International Journal of Earth Sciences

, Volume 104, Issue 8, pp 2131–2146 | Cite as

Monogenetic volcanism: personal views and discussion

  • K. NémethEmail author
  • G. Kereszturi
Original Paper


Monogenetic volcanism produces small-volume volcanoes with a wide range of eruptive styles, lithological features and geomorphic architectures. They are classified as spatter cones, scoria (or cinder) cones, tuff rings, maars (maar–diatremes) and tuff cones based on the magma/water ratio, dominant eruption styles and their typical surface morphotypes. The common interplay between internal, such as the physical–chemical characteristics of magma, and external parameters, such as groundwater flow, substrate characteristics or topography, plays an important role in creating small-volume volcanoes with diverse architectures, which can give the impression of complexity and of similarities to large-volume polygenetic volcanoes. In spite of this volcanic facies complexity, we defend the term “monogenetic volcano” and highlight the term’s value, especially to express volcano morphotypes. This study defines a monogenetic volcano, a volcanic edifice with a small cumulative volume (typically ≤1 km3) that has been built up by one continuous, or many discontinuous, small eruptions fed from one or multiple magma batches. This definition provides a reasonable explanation of the recently recognized chemical diversities of this type of volcanism.


Monogenetic volcanism Scoria cone Maar Tuff ring Tuff cone Cinder cone Phreatomagmatic Volume Explosive Conduit Eruption 



The original lecture that formed the basis of this paper was presented as a keynote lecture during the Basalt 2013 conference in Görlitz, Germany. To make that happen, we have to say a big thank you to the conference organizers, particularly to Jörg Büchner (Senckenberg Museum of Natural History Görlitz), Olaf Tietz (Senckenberg Museum of Natural History Görlitz) and Vladislav Rapprich (Czech Geological Survey, Prague), for the invitation to present the keynote speech. This paper also contains numerous aspects of the subject presented during Basalt 2013 in the form of posters, particularly by Javier Agustin-Flores (Massey University), Hugo Murcia (University of Auckland) and Bob Stewart (Massey University). We would also like to say thank you to Zoltán Pécskay (ATOMKI, Debrecen) who encouraged us to prepare this review and managed the successful volcanology session during the Basalt 2013 meeting. Comments by Mark Bebbington and Kate Arentsen (both from Massey University) helped to keep the manuscript focused and reader friendly. Journal reviewers, Gianluca Groppelli, Volker Lorenz and Greg Valentine, have provided enlightening reviews that also contributed significantly to improving this paper.

Supplementary material

531_2015_1243_MOESM1_ESM.kml (33 kb)
Supplementary material 1 (KML 32 kb)


  1. Agustin-Flores J, Siebe C, Guilbaud M-N (2011) Geology and geochemistry of Pelagatos, Cerro del Agua, and Dos Cerros monogenetic volcanoes in the Sierra Chichinautzin volcanic field, south of Mexico City. J Volcanol Geoth Res 201(1–4):143–162CrossRefGoogle Scholar
