International Journal of Earth Sciences

, Volume 105, Issue 5, pp 1453–1465 | Cite as

Linking SO2 emission rates and seismicity by continuous wavelet transform: implications for volcanic surveillance at San Cristóbal volcano, Nicaragua

  • Vladimir CondeEmail author
  • Stefan Bredemeyer
  • J. Armando Saballos
  • Bo Galle
  • Thor H. Hansteen
Original Paper


San Cristóbal volcano is the highest and one of the most active volcanoes in Nicaragua. Its persistently high activity during the past decade is characterized by strong degassing and almost annual VEI 1–2 explosions, which present a threat to the local communities. Following an eruption on 8 September 2012, the intervals between eruptions decreased significantly, which we interpret as the start of a new eruptive phase. We present here the results of semi-continuous SO2 flux measurements covering a period of 18 months, obtained by two scanning UV-DOAS instruments installed as a part of the network for observation of volcanic and atmospheric change project, and the results of real-time seismic amplitude measurements (RSAM) data. Our data comprise a series of small to moderately explosive events in December 2012, June 2013 and February 2014, which were accompanied by increased gas emissions and seismicity. In order to approach an early warning strategy, we present a statistical method for the joint analysis of gas flux and seismic data, by using continuous wavelet transform and cross-wavelet transform (XWT) methods. This analysis shows that the XWT coefficients of SO2 flux and RSAM are in good agreement with the occurrence of eruptive events and thus may be used to indicate magma ascent into the volcano edifice. Such multi-parameter surveillance efforts can be useful for the interpretation and surveillance of possible eruptive events and could thus be used by local institutions for the prediction of upcoming volcanic unrest.


DOAS Volcanic SO2 RSAM Wavelets CWT and XWT 



This work was supported by the Swedish International Development Cooperation Agency (Sida) through the International Science Program (ISP), in coordination with Instituto Nicaragüense de Estudios Territoriales (INETER). Further support was received from the Helmholtz Foundation through the “Remote Sensing and Earth System Alliance” (HA-310/IV010). We would like to thank the staff from INETER for their friendly support and in particular for the assistance and dedication provided by David Chavarría and Hoffman Sanchez. We would like to thank the reviewers and the editor of this paper for their constructive comments.


