreywackes, II. Compositions of minerals and melts. Contrib Mineral Petrol 128:176–196CrossRefGoogle Scholar
  47. Most T, Frisch W, Dunkl I, Kodosa B, Boev B, Avgerinas A, Kilias A (2001) Geochonological and structural investigation of the Northern Pelagonian crystalline zone. Constraints from K/Ar and zircon and apatite fission track dating. Bull Geol Soc Greece 34:91–95Google Scholar
  48. Mountrakis D (1986) The Pelagonian Zone in Greece: a polyphase deformed fragment of the Cimmerian continent and its role in the geotectonic evolution of the eastern Mediterranean. J Geol 94:335–347CrossRefGoogle Scholar
  49. Mountrakis D, Tranos M, Papazachos C, Thomaidou E, Karagianni E, Vamvakaris D (2006) New neotectonic and seismological data about the main active faults and stress regime of Northern Greece. J Geol Soc Lond Spec Publ 260:649–670CrossRefGoogle Scholar
  50. Pamic J (2002) The SavaVardar zone of the Dinarides and Hellenides versus the Vardar Ocean. Eclogae Geol Helv 95:99–113Google Scholar
  51. Papanikolaou D (2009) Timing of tectonic emplacement of the ophiolites and terrane paleogeography in the Hellenides. Lithos 108:262–280CrossRefGoogle Scholar
  52. Patino Douce AE, Beard JS (1996) Effects of P, f (O2) and Mg/Fe ratio on dehydration melting of model metagreywackes. J Petrol 37:99–1024CrossRefGoogle Scholar
  53. Pavlides S, Mountrakis D, Kilias A, Tranos M (1990) The role of strike-slip movements in the extensional area of the northern Aegean (Greece). Ann Tecton 4:196–211Google Scholar
  54. Pearce JA (1989) High T/P metamorphism and granite genesis beneath ophiolite thrust sheets. Ofioliti 14(3):195–211Google Scholar
  55. Peucat JJ, Vidal P, Bernard-Griffiths J, Condie KC (1989) Sr, Nd and Pb isotopic systematics in the Archean low- to high-grade transition zone of southern India: syn-accretion vs. post-accretion granulites. J Geol 97:537–550CrossRefGoogle Scholar
  56. Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145(3):325–394CrossRefGoogle Scholar
  57. Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling. J Petrol 36:891–931CrossRefGoogle Scholar
  58. Rassios AE, Dilek Y (2009) Rotational deformation in the Jurassic Mesohellenic ophiolites, Greece, and its tectonic significance. Lithos 108(1):207–223CrossRefGoogle Scholar
  59. Rassios AH, Moores EM (2006) Heterogeneous mantle complex, crustal processes, and obduction kinematics in a unifield Pindos-Vourinos ophiolitic slab. In Robertson AHF, Mountrakis D (eds) Tectonic development of the Eastern mediterranean region. Geol Soc Lond Spec Publ 260: 237–266Google Scholar
  60. Ricou LE, Godfriaux I (1991) Une coupe à travers les ophiolites et gneiss allochtones entre le massif Pélagonien et la fenêtre du Paikon (Grèce du Nord). C R Acad Sci Paris 313(2):1595–1601Google Scholar
  61. Ricou LE, Godfriaux I (1995) Mise au point sur la fenêtre multiple du Paikon et la structure du Vardar en Grèce. C R Acad Sci Paris 321(2):601–608Google Scholar
  62. Robertson AHF (2012) Late Paleozoic-Cenozoic tectonic development of Greece and Albania in the context of alternative reconstructions of Tethys in the Eastern Mediterranean region. Int Geol Rev 54:373–454CrossRefGoogle Scholar
  63. Robertson AHF, Dixon JE, Brown S, Collins A, Morris A, Pickett E, Sharf I, Ustaömer T (1996) Alternative tectonic models for the Late Palaeozoic-Early Tertiary development of Tethys in the Eastern Mediterranean region. Geol Soc Lond Spec Publ 105(1):239–263CrossRefGoogle Scholar
  64. Robertson AHF, Trivić B, Đerić N, Bucur I (2013) Tectonic development of the Vardar ocean and its margins: evidence from the Republic of Macedonia and Greek Macedonia. Tectonophysics 595–596:25–54CrossRefGoogle Scholar
  65. Saccani E, Bortolotti V, Marroni M, Pandolfi L, Photiades A, Principi G (2008) The Jurassic association of backarc basin ophiolites and calc-alcaline volcanics in the Guevgueli complex (Northern Greece): implication for the evolution of the Vardar zone. Ophioliti 33:209–227Google Scholar
  66. Šarić K, Cvetković V, Romer RL, Christofides G, Koroneos A (2009) Granitoids associated with East Vardar ophiolites (Serbia, FYR of Macedonia and northern Greece): origin, evolution and geodynamic significance inferred from major and trace element data and Sr–Nd–Pb isotopes. Lithos 108(1):131–150Google Scholar
  67. Schenker FL, Burg JP, Kostopoulos D, Moulas E, Larionov A, Quadt A (2014) From Mesoproterozoic magmatism to collisional Cretaceous anatexis: tectonomagmatic history of the Pelagonian Zone, Greece. Tectonics 33(8):1552–1576CrossRefGoogle Scholar
  68. Schenker FL, Fellin MG, Burg JP (2015) Polyphase evolution of Pelagonian (northern Greece) revealed by geological and fission-track data. Solid Earth 6:285–302CrossRefGoogle Scholar
  69. Schermer RE (1993) Geometry and kinematics of continental basement deformation during the Alpine orogeny, Mt. Olympos region, Greece. J Struct Geol 15:571–591CrossRefGoogle Scholar