  2. Agustin-Flores J, Németh K, Cronin SJ, Lindsay JM, Kereszturi G, Brand BD, Smith IEM (2014) Phreatomagmatic eruptions through unconsolidated coastal plain sequences, Maungataketake, Auckland volcanic field (New Zealand). J Volcanol Geoth Res 276:46–63CrossRefGoogle Scholar
  3. Andrew REB, Gudmundsson A (2007) Distribution, structure, and formation of Holocene lava shields in Iceland. J Volcanol Geoth Res 168(1–4):137–154CrossRefGoogle Scholar
  4. Auer A, Martin U, Németh K (2007) The Fekete-hegy (Balaton Highland Hungary) “soft-substrate” and “hard-substrate” maar volcanoes in an aligned volcanic complex—Implications for vent geometry, subsurface stratigraphy and the paleoenvironmental setting. J Volcanol Geoth Res 159(1–3):225–245CrossRefGoogle Scholar
  5. Blaikie TN, Ailleres L, Cas RAF, Betts PG (2012) Three-dimensional potential field modelling of a multi-vent maar-diatreme—The Lake Coragulac maar, Newer Volcanics Province, south-eastern Australia. J Volcanol Geoth Res 235:70–83CrossRefGoogle Scholar
  6. Bolos X, Planaguma L, Marti J (2014) Volcanic stratigraphy of the Quaternary La Garrotxa volcanic field (north-east Iberian Peninsula). J Quat Sci 29(6):547–560CrossRefGoogle Scholar
  7. Breard ECP, Lube G, Cronin SJ, Fitzgerald R, Kennedy B, Scheu B, Montanaro C, White JDL, Tost M, Procter JN, Moebis A (2014) Using the spatial distribution and lithology of ballistic blocks to interpret eruption sequence and dynamics: August 6 2012 Upper Te Maari eruption, New Zealand. J Volcanol Geoth Res 286:373–386CrossRefGoogle Scholar
  8. Brenna M, Cronin SJ, Smith IEM, Sohn YK, Németh K (2010) Mechanisms driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, South Korea. Contrib Miner Petrol 160(6):931–950CrossRefGoogle Scholar
  9. Brenna M, Cronin SJ, Németh K, Smith IEM, Sohn YK (2011) The influence of magma plumbing complexity on monogenetic eruptions, Jeju Island, Korea. Terra Nova 23(2):70–75Google Scholar
  10. Brenna M, Cronin SJ, Smith IEM, Sohn YK, Maas R (2012) Spatio-temporal evolution of a dispersed magmatic system and its implications for volcano growth, Jeju Island Volcanic Field, Korea. Lithos 148:337–352CrossRefGoogle Scholar
  11. Camp VE, Roobol MJ (1989) The Arabian Continental Alkali Basalt Province. 1. Evolution of Harrat-Rahat, Rahat, Kingdom-of-Saudi-Arabia. Geol Soc Am Bull 101(1):71–95CrossRefGoogle Scholar
  12. Camp VE, Roobol MJ, Hooper PR (1991) The Arabian Continental Alkali Basalt Province. 2. Evolution of Harrats Khaybar, Ithnayn, and Kura, Kingdom of Saudi-Arabia. Geol Soc Am Bull 103(3):363–391CrossRefGoogle Scholar
  13. Carn SA (2000) The Lamongan volcanic field, East Java, Indonesia: physical volcanology, historic activity and hazards. J Volcanol Geoth Res 95:81–108CrossRefGoogle Scholar
  14. Cole JW, Graham IJ, Hackett WR, Houghton BF (1986) Volcanology and petrology of the quaternary composite volcanoes of Tongariro volcanic centre, Taupo volcanic zone. Bull R Soc New Zealand 23:224–250Google Scholar
  15. Connor CB, Conway FM (2000) Basaltic volcanic fields. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic Press, San Diego, pp 331–343Google Scholar
  16. Connor CB, Lichtner PC, Conway FM, Hill BE, Ovsyannikov AA, Federchenko I, Doubik Y, Shapar VN, Taran YA (1997) Cooling of an igneous dike 20 year after intrusion. Geology 25(8):711–714CrossRefGoogle Scholar