  1. Allen M, Smith LA (1996) Monte Carlo SSA: detecting irregular oscillations in the presence of colored noise. J Clim 9(12):3373–3404. doi: 10.1175/1520-0442(1996)009<3373:MCSDIO>2.0.CO;2 CrossRefGoogle Scholar
  2. Anderson JL (2001) An ensemble adjustment kalman filter for data assimilation. Mon Weather Rev 129(12):2884–2903. doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2 CrossRefGoogle Scholar
  3. Barrancos J, Roselló JI, Calvo D, Padrón E, Melián G, Hernández PA, Pérez NM, Millán MM, Galle B (2008) SO2 emission from active volcanoes measured simultaneously by COSPEC and mini-DOAS. Pure appl Geophys 165(1):115–133CrossRefGoogle Scholar
  4. Battaglia J, Ferrazzini V, Staudacher T, Aki K, Cheminée J-L (2005) Pre-eruptive migration of earthquakes at the Piton de la Fournaise volcano (Réunion Island). Geophys J Int 161(2):549–558. doi: 10.1111/j.1365-246X.2005.02606.x CrossRefGoogle Scholar
  5. Bluth G, Shannon J, Watson I, Prata A, Realmuto V (2007) Development of an ultra-violet digital camera for volcanic SO 2 imaging. J Volcanol Geoth Res 161(1):47–56CrossRefGoogle Scholar
  6. Boichu M, Oppenheimer C, Tsanev V, Kyle PR (2010) High temporal resolution SO 2 flux measurements at Erebus volcano, Antarctica. J Volcanol Geoth Res 190(3):325–336CrossRefGoogle Scholar
  7. Bredemeyer S, Hansteen T (2014) Synchronous degassing patterns of the neighbouring volcanoes Llaima and Villarrica in south-central Chile: the influence of tidal forces. Int J Earth Sci (Geol Rundsch) 103(7):1999–2012. doi: 10.1007/s00531-014-1029-2 CrossRefGoogle Scholar
  8. Burton M, Allard P, Mure F, La Spina A (2007) Magmatic gas composition reveals the source depth of slug-driven Strombolian explosive activity. Science 317(5835):227–230. doi: 10.1126/science.1141900 CrossRefGoogle Scholar
  9. Burton MR, Caltabiano T, Murè F, Salerno G, Randazzo D (2009) SO2 flux from Stromboli during the 2007 eruption: results from the FLAME network and traverse measurements. J Volcanol Geoth Res 182(3–4):214–220. doi: 10.1016/j.jvolgeores.2008.11.025 CrossRefGoogle Scholar
  10. Casadevall TJ (1981) The 1980 eruptions of Mount St. Helens, Washington. SO2 emission rates at Mount St. Helens from March 29 through December 1980. US Geol Surv Prof Pap 1250:193–200Google Scholar
  11. Casadevall T, Rose W, Gerlach T, Greenland LP, Ewert J, Wunderman R, Symonds R (1983) Gas emissions and the eruptions of Mount St. Helens through 1982. Science 221(4618):1383–1385CrossRefGoogle Scholar
  12. Chouet BA (1996) Long-period volcano seismicity: its source and use in eruption forecasting. Nature 380(6572):309–316CrossRefGoogle Scholar
  13. Chouet B (2003) Volcano seismology. Pure appl Geophys 160(3–4):739–788CrossRefGoogle Scholar
  14. Conde V, Bredemeyer S, Duarte E, Pacheco J, Miranda S, Galle B, Hansteen T (2013) SO2 degassing from Turrialba Volcano linked to seismic signatures during the period 2008–2012. Int J Earth Sci (Geol Rundsch). doi: 10.1007/s00531-013-0958-5 Google Scholar
  15. Daag AS, Tubianosa BS, Newhall CG, Tungol NM, Javier D, Dolan MT, Delos Reyes PJ, Arboleda RA, Martinez MML, Regalado TM (1996) Monitoring sulfur dioxide emission at Mount Pinatubo. In: Newhall C, Punongbayan R (eds) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines, Philippine Institute of Volcanology and Seismology, Quezon city, and University of Washington Press, Seattle, pp 409–414Google Scholar
  16. D’Alessandro A, Scarfì L, Scaltrito A, Di Prima S, Rapisarda S (2013) Planning the improvement of a seismic network for monitoring active volcanic areas: the experience on Mt. Etna. Adv Geosci 36:39–47CrossRefGoogle Scholar
  17. Daubechies I (1990) The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inf Theory 36(5):961–1005CrossRefGoogle Scholar
  18. De Moortel I, Ireland J, Walsh R (2000) Observation of oscillations in coronal loops. Astron Astrophys 355:L23–L26Google Scholar
  19. Edmonds M, Herd RA, Galle B, Oppenheimer CM (2003) Automated, high time resolution measurements of SO2 flux at Soufrière Hills Volcano, Montserrat. Bull Volcanol 65(8):578–586CrossRefGoogle Scholar
  20. Endo ET, Murray T (1991) Real-time seismic amplitude measurement (RSAM): a volcano monitoring and prediction tool. Bull Volcanol 53(7):533–545CrossRefGoogle Scholar