  70. Schmid SM, Bernoulli D, Fügenschuh B, Matenco L, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101(1):139–183CrossRefGoogle Scholar
  71. Sen C, Dunn T (1994) Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contrib Mineral Petrol 117:394–409CrossRefGoogle Scholar
  72. Shallo M, Dilek Y (2003) Development of the ideas on the origin of Albanian ophiolites. Geol Soc Am Spec Pub 373:351–363Google Scholar
  73. Sharp IR, Robertson AH (2006) Tectonic-sedimentary evolution of the western margin of the Mesozoic Vardar Ocean: evidence from the Pelagonian and Almopias zones, northern Greece. Geol Soc Lond Spec Publ 260(1):373–412CrossRefGoogle Scholar
  74. Simpson C, Schmid SM (1983) An evaluation of criteria to deduce the sense of movement in sheared rocks. Geol Soc Am Bull 94:1281–1288CrossRefGoogle Scholar
  75. Soldatos T, Koroneos A, Christofides G (1993) Origin and evolution of the Fanos granite (Macedonia, Greece): trace and REE modeling constrains. Panago’s Honorary Volume Athens, Technical University Publications, vol 6, pp 789–812Google Scholar
  76. Spray JG, Roddick JC (1980) Petrology and 40Ar/39Ar geochronology of some Hellenic sub-ophiolitic metamorphic rocks. Contrib Miner Petrol 72:43–55CrossRefGoogle Scholar
  77. Spray JG, Bebien J, Rex DC, Roddick JC (1984) Age constraints on the igneous and metamorphic evolution of the Hellenic–Dinaric ophiolites. In: Dixon JE, Robertson AHF (eds). The geological evolution of the eastern mediterranean, Geological Society of London Special Publications, vol 17, pp 619–627Google Scholar
  78. Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic. Earth Planet Sci Lett 196:17–33CrossRefGoogle Scholar
  79. Streckeisen A, Le Maitre RW (1979) A chemical approximation to the modal QAPF classification of the igneous rocks. Neues Jahrbuch für Mineralogie Abhandlungen 136:169–206Google Scholar
  80. Sun SS, McDonough W (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42(1):313–345CrossRefGoogle Scholar
  81. Tranos M, Kilias A, Mountrakis D (1999) Geometry and kinematics of the Tertiary postmetamorphic Circum Rhodope belt thrust system (CRBTS), Northern Greece. Bull Geol Soc Greece 33:5–16Google Scholar
  82. Trembley A, Meshi A, Deschamps T, Goulet F, Goulet N (2015) The Vardar zone as a suture for the Mirdita ophiolites, Albania: constraints from the structural analysis of the Korabi-Pelagonian zone. Tectonics 34:1–24CrossRefGoogle Scholar
  83. Vergely P (1984) Tectoniques des ophiolites dans les Hellénides Internes déformation, métamorphisme et phénomènes sédimentaires. Conséquences sur l’ évolution des région Téthysiennes Occidentales. PhD Thesis, Université de Paris, p 560Google Scholar
  84. Vergely P, Mercier J (2000).Données nouvelles sur les chevauchements d` âge post-Crétacé supérieur dans le massif du Paikon (zone de l` Axios-Vardar, Macédoine, Grèce): un nouveau modèle structural. C R Acad. des Sciences, Paris, 330 (IIa):1–7Google Scholar
  85. Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid absent metling relations in the pelitic system. Consequences for crustal differentiation. Contrib Mineral Petrol 98:257–276CrossRefGoogle Scholar
  86. White WM, Patchett PJ (1984) Hf-Nd-Sr isotopes and incompatible element abundances in island arcs: implications for magma origins and crust-mantle evolutions. Earth Planet Sci Lett 115:167–185CrossRefGoogle Scholar
  87. Wolf MB, Wyllie PJ (1994) Dehydration-melting of amphibolites at 10 kbar: the effects temperature and time. Contrib Miner Petrol 115:369–383CrossRefGoogle Scholar
  88. Zachariadis P (2007) Ophiolites of the eastern Vardar Zone, N. Greece. Dissertation, Johannes Gutenberg-Universität, Mainz, p 131Google Scholar
  89. Zachariadis P, Reischmann Th, Kostopoulos D (2006) U-Pb ion-microprobe zircon dating of subduction-related magmatism from northern Greece: The ages of the Guevgueli, Thessaloniki and Chalkidiki igneous complexes. Geophys Res Abstr 8, 05560, EGU 2006Google Scholar
  90. Zachariadis P, Reischmann Th, Kostopoulos D (2007) A middle Jurassic supra-subduction zone ophiolite between the Vardar Zone and the Serbomacedonian Massif, N. Greece. Geophys Res Abstr 9, 10069, EGU 2007Google Scholar
  91. Zachariadou S (2005) Partial melting phenomena in Stip-Axios zone and in Vertiskos group (the Pigi and Karathodoro units). Dissertation, Aristotle University of Thessaloniki, p 335Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Maria Michail
    • 1
    • 2
  • Kyriaki Pipera
    • 3
  • Antonios Koroneos
    • 3
  • Adamantios Kilias
    • 1
  • Theodoros Ntaflos
    • 4
  1. 1.Department of Geology and Paleontology, School of GeologyAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Department of Physics and Earth SciencesUniversity of FerraraFerraraItaly
  3. 3.Department of Mineralogy, Petrology and Econ. Geology, School of GeologyAristotle University of ThessalonikiThessalonikiGreece
  4. 4.Department of Lithospheric ResearchUniversity of ViennaViennaAustria

Personalised recommendations