  17. Conway FM, Ferrill DA, Hall CM, Morris AP, Stamatakos JA, Connor CB, Halliday AN, Condit C (1997) Timing of basaltic volcanism along the Mesa Butte Fault in the San Francisco volcanic field, Arizona, from 40Ar/39Ar dates: implications for longevity of cinder cone alignments. J Geophys Res 102(B1):815–824CrossRefGoogle Scholar
  18. Courtland LM, Kruse SE, Connor CB, Connor LJ, Savov IP, Martin KT (2012) GPR investigation of tephra fallout, Cerro Negro volcano, Nicaragua: a method for constraining parameters used in tephra sedimentation models. Bull Volc 74(6):1409–1424CrossRefGoogle Scholar
  19. Courtland L, Kruse S, Connor C (2013) Violent Strombolian or not? Using ground-penetrating radar to distinguish deposits of low- and high-energy scoria cone eruptions. Bull Volc 75(12):1–13Google Scholar
  20. Delgado Granados H, Martin del Pozzo AL (1993) Pliocene to Holocene volcanic geology at the junction of Las Cruces, Chichinautzin and Ajusco ranges, southwest of Mexico City. Geofis Int 32(3):511–522Google Scholar
  21. Erlund EJ, Cashman KV, Wallace PJ, Pioli L, Rosi M, Johnson E, Granados HD (2010) Compositional evolution of magma from Paricutin Volcano, Mexico: the tephra record. J Volcanol Geoth Res 197(1–4):167–187CrossRefGoogle Scholar
  22. Fisher RV, Schmincke H-U (1984) Pyroclastic rocks. Springer, Heidelberg, pp 1–474CrossRefGoogle Scholar
  23. Foshag WF, Gonzalez RJ (1956) Birth and development of Paricutin volcano, Mexico. United States Geological Survey Bulletin 965-D:355-489Google Scholar
  24. Gamble JA, Price RC, Smith IEM, McIntosh WC, Dunbar NW (2003) Ar-40/Ar-39 geochronology of magmatic activity, magma flux and hazards at Ruapehu volcano, Taupo Volcanic Zone, New Zealand. J Volcanol Geoth Res 120(3–4):271–287CrossRefGoogle Scholar
  25. Genareau K, Valentine GA, Moore G, Hervig RL (2010) Mechanisms for transition in eruptive style at a monogenetic scoria cone revealed by microtextural analyses (Lathrop Wells volcano, Nevada, USA). Bull Volc 72(5):593–607CrossRefGoogle Scholar
  26. Godchaux M, Bonnichsen B (2002) Syneruptive magma-water and posteruptive lava-water interactions in the Western Snake River Plain, Idaho, during the past 12 million years. In: Bonnichsen B, White CM, McCurry M (eds) Tectonic and magmatic evolution of the Snake River Plain Volcanic Province. University of Idaho, Moscow, Idaho, Idaho Geological Survey, pp 387–435Google Scholar
  27. Greeley R (1982) The Snake River Plain, Idaho: representative of a new category of volcanism. J Geophys Res 87(B4):2705–2712CrossRefGoogle Scholar
  28. Guilbaud M-N, Siebe C, Layer P, Salinas S, Castro-Govea R, Garduno-Monroy VH, Le Corvec N (2011) Geology, geochronology, and tectonic setting of the Jorullo Volcano region, Michoacan, Mexico. J Volcanol Geoth Res 201(1–4):97–112CrossRefGoogle Scholar
  29. Gutmann JT (2002) Strombolian and effusive activity as precursors to phreatomagmatism: eruptive sequence at maars of the Pinacate volcanic field, Sonora, Mexico. J Volcanol Geoth Res 113(1–2):345–356CrossRefGoogle Scholar
  30. Gutmann JT, Sheridan M (1978) Geology of the Pinacate volcanic field. Arizona Bur Geol Mining Tech Spec Pap 2:47–59Google Scholar
  31. Hasenaka T (1994) Size, distribution, and magma output rate for shield volcanoes of the Michoacan-Guanajuato volcanic field, Central Mexico. J Volcanol Geoth Res 63(1–2):13–31CrossRefGoogle Scholar