  21. Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53(4):343–367CrossRefGoogle Scholar
  22. Fischer von Mollard K (2013) Variationen in den SO2-Ausstößen des San Cristóbal Vulkans zwischen 2006 und 2012 ermittelt anhand von bodenbasierter UV-Spektometrie (Mini-DOAS). University of Kiel, KielGoogle Scholar
  23. Galle B, Oppenheimer C, Geyer A, McGonigle AJS, Edmonds M, Horrocks L (2002) A miniaturised ultraviolet spectrometer for remote sensing of SO2 fluxes: a new tool for volcano surveillance. J Volcanol Geoth Res 119(1–4):241–254Google Scholar
  24. Galle B, Johansson M, Rivera C, Zhang Y, Kihlman M, Kern C, Lehmann T, Platt U, Arellano SR, Hidalgo S (2010) Network for observation of volcanic and atmospheric change (NOVAC)—a global network for volcanic gas monitoring: network layout and instrument description. J Geophys Res 115(D5):D05304. doi: 10.1029/2009jd011823 CrossRefGoogle Scholar
  25. Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical times series. Nonlinear Process Geophys 11(5–6):561–566CrossRefGoogle Scholar
  26. Hidalgo S, Battaglia J, Arellano S, Steele A, Bernard B, Bourquin J, Galle B, Arrais S, Vásconez F (2015) SO 2 degassing at Tungurahua volcano (Ecuador) between 2007 and 2013: transition from continuous to episodic activity. J Volcanol Geoth Res 298:1–14CrossRefGoogle Scholar
  27. Hoff RM, Millan MM (1981) Remote SO2 mass flux measurements using COSPEC. J Air Pollut Control Assoc 31(4):381–384CrossRefGoogle Scholar
  28. Johansson M (2009) Application of passive DOAS for studies of megacity air pollution and volcanic gas emissions. Ph.D. thesis Chalmers University of TechnologyGoogle Scholar
  29. Julian BR (1994) Volcanic tremor: nonlinear excitation by fluid flow. J Geophys Res Solid Earth 99(B6):11859–11877. doi: 10.1029/93JB03129 CrossRefGoogle Scholar
  30. Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng 82(Series D):35–45. doi: 10.1115/1.3662552 CrossRefGoogle Scholar
  31. Kestin TS, Karoly DJ, Yano JI, Rayner NA (1998) Time-frequency variability of ENSO and stochastic simulations. J Clim 11(9):2258–2272CrossRefGoogle Scholar
  32. Langer H, Falsaperla S, Messina A, Spampinato S, Behncke B (2011) Detecting imminent eruptive activity at Mt Etna, Italy, in 2007–2008 through pattern classification of volcanic tremor data. J Volcanol Geoth Res 200(1–2):1–17. doi: 10.1016/j.jvolgeores.2010.11.019 CrossRefGoogle Scholar
  33. Lau K, Weng H (1995) Climate signal detection using wavelet transform: how to make a time series sing. Bull Am Meteorol Soc 76(12):2391–2402CrossRefGoogle Scholar
  34. Mather TA, Pyle DM, Tsanev VI, McGonigle AJS, Oppenheimer C, Allen AG (2006) A reassessment of current volcanic emissions from the Central American arc with specific examples from Nicaragua. J Volcanol Geoth Res 149(3–4):297–311. doi: 10.1016/j.jvolgeores.2005.07.021 CrossRefGoogle Scholar
  35. Matsumoto S, Shimizu H, Matsushima T, Uehira K, Yamashita Y, Nakamoto M, Miyazaki M, Chikura H (2013) Short-term spatial change in a volcanic tremor source during the 2011 Kirishima eruption. Earth Planets Space 65(4):323–329CrossRefGoogle Scholar
  36. Mori T, Burton M (2006) The SO2 camera: a simple, fast and cheap method for ground-based imaging of SO2 in volcanic plumes. Geophys Res Lett 33(24):L24804. doi: 10.1029/2006GL027916 CrossRefGoogle Scholar
  37. Mulquiney JE, Norton JP, Jakeman AJ, Taylor JA (1995) Random walks in the Kalman filter: implications for greenhouse gas flux deductions. Environmetrics 6(5):473–478. doi: 10.1002/env.3170060509 CrossRefGoogle Scholar
  38. Mwale D, Gan TY (2005) Wavelet analysis of variability, teleconnectivity, and predictability of the September–November East African rainfall. J Appl Meteorol 44(2):256–269. doi: 10.1175/JAM2195.1 CrossRefGoogle Scholar
  39. Myers K, Tapley BD (1976) Adaptive sequential estimation with unknown noise statistics. IEEE Trans Autom Control 21(4):520–523. doi: 10.1109/TAC.1976.1101260 CrossRefGoogle Scholar
  40. Nadeau PA, Palma JL, Waite GP (2011) Linking volcanic tremor, degassing, and eruption dynamics via SO2 imaging. Geophys Res Lett 38(1):L01304. doi: 10.1029/2010GL045820 CrossRefGoogle Scholar
  41. Nagarajan K, Judge J, Monsivais-Huertero A, Graham WD (2012) Impact of assimilating passive microwave observations on root-zone soil moisture under dynamic vegetation conditions. IEEE Trans Geosci Remote Sens 50(11 PART1):4279–4291CrossRefGoogle Scholar