  32. Hasenaka T, Carmichael ISE (1985) A compilation of location, size, and geomorphological parameters of volcanoes of the Michoacan-Guanajuato volcanic field, central Mexico. Geofis Int 24(4):577–608Google Scholar
  33. Hasenaka T, Carmichael ISE (1987) The cinder cones of Michoacán-Guanajuato, Central Mexico: petrology and chemistry. J Petrol 28(2):241–269CrossRefGoogle Scholar
  34. Herrero-Hernandez A, Javier Lopez-Moro F, Luis Gallardo-Millan J, Martin-Serrano A, Gomez-Fernandez F (2015) Volcanism-sedimentation interaction in the Campo de Calatrava volcanic field (Spain): a magnetostratigraphic and geochronological study. Int J Earth Sci 104(1):103–122CrossRefGoogle Scholar
  35. Hill BE, Connor CB, Jarzemba MS, La Femina PC, Navarro M, Strauch W (1998) 1995 eruptions of Cerro Negro volcano, Nicaragua, and risk assessment for future eruptions. Geol Soc Am Bull 110(10):1231–1241CrossRefGoogle Scholar
  36. Hobden BJ, Houghton BF, Lanphere MA, Nairn IA (1996) Growth of the Tongariro volcanic complex: new evidence from K-Ar age determinations. NZ J Geol Geophys 39(1):151–154CrossRefGoogle Scholar
  37. Hobden BJ, Houghton BF, Davidson JP, Weaver SD (1999) Small and short-lived magma batches at composite volcanoes: time windows at Tongariro volcano, New Zealand. Journal of theological Society 156:865–868Google Scholar
  38. Hoshizumi H, Uto K, Watanabe K (1999) Geology and eruptive history of Unzen volcano, Shimabara Peninsula, Kyushu, SW Japan. J Volcanol Geoth Res 89(1–4):81–94CrossRefGoogle Scholar
  39. Houghton BF, Gonnermann HM (2008) Basaltic explosive volcanism: constraints from deposits and models. Chem Erde 68:117–140CrossRefGoogle Scholar
  40. Houghton BF, Hackett WR (1984) Strombolian and phreatomagmatic deposits of Ohakune Craters, Ruapehu, New Zealand; a complex interaction between external water and rising basaltic magma. J Volcanol Geoth Res 21(3–4):207–231CrossRefGoogle Scholar
  41. Houghton BF, Wilson CJN, Smith IEM (1999) Shallow-seated controls on styles of explosive basaltic volcanism: a case study from New Zealand. J Volcanol Geoth Res 91(1):97–120CrossRefGoogle Scholar
  42. Inbar M, Hubp JL, Ruiz LV (1994) The geomorphological evolution of the Paricutin cone and lava flows, Mexico, 1943–1990. Geomorphology 9:57–76CrossRefGoogle Scholar
  43. Inbar M, Gilichinsky M, Melekestsev I, Melnikov D, Zaretskaya N (2011) Morphometric and morphological development of Holocene cinder cones: a field and remote sensing study in the Tolbachik volcanic field, Kamchatka. J Volcanol Geoth Res 201(1–4):301–311CrossRefGoogle Scholar
  44. Jankovics EM, Harangi S, Kiss B, Ntaflos T (2012) Open system evolution of the Fuzes-to alkaline basaltic magma, western Pannonian Basin; constraints from mineral textures and compositions. Lithos 140–141:25–37CrossRefGoogle Scholar
  45. Jordan SC, Cas RAF, Hayman PC (2013) The origin of a large (>3 km) maar volcano by coalescence of multiple shallow craters: lake Purrumbete maar, southeastern Australia. J Volcanol Geoth Res 254:5–22CrossRefGoogle Scholar
  46. Jordan SC, Jowitt SM, Cas RAF (2015) Origin of temporal—compositional variations during the eruption of Lake Purrumbete Maar, Newer Volcanics Province, southeastern Australia. Bull Volc 77(1):1–15CrossRefGoogle Scholar
  47. Kereszturi G, Németh K (2012) Monogenetic basaltic olcanoes: genetic classification, growth, geomorphology and degradation. In: Németh K (ed) Updates in volcanology—new advances in understanding volcanic systems. InTech Open, Rijeka, Croatia, pp 3–89Google Scholar
  48. Kereszturi G, Csillag G, Németh K, Sebe K, Balogh K, Jáger V (2010) Volcanic architecture, eruption mechanism and landform evolution of a Pliocene intracontinental basaltic polycyclic monogenetic volcano from the Bakony-Balaton highland volcanic field, Hungary. Cent Eur J Geosci 2(3):362–384Google Scholar
  49. Kereszturi G, Németh K, Csillag G, Balogh K, Kovács J (2011) The role of external environmental factors in changing eruption styles of monogenetic volcanoes in a Mio/Pleistocene continental volcanic field in western Hungary. J Volcanol Geoth Res 201(1–4):227–240CrossRefGoogle Scholar
  50. Kereszturi G, Németh K, Cronin SJ, Agustín-Flores J, Smith IEM, Lindsay J (2013) A model for calculating eruptive volumes for monogenetic volcanoes—implication for the Quaternary Auckland Volcanic Field, New Zealand. J Volcanol Geoth Res 266:16–33CrossRefGoogle Scholar
  51. Kereszturi G, Németh K, Cronin SJ, Procter J, Agustin-Flores J (2014) Influences on the variability of eruption sequences and style transitions in the Auckland Volcanic Field, New Zealand. J Volcanol Geoth Res 286:101–115CrossRefGoogle Scholar
  52. Kiyosugi K, Connor CB, Zhao D, Connor LJ, Tanaka K (2010) Relationships between volcano distribution, crustal structure, and P-wave tomography: an example from the Abu Monogenetic Volcano Group, SW Japan. Bull Volcanol 72(3):331–340CrossRefGoogle Scholar
  53. Kshirsagar PV, Sheth HC, Shaikh B (2011) Mafic alkalic magmatism in central Kachchh, India: a monogenetic volcanic field in the northwestern Deccan Traps. Bull Volc 73(5):595–612CrossRefGoogle Scholar
  54. Le Corvec N, Bebbington MS, Lindsay JM, McGee LE (2013a) Age, distance, and geochemical evolution within a monogenetic volcanic field: analyzing patterns in the Auckland Volcanic Field eruption sequence. Geochem Geophys Geosyst 14(9):3648–3665CrossRefGoogle Scholar
  55. Le Corvec N, Spoerli KB, Rowland J, Lindsay J (2013b) Spatial distribution and alignments of volcanic centers: clues to the formation of monogenetic volcanic fields. Earth Sci Rev 124:96–114CrossRefGoogle Scholar
  56. Lorenz V (1985) Maars and diatremes of phreatomagmatic origin: a review. Trans Geol Soc South Afr 88:459–470Google Scholar
  57. Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull Volc 48:265–274CrossRefGoogle Scholar
  58. Luhr JF, Carmichael ISE (1985) Jorullo volcano, Michoacan, Mexico (1759–1774): the earlier stages of fractionation in calk-alkaline magmas. Contrib Mineral Petrol 90:142–161CrossRefGoogle Scholar
  59. Luhr JF, Simkin T (1993) Paricutin. The volcano born in a Mexican cornfield. Geosciences Press, Phoenix, pp 1–427Google Scholar
  60. MacDonald GA (1972) Volcanoes. Prentice-Hall, Englewood Cliffs, pp 1–510Google Scholar
  61. Manville V, Németh K, Kano K (2009) Source to sink: a review of three decades of progress in the understanding of volcaniclastic processes, deposits, and hazards. Sed Geol 220:136–161CrossRefGoogle Scholar