  42. Olmos R, Barrancos J, Ivera CR, Barahona F, López DL, Henriquez B, Hernández A, Benitez E, Hernández PA, Pérez NM, Galle BO (2007) Anomalous emissions of SO2 during the recent eruption of Santa Ana volcano, El Salvador, Central America. Pure Appl Geophys 164(12):2489–2506CrossRefGoogle Scholar
  43. Pacola ER, Quandt VI, Schneider FK, Sovierzoski MA (2013) The wavelet transform border effect in EEG spike signals. In: Long M (ed) IFMBE proceedings of the world congress on medical physics and biomedical engineering, May 26–31, 2012, Beijing, China, vol 39. Springer, Berlin, pp 593–596. doi: 10.1007/978-3-642-29305-4_155
  44. Petersen T, Caplan-Auerbach J, McNutt SR (2006) Sustained long-period seismicity at Shishaldin Volcano, Alaska. J Volcanol Geoth Res 151(4):365–381CrossRefGoogle Scholar
  45. Platt U, Stutz J (2008) Differential optical absorption spectroscopy (DOAS), principle and applications. Springer, Heidelberg. doi: 10.1007/978-3-540-75776-4 Google Scholar
  46. Rivera C (2009) Application of passive DOAS using scattered sunlight for quantification of gas emissions from anthropogenic and volcanic sources. Chalmers tekniska högskola, GothenburgGoogle Scholar
  47. Rivera C, Garcia JA, Galle B, Alonso L, Yan Z, Johansson M, Matabuena M, Gangoiti G (2009) Validation of optical remote sensing measurement strategies applied to industrial gas emissions. Int J Remote Sens 30(12):3191–3204. doi: 10.1080/01431160802558808 CrossRefGoogle Scholar
  48. Saballos J, Conde V, Malservisi R, Connor C, Álvarez J, Muñoz A (2014) Relatively short-term correlation among deformation, degassing, and seismicity: a case study from Concepción volcano, Nicaragua. Bull Volcanol 76(8):1–11. doi: 10.1007/s00445-014-0843-5 CrossRefGoogle Scholar
  49. Smithsonian-Institution (2014)
  50. Su H, Liu Q, Li J (2011) Alleviating border effects in wavelet transforms for nonlinear time-varying signal analysis. Adv Electr Comput Eng 11(3):55–60CrossRefGoogle Scholar
  51. Symonds R, Rose WI, Bluth GJS, Gerlach TM (1994) Volcanic-gas studies; methods, results, and applications. Rev Mineral Geochem 30(1):1–66Google Scholar
  52. Tilling RI (2008) The critical role of volcano monitoring in risk reduction. Adv Geosci 14:3–11CrossRefGoogle Scholar
  53. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 CrossRefGoogle Scholar
  54. Torrence C, Webster PJ (1999) Interdecadal changes in the ENSO—monsoon system. J Clim 12(8):2679–2690. doi: 10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2 CrossRefGoogle Scholar
  55. Waite GP, Nadeau PA, Lyons JJ (2013) Variability in eruption style and associated very long period events at Fuego volcano, Guatemala. J Geophys Res Solid Earth 118(4):1526–1533CrossRefGoogle Scholar
  56. Wang P, Gao J (2013) Extraction of instantaneous frequency from seismic data via the generalized Morse wavelets. J Appl Geophys 93:83–92CrossRefGoogle Scholar
  57. Welch G, Bishop G (1995) An introduction to the Kalman filter. University of North Carolina, Chapel HillGoogle Scholar
  58. Weng H, Lau K (1994) Wavelets, period doubling, and time-frequency localization with application to organization of convection over the tropical western Pacific. J Atmos Sci 51(17):2523–2541CrossRefGoogle Scholar
  59. Yamamoto M, Kawakatsu H, Yomogida K, Koyama J (2002) Long-period (12 sec) volcanic tremor observed at Usu 2000 eruption: seismological detection of a deep magma plumbing system. Geophys Res Lett 29(9):43-1–43-4CrossRefGoogle Scholar
  60. Yan Y, Barth A, Beckers JM (2014) Comparison of different assimilation schemes in a sequential Kalman filter assimilation system. Ocean Model 73:123–137CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Vladimir Conde
    • 1
    Email author
  • Stefan Bredemeyer
    • 2
  • J. Armando Saballos
    • 3
  • Bo Galle
    • 1
  • Thor H. Hansteen
    • 4
  1. 1.Department of Earth and Space SciencesChalmers University of TechnologyGothenburgSweden
  2. 2.SFB 574 and GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  3. 3.Instituto Nicaragüense de Estudios Territoriales (INETER)ManaguaNicaragua
  4. 4.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany

Personalised recommendations