  62. McGee LE, Beier C, Smith IEM, Turner SP (2011) Dynamics of melting beneath a small-scale basaltic system: a U-Th-Ra study from Rangitoto volcano, Auckland volcanic field, New Zealand. Contrib Miner Petrol 162(3):547–563CrossRefGoogle Scholar
  63. McGee LE, Smith IEM, Millet M-A, Handley HK, Lindsay AM (2013) Asthenospheric control of melting processes in a monogenetic basaltic system: a case study of the Auckland Volcanic Field, New Zealand. J Petrol 54(10):2125–2153CrossRefGoogle Scholar
  64. McKnight SB, Williams SN (1997) Old cinder cone or young composite volcano? The nature of Cerro Negro, Nicaragua. Geology 25(4):339–342CrossRefGoogle Scholar
  65. Moufti MR, Németh K (2013) The intra-continental Al Madinah Volcanic Field, Western Saudi Arabia: a proposal to establish Harrat Al Madinah as the first volcanic geopark in the Kingdom of Saudi Arabia. Geoheritage 5(3):185–206CrossRefGoogle Scholar
  66. Murcia H, Németh K, Moufti MR, Lindsay JM, El-Masry N, Cronin SJ, Qaddah A, Smith IEM (2014) Late Holocene lava flow morphotypes of northern Harrat Rahat, Kingdom of Saudi Arabia: implications for the description of continental lava fields. J Asian Earth Sci 84:131–145CrossRefGoogle Scholar
  67. Nakada S, Shimizu H, Ohta K (1999) Overview of the 1990–1995 eruption at Unzen Volcano. J Volcanol Geoth Res 89(1–4):1–22CrossRefGoogle Scholar
  68. Nakagawa M, Nairn IA, Kobayashi T (1998) The similar to 10 ka multiple vent pyroclastic eruption sequence at Tongariro Volcanic Centre, Taupo Volcanic Zone, New Zealand—Part 2. Petrological insights into magma storage and transport during regional extension. J Volcanol Geoth Res 86(1–4):45–65CrossRefGoogle Scholar
  69. Needham AJ, Lindsay JM, Smith IEM, Augustinus P, Shane PA (2011) Sequential eruption of alkaline and sub-alkaline magmas from a small monogenetic volcano in the Auckland Volcanic Field, New Zealand. J Volcanol Geoth Res 201(1–4):126–142CrossRefGoogle Scholar
  70. Németh K (2010) Monogenetic volcanic fields: origin, sedimentary record, and relationship with polygenetic volcanism. In: Canon-Tapia E, Szakacs A (eds) What Is a Volcano?. Geological Society of America, Boulder, pp 43–66CrossRefGoogle Scholar
  71. Németh K, Martin U, Harangi S (2001) Miocene phreatomagmatic volcanism at Tihany (Pannonian Basin, Hungary). J Volcanol Geoth Res 111(1–4):111–135CrossRefGoogle Scholar
  72. Németh K, Haller MJ, Siebe C (2011) Maars and scoria cones: the enigma of monogenetic volcanic fields. Journal of Volcanology and Geothermal Research 201(1–4):V–VIIICrossRefGoogle Scholar
  73. Pardo N, Cronin SJ, Palmer AS, Németh K (2012) Reconstructing the largest explosive eruptions of Mt. Ruapehu, New Zealand: lithostratigraphic tools to understand subplinian-plinian eruptions at andesitic volcanoes. Bull Volc 74(3):617–640CrossRefGoogle Scholar
  74. Pardo N, Cronin SJ, Németh K, Brenna M, Schipper CI, Breard E, White JDL, Procter J, Stewart B, Agustin-Flores J, Moebis A, Zernack A, Kereszturi G, Lube G, Auer A, Neall V, Wallace C (2014) Perils in distinguishing phreatic from phreatomagmatic ash; insights into the eruption mechanisms of the 6 August 2012 Mt. Tongariro eruption, New Zealand. J Volcanol Geoth Res 286:397–414CrossRefGoogle Scholar
  75. Parfitt EA (2004) A discussion of the mechanisms of explosive basaltic eruptions. J Volcanol Geoth Res 134(1–2):77–107CrossRefGoogle Scholar
  76. Pedersen GBM, Grosse P (2014) Morphometry of subaerial shield volcanoes and glaciovolcanoes from Reykjanes Peninsula, Iceland: effects of eruption environment. J Volcanol Geoth Res 282:115–133CrossRefGoogle Scholar
  77. Pioli L, Erlund E, Johnson E, Cashman K, Wallace R, Rosi M, Granados HD (2008) Explosive dynamics of violent Strombolian eruptions: the eruption of Paricutin Volcano 1943–1952 (Mexico). Earth Planet Sci Lett 271(1–4):359–368CrossRefGoogle Scholar
  78. Procter JN, Cronin SJ, Zernack AV, Lube G, Stewart RB, Németh K, Keys H (2014) Debris flow evolution and the activation of an explosive hydrothermal system; Te Maari, Tongariro, New Zealand. J Volcanol Geoth Res 286:303–316CrossRefGoogle Scholar
  79. Riggs N, Carrasco-Nunez G (2004) Evolution of a complex isolated dome system, Cerro Pizarro, central Mexico. Bull Volc 66(4):322–335CrossRefGoogle Scholar
  80. Rowland SK, Jurado-Chichay Z, Ernst WG, Walker GPL (2009) Pyroclastic deposits and lava flows from the 1759–1774 eruption of El Jorullo, Mexico; aspects of “violent Strombolian” activity and comparison with Paricutin. Spec Publ Int Assoc Volcanol Chem Earth’s Interior 2:105–128Google Scholar
  81. Runge MG, Bebbington MS, Cronin SJ, Lindsay JM, Kenedi CL, Moufti MRH (2014) Vents to events: determining an eruption event record from volcanic vent structures for the Harrat Rahat, Saudi Arabia. Bull Volcanol 76(3):1–16CrossRefGoogle Scholar
  82. Shane P, Gehrels M, Zawalna-Geer A, Augustinus P, Lindsay J, Chaillou I (2013) Longevity of a small shield volcano revealed by crypto-tephra studies (Rangitoto volcano, New Zealand): change in eruptive behavior of a basaltic field. J Volcanol Geoth Res 257:174–183CrossRefGoogle Scholar
  83. Shaw SJ, Woodland AB, Hopp J, Trenholm ND (2010) Structure and evolution of the Rockeskyllerkopf Volcanic Complex, West Eifel Volcanic Field, Germany. Bull Volc 72:971–990CrossRefGoogle Scholar
  84. Sheth H (2014) What drives centuries-long polygenetic scoria cone activity at Barren Island volcano? J Volcanol Geoth Res 289:64–80CrossRefGoogle Scholar
  85. Sheth H, Cañón-Tapia E (2015) Are flood basalt eruptions monogenetic or polygenetic? Int J Earth Sci. doi: 10.1007/s00531-014-1048-z Google Scholar
  86. Siebe C, Rodriguez-Lara V, Schaaf P, Abrams M (2004a) Geochemistry, Sr-Nd isotope composition, and tectonic setting of Holocene Pelado, Guespalapa and Chichinautzin scoria cones, south of Mexico city. J Volcanol Geoth Res 130(3–4):197–226CrossRefGoogle Scholar
  87. Siebe C, Rodriguez-Lara V, Schaaf P, Abrams M (2004b) Radiocarbon ages of Holocene Pelado, Guespalapa, and Chichinautzin scoria cones, south of Mexico City: implications for archaeology and future hazards. Bull Volc 66(3):203–225CrossRefGoogle Scholar
  88. Sohn YK (1996) Hydrovolcanic processes forming basaltic tuff rings and cones on Cheju Island, Korea. Geol Soc Am Bull 108(10):1199–1211CrossRefGoogle Scholar
  89. Tadini A, Bonali FL, Corazzato C, Cortes JA, Tibaldi A, Valentine GA (2014) Spatial distribution and structural analysis of vents in the Lunar Crater Volcanic Field (Nevada, USA). Bull Volc 76(11):1–15Google Scholar
  90. Takada A (1994) The influence of regional stress and magmatic input on styles of monogenetic and polygenetic volcanism. J Geophys Res 99(B7):13563–13573CrossRefGoogle Scholar
  91. Tchamabe BC, Youmen D, Owona S, Issa Ohba T, Neemeth K, Ngapna MN, Asaah ANE, Aka FT, Tanyileke G, Hell JV (2013) Eruptive history of the Barombi Mbo Maar, Cameroon Volcanic Line, Central Africa: constraints from volcanic facies analysis. Cent Eur J Geosci 5(4):480–496Google Scholar
  92. Valentine GA (2012) Shallow plumbing systems for small-volume basaltic volcanoes, 2: evidence from crustal xenoliths at scoria cones and maars. J Volcanol Geoth Res 223:47–63CrossRefGoogle Scholar
  93. Valentine GA, Cortes JA (2013) Time and space variations in magmatic and phreatomagmatic eruptive processes at Easy Chair (Lunar Crater Volcanic Field, Nevada, USA). Bull Volc 75(9):1–13Google Scholar
  94. Valentine GA, de Vries BvW (2014) Unconventional maar diatreme and associated intrusions in the soft sediment-hosted Mardoux structure (Gergovie, France). Bull Volc 76(3):1–16Google Scholar
  95. Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes—processes and problems. J Volcanol Geoth Res 177(4):857–873CrossRefGoogle Scholar
  96. Valentine GA, White JDL (2012) Revised conceptual model for maar-diatremes: subsurface processes, energetics, and eruptive products. Geology 40(12):1111–1114CrossRefGoogle Scholar
  97. Valentine GA, Perry FV, Krier D, Keating GN, Kelley RE, Coghill AH (2006) Small-volume basaltic volcanoes: Eruptive products and processes, and posteruptive geomorphic evolution in Crater Flat (Pleistocene), southern Nevada. Geol Soc Am Bull 118(11–12):1313–1330CrossRefGoogle Scholar
  98. Valentine GA, Graettinger AH, Sonder I (2014) Explosion depths for phreatomagmatic eruptions. Geophys Res Lett 41(9):3045–3051CrossRefGoogle Scholar
  99. van Otterloo J, Cas RAF, Sheard MJ (2013) Eruption processes and deposit characteristics at the monogenetic Mt. Gambier Volcanic Complex, SE Australia: implications for alternating magmatic and phreatomagmatic activity. Bull Volc 75(8):1–21Google Scholar
  100. Van Otterloo J, Raveggi M, Cas RAF, Maas R (2014) Polymagmatic activity at the monogenetic Mt Gambier Volcanic Complex in the Newer Volcanics Province, SE Australia: new insights into the occurrence of intraplate volcanic activity in Australia. J Petrol 55(7):1317–1351CrossRefGoogle Scholar
  101. Vespermann D, Schmincke H-U, Ballard RD (2000) Scoria cones and tuff rings. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 683–694Google Scholar
  102. Walker GPL (1993) Basaltic-volcano systems. In: Prichard HM, Alabaster T, Harris NBW, Nearly CR (eds) Magmatic processes and plate tectonics. Geological Society, London, Special Publications, pp 3–38Google Scholar
  103. Walker GPL (2000) Basaltic volcanoes and volcanic systems. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic Press, San Diego, pp 283–289Google Scholar
  104. White JDL, Ross PS (2011) Maar-diatreme volcanoes: a review. J Volcanol Geoth Res 201(1–4):1–29CrossRefGoogle Scholar
  105. Williams H, McBirney AR (1979) Volcanology. Freeman, Cooper & Co., San Francisco, pp 1–397Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Volcanic Risk Solutions, Institute of Agriculture and EnvironmentMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations