International Journal of Earth Sciences

, Volume 105, Issue 4, pp 1127–1151 | Cite as

Magmatic evolution in the N-Gondwana margin related to the opening of the Rheic Ocean—evidence from the Upper Parautochthon of the Galicia-Trás-os-Montes Zone and from the Central Iberian Zone (NW Iberian Massif)

  • Ícaro Dias da Silva
  • Rubén Díez Fernández
  • Alejandro Díez-Montes
  • Emilio González Clavijo
  • David A. Foster
Original Paper


LA-MC-ICP-MS U–Pb zircon ages and whole-rock geochemical data obtained from volcanic rocks erupted in the northern margin of Gondwana provide new insights on the polyphase magmatic evolution of the NW Iberian domain during the establishment of passive margin conditions in Lower Paleozoic times. The U–Pb data show crystallization ages of ca. 455 Ma for two calc-alkaline rhyolites sampled in the Upper Parautochthon of the eastern Galicia—Trás-os-Montes Zone (GTMZ) and for an intraplate basalt intruded into Middle Ordovician slates of the autochthonous series of the Central Iberian Zone (CIZ). Together with previous data, the ages obtained reveal a periodic magmatic activity across the northern Gondwana margin during the Lower Paleozoic, which is comparable to that observed in NE Iberia and in other massifs of the Mediterranean realm. Both geochronological and geochemical data reinforce paleontological and stratigraphic evidences for paleogeographic proximity between these domains and contribute to the recognition of extensional-related magmatism along the northern margin of Central Gondwana associated with the opening of the Rheic Ocean.


Ordovician volcanics Continental rifting Passive Margin Northern Gondwana Rheic Ocean Iberian Massif 



We kindly thank Michel Faure and an anonymous reviewer for their comments and corrections. This contribution was funded by the Instituto Geológico y Minero de España (IGME) through its PhD program, by the Instituto Dom Luiz—Universidade de Lisboa (IDL) postdoctoral Grant (program “Incentivo/CTE/LA0019/2014”) and by the Fundação para a Ciencia e Tecnologia (FCT, Portugal) postdoctoral Grant SFRH/BPD/99550/2014 given to IDS. It has been as well partially funded by the research projects CGL2007-65338-C02-02/BTE and CGL2011-22728 of the Spanish Ministry of Science and Innovation, as part of the National Program of Projects in Fundamental Research, in the frame of the V and VI National Plans of Scientific Research, Development and Technologic Innovation. RDF appreciates financial support from FCT (Portugal) through its postdoctoral program. This work is a contribution to the IGCP Project No. 597 (Amalgamation and breakup of Pangaea), IGCP project 648 (Supercontinent Cycle and Global Geodynamics), IDL Research Group 5, to the project FCT “GOLD” (PTDC/GEO-GEO/2446/2012) and to the IGME Project No. 2281.

Supplementary material

531_2015_1232_MOESM1_ESM.xls (35 kb)
Supplementary material 1 (XLS 35 kb)
531_2015_1232_MOESM2_ESM.xls (1012 kb)
Supplementary material 2 (XLS 1012 kb)
531_2015_1232_MOESM3_ESM.xls (1 mb)
Supplementary material 3 (XLS 1037 kb)
531_2015_1232_MOESM4_ESM.xls (1012 kb)
Supplementary material 4 (XLS 1012 kb)


  1. Abati J, Dunning GR, Arenas R et al (1999) Early Ordovician orogenic event in Galicia (NW Spain): evidence from U–Pb ages in the uppermost unit of the Ordenes Complex. Earth Planet Sci Lett 165:213–228. doi: 10.1016/S0012-821X(98)00268-4 CrossRefGoogle Scholar
  2. Abati J, Castiñeiras P, Arenas R et al (2007) Using SHRIMP zircon dating to unravel tectonothermal events in arc environments. The early Palaeozoic arc of NW Iberia revisited. Terra Nova 19:432–439. doi: 10.1111/j.1365-3121.2007.00768.x CrossRefGoogle Scholar
  3. Abati J, Gerdes A, Fernández Suárez J et al (2010) Magmatism and early-Variscan continental subduction in the northern Gondwana margin recorded in zircons from the basal units of Galicia. NW Spain Geol Soc Am Bull 122:219–235. doi: 10.1130/b26572.1 CrossRefGoogle Scholar
  4. Ancochea E, Arenas R, Brandle JL et al (1988) Caracterización de las rocas metavolcánicas silúricas del NO del Macizo Ibérico Geociencias. Aveiro 3:23–34Google Scholar
  5. Andonaegui P, Castiñeiras P, González Cuadra P et al (2012) The Corredoiras orthogneiss (NW Iberian Massif): geochemistry and geochronology of the Paleozoic magmatic suite developed in a peri-Gondwanan arc. Lithos 128–131:84–99. doi: 10.1016/j.lithos.2011.11.005 CrossRefGoogle Scholar
  6. Antunes IMHR, Neiva AMR, Silva MMVG et al (2009) The genesis of I-and S-type granitoid rocks of the Early Ordovician Oledo pluton, Central Iberian Zone (central Portugal). Lithos 111:168–185. doi: 10.1016/j.lithos.2008.07.014 CrossRefGoogle Scholar
  7. Aramburu C, García-Ramos J (1993) La sedimentación cambro-ordovícica en la Zona Cantábrica (NO de España). Trabajos de Geología 19:45–73Google Scholar
  8. Arenas R, Catalán JRM, Sánchez Martínez S et al (2007a) Paleozoic ophiolites in the Variscan suture of Galicia (northwest Spain): distribution, characteristics and meaning. In: Hatcher RD Jr, Carlson MP, McBride JH, Catalán JRM (eds) 4D framework of continental crust, vol 200. Geological Society of America, Boulder, pp 425–444CrossRefGoogle Scholar
  9. Arenas R, Martínez Catalán JR, Sánchez Martínez S et al (2007b) The Vila de Cruces ophiolite: a remnant of the early Rheic Ocean in the Variscan suture of Galicia (northwest Iberian Massif). J Geol 115:129–148CrossRefGoogle Scholar
  10. Ballèvre M, Capdevila R, Guerrot C et al (2002) Discovery of an alkaline orthogneiss in the eclogite-bearing cellier unit (Champtoceaux complex, Armorican Massif): a new witness of the Ordovician rifting. CR Geosci 334:303–311. doi: 10.1016/S1631-0713(02)01760-1 CrossRefGoogle Scholar
  11. Ballèvre M, Bosse V, Ducassou C et al (2009) Palaeozoic history of the Armorican Massif: models for the tectonic evolution of the suture zones. CR Geosci 341:174–201. doi: 10.1016/j.crte.2008.11.009 CrossRefGoogle Scholar
  12. Ballèvre M, Fourcade S, Capdevila R et al (2012) Geochronology and geochemistry of Ordovician felsic volcanism in the Southern Armorican Massif (Variscan belt, France): implications for the breakup of Gondwana. Gondwana Res 21:1019–1036. doi: 10.1016/ CrossRefGoogle Scholar
  13. Bandrés A, Eguíluz L, Pin C et al (2004) The northern Ossa-Morena Cadomian batholith (Iberian Massif): magmatic arc origin and early evolution. Int J Earth Sci 93:860–885. doi: 10.1007/s00531-004-0423-6 CrossRefGoogle Scholar
  14. Barker F (1979) Trondhjemite: definition, environment and hypotheses of origin. In: Barker F (ed) Trondhjemites, dacites and related rocks. Elsevier, Amsterdam, pp 1–12CrossRefGoogle Scholar
  15. Bea F, Montero P, Talavera C et al (2006) A revised Ordovician age for the Miranda do Douro orthogneiss, Portugal. Zircon U–Pb Ion Microprobe LA-ICPMS Dating Geologica Acta 4:395–401. doi: 10.1344/105.000000353 Google Scholar
  16. Bea F, Montero P, González-Lodeiro F et al (2007) Zircon inheritance reveals exceptionally fast crustal magma generation processes in Central Iberia during the Cambro-Ordovician. J Petrol 48:2327–2339. doi: 10.1093/petrology/egm061 CrossRefGoogle Scholar
  17. Black LP, Kamo SL, Williams IS et al (2003) The application of SHRIMP to Phanerozoic geochronology; a critical appraisal of four zircon standards. Chem Geol 200:171–188. doi: 10.1016/S0009-2541(03)00166-9 CrossRefGoogle Scholar
  18. Casas JM (2010) Ordovician deformations in the Pyrenees: new insights into the significance of pre-Variscan (‘sardic’) tectonics. Geol Mag 147:674–689. doi: 10.1017/s0016756809990756 CrossRefGoogle Scholar
  19. Casas JM, Castiñedas P, Navidad M et al Ordovician magmatism in NE Iberia. In: Gutiérrez Marco JC, Rábano I, García-Bellido D (eds) 11th International Symposium on the Ordovician System, Alcalá de Henares, 2011. Instituto Geológico y Minero de España, pp 95–100Google Scholar
  20. Castiñeiras P, Navidad M, Casas JM et al (2010) Petrogenesis of Ordovician magmatism in the Pyrenees (Albera and Canigo Massifs) determined on the basis of Zircon minor and trace element composition. J Geol 119:521–534. doi: 10.1086/660889 CrossRefGoogle Scholar
  21. Catalán JRM, Arenas R, García FD et al (2007) Space and time in the tectonic evolution of the northwestern Iberian Massif: implications for the Variscan belt. In: Hatcher RD Jr, Carlson MP, McBride JH, Catalán JRM (eds) 4-D framework of continental crust. Geologic Society of America, Boulder, pp 403–423CrossRefGoogle Scholar
  22. Catalán JRM, Fernández-Suárez J, Meireles C et al (2008) U–Pb detrital zircon ages in synorogenic deposits of the NW Iberian Massif (Variscan belt): interplay of Devonian-carboniferous sedimentation and thrust tectonics. J Geol Soc 165:687–698. doi: 10.1144/0016-76492007-066 CrossRefGoogle Scholar
  23. Chang Z, Vervoort JD, McClelland WC et al (2006) U–Pb dating of zircon by LA-ICP-MS. Geochem Geophys Geosyst 7:Q05009. doi: 10.1029/2005gc001100 CrossRefGoogle Scholar
  24. Chichorro M, Pereira MF, Díaz-Azpiroz M et al (2008) Cambrian ensialic rift-related magmatism in the Ossa-Morena Zone (Évora-Aracena metamorphic belt, SW Iberian Massif): Sm–Nd isotopes and SHRIMP zircon U–Th–Pb geochronology. Tectonophysics 461:91–113. doi: 10.1016/j.tecto.2008.01.008 CrossRefGoogle Scholar
  25. Cocherie A, Baudin T, Autran A et al (2005) U–Pb zircon (ID-TIMS and SHRIMP) evidence for the early ordovician intrusion of metagranites in the late Proterozoic Canaveilles Group of the Pyrenees and the Montagne Noire (France). Bull Soc Geol Fr 176:269–282. doi: 10.2113/176.3.269 CrossRefGoogle Scholar
  26. Cocks LRM, Torsvik TH (2002) Earth geography from 500 to 400 million years ago: a faunal and palaeomagnetic review. J Geol Soc 159:631–644 doi: 10.1144/0016-764901-118 CrossRefGoogle Scholar
  27. Coke C, Teixeira RJS, Gomes MEP et al (2011) Early Ordovician volcanism in Eucísia and Mateus areas, Central Iberian Zone, northern Portugal. Mineral Mag 75:685Google Scholar
  28. Condie KC (2005) High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? Lithos 79:491–504. doi: 10.1016/j.lithos.2004.09.014 CrossRefGoogle Scholar
  29. Corti G, Bonini M, Conticelli S et al (2003) Analogue modelling of continental extension: a review focused on the relations between the patterns of deformation and the presence of magma. Earth Sci Rev 63:169–247. doi: 10.1016/S0012-8252(03)00035-7 CrossRefGoogle Scholar
  30. Crowley QG, Floyd PA, Winchester JA et al (2000) Early Palaeozoic rift-related magmatism in Variscan Europe: fragmentation of the Armorican Terrane Assemblage. Terra Nova 12:171–180CrossRefGoogle Scholar
  31. Dallmeyer RD, Martínez Catalán JR, Arenas R et al (1997) Diachronous Variscan tectonothermal activity in th NW Iberia Massif: evidence from 40Ar/39Ar dating of regional fabrics. Tectonophysics 277:307–337. doi: 10.1016/S0040-1951(97)00035-8 CrossRefGoogle Scholar
  32. Dias da Silva Í (2014) Geología de las Zonas Centro Ibérica y Galicia –Trás-os-Montes en la parte oriental del Complejo de Morais, Portugal/España vol 45. Serie Nova Terra, vol 45. Instituto Universitario de Geología “Isidro Parga Pondal”—Área de Xeoloxía e Minería do Seminario de Estudos Galegos, CoruñaGoogle Scholar
  33. Dias da Silva Í, González Clavijo E, Barba P et al (2011) Geochemistry of Lower Palaeozoic shales. A case study in a sector of the Iberian Variscides. In: Gutiérrez Marco JC, Rábano I, García-Bellido D (eds) 11th International Symposium on the Ordovician System, Alcalá de Henares. Instituto Geológico y Minero de España, pp 121–125Google Scholar
  34. Dias da Silva Í, González Clavijo E, Martínez Catalán JR (2010) Estratigrafia da Zona Centro Ibérica na região de Palaçoulo (leste do Maciço de Morais, NE Portugal). In: Brilha J, Pamplona J, Valente T (eds) VIII Congresso Nacional de Geología, Braga. vol 12. e-Terra, pp 1–4Google Scholar
  35. Dias da Silva Í, Valverde-Vaquero P, González-Clavijo E et al (2014) Structural and stratigraphical significance of U–Pb ages from the Mora and Saldanha volcanic complexes (NE Portugal, Iberian Variscides). Geol Soc Lond Spec Publ 405:115–135. doi: 10.1144/sp405.3 CrossRefGoogle Scholar
  36. Dias da Silva Í, Linnemann U, Hofmann M et al (2015) Detrital zircon and tectonostratigraphy of the Parautochthon under the Morais Complex (NE Portugal): implications for the Variscan accretionary history of the Iberian Massif. J Geol Soc 172:45–61. doi: 10.1144/jgs2014-005 CrossRefGoogle Scholar
  37. Díez Fernández R, Arenas R (2015) The late Devonian Variscan suture of the Iberian Massif: a correlation of high-pressure belts in NW and SW Iberia. Tectonophysics 654:96–100. doi: 10.1016/j.tecto.2015.05.001 CrossRefGoogle Scholar
  38. Díez Fernández R, Castiñeiras P, Gómez Barreiro J (2012) Age constraints on Lower Paleozoic convection system: Magmatic events in the NW Iberian Gondwana margin. Gondwana Res 21:1066–1079. doi: 10.1016/ CrossRefGoogle Scholar
  39. Díez-Montes A (2007) La geología del Dominio “Ollo de Sapo” en las comarcas de Sanabria y Terra do Bolo vol 34. Nova Terra, 2007 edn. Instituto Universitario de Geología “Isidro Parga Pondal”—Área de Xeoloxía e Minería do Seminario de Estudos Galegos, La CoruñaGoogle Scholar
  40. Díez-Montes A, Catalán JRM, Mulas FB (2010) Role of Ollo de Sapo massive felsic volcanism of NW Iberia in the Early Ordovician dynamics of northern Gondwana. Gondwana Res 17:363–376. doi: 10.1016/ CrossRefGoogle Scholar
  41. Farias P, Marcos A (2004) Dominio Esquistoso de Galicia-Trás-os-Montes. In: Vera JA (ed) Geología de España. SGE-IGME, Madrid, pp 135–138Google Scholar
  42. Farias P, Gallastegui G, González-Lodeiro F et al (1987) Aportaciones al conocimiento de la litoestratigrafía y estructura de Galicia Central. Mem Fac Ciênc Univ Porto 1:411–431Google Scholar
  43. Faure M, Lardeaux J-M, Ledru P (2009) A review of the pre-Permian geology of the Variscan French Massif Central. C R Geosci 341:202–213. doi: 10.1016/j.crte.2008.12.001 CrossRefGoogle Scholar
  44. Faure M, Cocherie A, Mézème EB et al (2010) Middle carboniferous crustal melting in the Variscan belt: new insights from U–Th–Pb tot. monazite and U–Pb zircon ages of the Montagne Noire Axial Zone (southern French Massif Central). Gondwana Res 18:653–673. doi: 10.1016/ CrossRefGoogle Scholar
  45. Fernández RD, Catalán JRM (2009) 3D Analysis of an Ordovician igneous ensemble: a complex magmatic structure hidden in a polydeformed allochthonous Variscan unit. J Struct Geol 31:222–236. doi: 10.1016/j.jsg.2008.11.017 CrossRefGoogle Scholar
  46. Fernández RD, Catalán JRM, Gerdes A et al (2010) U–Pb ages of detrital zircons from the Basal allochthonous units of NW Iberia: Provenance and paleoposition on the northern margin of Gondwana during the Neoproterozoic and Paleozoic. Gondwana Res 18:385–399. doi: 10.1016/ CrossRefGoogle Scholar
  47. Fernández RD, Catalán JRM, Arenas R et al (2012) U–Pb detrital zircon analysis of the lower allochthon of NW Iberia: age constraints, provenance and links with the Variscan mobile belt and Gondwanan cratons. J Geol Soc 169:655–665. doi: 10.1144/jgs2011-146 CrossRefGoogle Scholar
  48. Fernández RD, Foster D, Barreiro JG et al (2013) Rheological control on the tectonic evolution of a continental suture zone: the Variscan example from NW Iberia (Spain). Int J Earth Sci 102(5):1305–1319. doi: 10.1007/s00531-013-0885-5 CrossRefGoogle Scholar
  49. Fernández RD, Pereira MF, Foster DA (2015) Peralkaline and alkaline magmatism of the Ossa-Morena Zone (SW Iberia): age, sources and implications for the Paleozoic evolution of Gondwanan lithosphere. Lithosphere 7:73–90. doi: 10.1130/L379.1 CrossRefGoogle Scholar
  50. Fernández-Suárez J, Gutiérrez-Alonso G, Jenner GA et al (2000) New ideas on the Proterozoic-Early Palaeozoic evolution of NW Iberia: insights from U–Pb detrital zircon ages. Precambrian Res 102:185–206. doi: 10.1016/S0301-9268(00)00065-6 CrossRefGoogle Scholar
  51. Fernández-Suárez J, Díaz García F, Jeffries TE et al (2003) Constraints on the provenance of the uppermost allochthonous terrane of the NW Iberian Massif: inferences from detrital zircon U–Pb ages. Terra Nova 15:138–144. doi: 10.1016/j.crte.2008.11.003 CrossRefGoogle Scholar
  52. Fortey RA, Cocks LRM (2003) Palaeontological evidence bearing on global Ordovician-Silurian continental reconstructions. Earth Sci Rev 61:245–307CrossRefGoogle Scholar
  53. Franke W (1995) Stratigraphy, structure, and igneous activity. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian Geology of Central and Eastern Europe. Springer, Berlin, Heidelberg, New York, pp 277–294CrossRefGoogle Scholar
  54. Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. Geol Soc Lond Spec Publ 179:35–61. doi: 10.1144/gsl.sp.2000.179.01.05 CrossRefGoogle Scholar
  55. Fuenlabrada JM, Arenas R, Martínez SS et al (2010) A peri-Gondwanan arc in NW Iberia: I: isotopic and geochemical constraints on the origin of the arc—A sedimentary approach. Gondwana Res 17:338–351. doi: 10.1016/ CrossRefGoogle Scholar
  56. Gaggero L, Oggiano G, Funedda A et al (2012) Rifting and arc-related Early Paleozoic volcanism along the North Gondwana margin: geochemical and geological evidence from Sardinia (Italy). J Geol 120:273–292. doi: 10.1086/664776 CrossRefGoogle Scholar
  57. Gómez Barreiro J, Martínez Catalán JR, Arenas R et al (2007) Tectonic evolution of the upper allochtonon of the Órdenes complex (Northwestern Iberian Massif): structural constraints to a polygenic peri-Gondwanan terrane. Geol Soc Am Spec Pap 423:315–332. doi: 10.1130/2007.2423(15) Google Scholar
  58. González Clavijo E (2006) La Geología del sinforme de Alcañices, Oeste de Zamora vol 31. Nova Terra, 2006 edn. Instituto Universitario de Geología “Isidro Parga Pondal”—Área de Xeoloxía e Minería do Seminario de Estudos Galegos, La CoruñaGoogle Scholar
  59. González Clavijo E, Martínez Catalán JR (2002) Stratigraphic record of preorogenic to synorogenic sedimentation, and tectonic evolution of imbricate thrusts in the Alcañices synform (northwestern Iberian Massif). In: Martínez Catalán JR, Hatcher Jr. RD, Arenas R, Días García F (eds) Variscan Appalachian Dynamics: The building of the Late Palaeozoic Basement. Geological Society of America, pp 17–25Google Scholar
  60. Gutiérrez-Alonso G, Fernández-Suárez J, Jeffries TE et al (2003) Terrane accretion and dispersal in the northern Gondwana margin. An Early Paleozoic analogue of a long-lived active margin. Tectonophysics 365:221–232. doi: 10.1016/S0040-1951(03)00023-4 CrossRefGoogle Scholar
  61. Gutiérrez-Alonso G, Fernández-Suárez J, Gutiérrez-Marco JC et al (2007) U–Pb depositional age for the upper barrios formation (Armorican Quartzite facies) in the Cantabrian zone of Iberia: implications for stratigraphic correlation and paleogeography. Geol Soc Am Spec Pap 423:287–296. doi: 10.1130/2007.2423(13) Google Scholar
  62. Gutiérrez-Marco JC (2001) Cistoideos rombíferos (Echinodermata) de la Caliza Urbana (Ordovícico Superior) de la Zona Centroibérica. España Coloquios de Paleontología 52:107–116Google Scholar
  63. Gutiérrez-Marco JC, San José MA, Pieren AP (1990) Post-Cambrian Paleozoic stratigraphy. In: Dallmeyer RD, García EM (eds) Pre-Mesozoic Geology of Iberia. Springer-Verlag, Germany, pp 160–171Google Scholar
  64. Gutiérrez-Marco JC, Robardet M, Piçarra JM (1998) Silurian stratigraphy and paleogeography of the Iberian peninsula (Spain and Portugal). In: Gutiérrez-Marco JC, Rábano I (eds) Proceedings 6th international graptolite conference (GWG-IPA) and Field Meeting, IUGS subcommission on Silurian stratigraphy, vol 23., ITGEMadrid, Temas Geológico-Mineros, pp 13–44Google Scholar
  65. Gutiérrez-Marco JC, Robardet M, Rábano I et al (2002) Ordovician. In: Gibbons W, Moreno T (eds) The Geology of Spain. Geol Soc Lond, London, pp 31–49Google Scholar
  66. Helbing H, Tiepolo M (2005) Age determination of Ordovician magmatism in NE Sardinia and its bearing on Variscan basement evolution. J Geol Soc 162:689–700. doi: 10.1144/0016-764904-103 CrossRefGoogle Scholar
  67. Heredia N, Arias D, Bellido F et al (2002) Estudio geológico aplicado a la investigación de recursos mineros y de materias primas en las comarcas de El Bierzo, La Cabrera, Sanabria y Valdeorras vol memoria y planos en CD. Instituto Geológico y Minero de España, MadridGoogle Scholar
  68. Jull M, Kelemen P (2001) On the conditions for lower crustal convective instability. J Geophys Res Solid Earth (1978–2012) 106:6423–6446. doi: 10.1029/2000JB900357 CrossRefGoogle Scholar
  69. Keir D, Bastow ID, Pagli C et al (2013) The development of extension and magmatism in the Red Sea rift of Afar. Tectonophysics 607:98–114. doi: 10.1016/j.tecto.2012.10.015 CrossRefGoogle Scholar
  70. Keller M, Bahlburg H, Reuther C-D (2008) The transition from passive to active margin sedimentation in the Cantabrian Mountains, Northern Spain: Devonian or carboniferous? Tectonophysics 461:414–427. doi: 10.1016/j.tecto.2008.06.022 CrossRefGoogle Scholar
  71. Kelley KA, Plank T, Grove TL et al (2006) Mantle melting as a function of water content beneath back-arc basins. J Geophys Res Solid Earth 111:B09208. doi: 10.1029/2005jb003732 Google Scholar
  72. Kemnitz H, Romer R, Oncken O (2002) Gondwana break-up and the northern margin of the Saxothuringian belt (Variscides of Central Europe). Int J Earth Sci 91:246–259. doi: 10.1007/s005310100209 CrossRefGoogle Scholar
  73. Kröner A, Štípská P, Schulmann K et al (2000) Chronological constraints on the pre-Variscan evolution of the northeastern margin of the Bohemian Massif. Czech Repub Geol Soc Lond Spec Publ 179:175–197. doi: 10.1144/gsl.sp.2000.179.01.12 CrossRefGoogle Scholar
  74. Kryza R, Pin C (2010) The Central-Sudetic ophiolites (SW Poland): petrogenetic issues, geochronology and palaeotectonic implications. Gondwana Res 17:292–305. doi: 10.1016/ CrossRefGoogle Scholar
  75. Large RR, Gemmell JB, Paulick H et al (2001) The alteration box plot: a simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulfide deposits. Econ Geol 96:957–971. doi: 10.2113/gsecongeo.96.5.957 Google Scholar
  76. Lester R, Van Avendonk HJA, McIntosh K et al (2014) Rifting and magmatism in the northeastern South China Sea from wide-angle tomography and seismic reflection imaging. J Geophys Res Solid Earth 119:2305–2323. doi: 10.1002/2013jb010639 CrossRefGoogle Scholar
  77. Liesa M, Carreras J, Castiñeiras P et al (2011) U–Pb zircon age of Ordovician magmatism in the Albera Massif (Eastern Pyrenees). Geol Acta 9:93–101. doi: 10.1344/105.000001651 Google Scholar
  78. Linnemann U, Gerdes A, Drost K et al (2007) The continuum between Cadomian orogenesis and opening of the Rheic Ocean: constraints from LA-ICP-MS U–Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, northeastern Bohemian Massif, Germany). Geol Soc Am Spec Pap 423:61–96. doi: 10.1130/2007.2423(03) Google Scholar
  79. Linnemann U, Pereira MF, Jeffries TE et al (2008) The Cadomian Orogeny and the opening of the Rheic Ocean: the diachrony of geotectonic processes constrained by LA-ICP-MS U–Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461:21–43. doi: 10.1016/j.tecto.2008.05.002 CrossRefGoogle Scholar
  80. López-Moro FJ, Murciego A, López-Plaza M (2007) Silurian/Ordovician asymmetrical sill-like bodies from La Codosera syncline, W Spain: a case of tholeiitic partial melts emplaced in a single magma pulse and derived from a metasomatized mantle source. Lithos 96:567–590. doi: 10.1016/j.lithos.2006.12.006 CrossRefGoogle Scholar
  81. Ludwig KR (2008) User’s manual for Isoplot/Ex 3.70. BarkeleyGoogle Scholar
  82. Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101:635–643. doi: 10.1130/0016-7606(1989)101<0635:tdog>;2 CrossRefGoogle Scholar
  83. Marcos A, Martínez Catalán JR, Gutiérrez Marco JC et al (2004) Estratigrafía y paleogeografía. In: Vera JA (ed) Geología de España. SGE-IGME, Madrid, pp 49–52Google Scholar
  84. Martínez Catalán JR (2011) The Central Iberian arc, an orocline centered in the Iberian Massif and some implications for the Variscan belt. Int J Earth Sci 101:1299–1314. doi: 10.1007/s00531-011-0715-6 CrossRefGoogle Scholar
  85. Martínez Catalán JR, Hacar Rodríguez MP, Villar Alonso P et al (1992) Lower Paleozoic extensional tectonics in the limit between the West Asturian-Leonese and Central Iberian Zones of the Variscan fold-belt in NW Spain. Geol Rundsch 81:546–560Google Scholar
  86. Martínez Catalán JR, Arenas R, Díaz García F et al (1996) Variscan exhumation of a subducted Paleozoic continental margin: the basal units of Ordenes complex, Galicia. NW Spain Tecton 15:106–121. doi: 10.1029/95TC02617 CrossRefGoogle Scholar
  87. Martínez Catalán JR, Gutiérrez Marco JC, Hacar Rodríguez MP et al (2004) Secuencia preorogénica del Ordovícico-Devónico. In: Vera JA (ed) Geología de España. SGE-IGME, Madrid, pp 72–75Google Scholar
  88. Martínez Catalán JR, Arenas R, Abati J et al (2009) A rootless suture and the loss of the roots of a mountain chain: the Variscan belt of NW Iberia. CR Geosci 341:114–126. doi: 10.1016/j.crte.2008.11.004 CrossRefGoogle Scholar
  89. Martínez Catalán JR, Rubio Pascual FJ, Díez-Montes A et al (2014) The late Variscan HT/LP metamorphic event in NW and Central Iberia: relationships to crustal thickening, extension, orocline development and crustal evolution. Geol Soc Lond Spec Publ 405:225–247. doi: 10.1144/sp405.1 CrossRefGoogle Scholar
  90. Martínez FJ, Iriondo A, Dietsch C et al (2011) U–Pb SHRIMP-RG zircon ages and Nd signature of lower Paleozoic rifting-related magmatism in the Variscan basement of the Eastern Pyrenees. Lithos 127:10–23. doi: 10.1016/j.lithos.2011.08.004 CrossRefGoogle Scholar
  91. Matte P (1991) Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophysics 196:309–337. doi: 10.1016/0040-1951(91)90328-P CrossRefGoogle Scholar
  92. Melleton J, Cocherie A, Faure M et al (2010) Precambrian protoliths and Early Paleozoic magmatism in the French Massif Central: U–Pb data and the North Gondwana connection in the west European Variscan belt. Gondwana Res 17:13–25. doi: 10.1016/ CrossRefGoogle Scholar
  93. Ménot RP, Peucat JJ, Scarenzi D et al (1988) 496 My age of plagiogranites in the Chamrousse ophiolite complex (external crystalline massifs in the French Alps): evidence of a Lower Paleozoic oceanization. Earth Planet Sci Lett 88:82–92. doi: 10.1016/0012-821X(88)90048-9 CrossRefGoogle Scholar
  94. Meschede M (1986) A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb–Zr–Y diagram. Chem Geol 56:207–218CrossRefGoogle Scholar
  95. Montero P, Bea F, González Lodeiro F et al (2007) Zircon ages of the metavolcanic rocks and metagranites of the Ollo de Sapo Domain in central Spain: implications for the Neoproterozoic to Early Palaeozoic evolution of Iberia. Geol Mag 144:963–976. doi: 10.1017/S0016756807003858 CrossRefGoogle Scholar
  96. Montero P, Bea F, Corretgé LG et al (2009a) U–Pb ion microprobe dating and Sr and Nd isotope geology of the Galiñeiro Igneous Complex: a model for the peraluminous/peralkaline duality of the Cambro-Ordovician magmatism of Iberia. Lithos 107:227–238. doi: 10.1016/j.lithos.2008.10.009 CrossRefGoogle Scholar
  97. Montero P, Talavera C, Bea F et al (2009b) Zircon geochronology of the Ollo de Sapo Formation and age of the Cambro-Ordovician rifting in Iberia. J Geol 117:174–191. doi: 10.1086/595017 CrossRefGoogle Scholar
  98. Murphy JB, Nance RD (1991) Supercontinent model for the contrasting character of late proterozoic orogenic belts. Geology 19:469–472. doi: 10.1130/0091-7613(1991)019<0469:smftcc>;2 CrossRefGoogle Scholar
  99. Murphy JB, Gutiérrez-Alonso G, Nance RD et al (2006) Origin of the Rheic Ocean: rifting along a Neoproterozoic suture? Geology 34:325–328. doi: 10.1130/g22068.1 CrossRefGoogle Scholar
  100. Nance RD, Murphy JB, Keppie JD (2002) A Cordilleran model for the evolution of Avalonia. Tectonophysics 352:11–31. doi: 10.1016/S0040-1951(02)00187-7 CrossRefGoogle Scholar
  101. Nance RD, Murphy JB, Strachan RA et al (2008) Neoproterozoic-early Palaeozoic tectonostratigraphy and palaeogeography of the peri-Gondwanan terranes: amazonian v. West African connections. Geol Soc Lond Spec Publ 297:345–383. doi: 10.1144/sp297.17 CrossRefGoogle Scholar
  102. Nance RD, Gutiérrez-Alonso G, Keppie JD et al (2010) Evolution of the Rheic Ocean. Gondwana Res 17:194–222. doi: 10.1016/ CrossRefGoogle Scholar
  103. Navidad M, Castiñeiras P Early Ordovician magmatism in the northern Central Iberian Zone (Iberian Massif): new U–Pb (SHRIMP) ages and isotopic Sr–Nd data. In: Gutiérrez Marco JC, Rábano I, García-Bellido D (eds) 11th International Symposium on the Ordovician System, Alcalá de Henares, 2011. Instituto Geológico y Minero de España, pp 391–398Google Scholar
  104. Navidad M, Castiñeiras P, Casas JM et al (2010) Geochemical characterization and isotopic age of Caradocian magmatism in the northeastern Iberian Peninsula: insights into the late Ordovician evolution of the northern Gondwana margin. Gondwana Res 17:325–337. doi: 10.1016/ CrossRefGoogle Scholar
  105. O´Connor JR (1965) A classification of quartz-rich igneous rocks based on feldspar ratios. US Geol Surv Prof Pap 525-B:79–84Google Scholar
  106. Oggiano G, Gaggero L, Funedda A et al (2010) Multiple early Paleozoic volcanic events at the northern Gondwana margin: U–Pb age evidence from the southern Variscan branch (Sardinia, Italy). Gondwana Res 17:44–58. doi: 10.1016/ CrossRefGoogle Scholar
  107. Paces JB, Miller JD (1993) Precise U–Pb ages of Duluth complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga Midcontinent rift system. J Geophys Res Solid Earth 98:13997–14013. doi: 10.1029/93JB01159 CrossRefGoogle Scholar
  108. Pastor-Galán D, Gutiérrez-Alonso G, Murphy JB et al (2013) Provenance analysis of the Paleozoic sequences of the northern Gondwana margin in NW Iberia: passive margin to Variscan collision and orocline development. Gondwana Res 23:1089–1103. doi: 10.1016/ CrossRefGoogle Scholar
  109. Pearce JA (1996) A user’s guide to basalt discrimination diagrams trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Geol Assoc Can Short Course Notes 12:79–113Google Scholar
  110. Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48. doi: 10.1016/j.lithos.2007.06.016 CrossRefGoogle Scholar
  111. Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet Sci Lett 19:290–300. doi: 10.1016/0012-821X(73)90129-5 CrossRefGoogle Scholar
  112. Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983. doi: 10.1093/petrology/25.4.956 CrossRefGoogle Scholar
  113. Pedro J, Araújo A, Fonseca P et al (2010) Geochemistry and U–Pb zircon age of the internal Ossa-Morena zone ophiolite sequences: a remnant of Rheic ocean in SW Iberia. Ofioliti 35:117–130. doi: 10.4454/ofioliti.v35i2.390 Google Scholar
  114. Pereira Z, Meireles C, Pereira E (1999) Devonian palynomorphs of NE sector of Trás-os-Montes (Central Iberian Zone). In: Vintaned G, Eguíluz JA, Palacios T (eds) XV Reunión de Geología del Oeste peninsular—international Meeting on Cadomian basement. Diputación de Badajoz, Badajoz, pp 201–206Google Scholar
  115. Pereira E, Ribeiro A, Rebelo JA et al (2008) Folha 11-B (Mogadouro) da Carta Geológica de Portugal à Escala 1:50.000. Laboratório Nacional de Energía e Geologia, LisboaGoogle Scholar
  116. Pereira MF, Solá AR, Chichorro M et al (2012) North-Gondwana assembly, break-up and paleogeography: U/Pb isotope evidence from detrital and igneous zircons of Ediacaran and Cambrian rocks of SW Iberia. Gondwana Res 22:866–881. doi: 10.1016/ CrossRefGoogle Scholar
  117. Piçarra JM, Gutiérrez Marco JC, Sá AA et al (2006) Silurian graptolite biostratigraphy of the Galicia-Trás-os-Monttes Zone (Spain and Portugal). J Geol Soc Sweden 128:185–188Google Scholar
  118. Pin C, Carme F (1987) A Sm–Nd isotopic study of 500 Ma old oceanic crust in the Variscan belt of Western Europe: the Chamrousse ophiolite complex, Western Alps (France). Contrib Miner Petrol 96:406–413. doi: 10.1007/bf00371258 CrossRefGoogle Scholar
  119. Pin C, Kryza R, Oberc-Dziedzic T et al (2007) The diversity and geodynamic significance of Late Cambrian (ca. 500 Ma) felsic anorogenic magmatism in the northern part of the Bohemian Massif: a review based on Sm–Nd isotope and geochemical data. Geol Soc Am Spec Pap 423:209–229. doi: 10.1130/2007.2423(09) Google Scholar
  120. Platt JP, England PC (1994) Convective removal of lithosphere beneath mountain belts; thermal and mechanical consequences. Am J Sci 294:307–336. doi: 10.2475/ajs.294.3.307 CrossRefGoogle Scholar
  121. Ribeiro A (1974) Contribution à l’étude téctonique de Trás-os-Montes Oriental, vol 24. Memórias dos Serviços Geológicos de Portugal. Serviços Geológicos de Portugal, Lisboa, PortugalGoogle Scholar
  122. Ribeiro A, Pereira E, Dias R (1990) Allochthonous sequences—Structure in the Northwest of the Iberian peninsula. In: Dallmeyer RD, García EM (eds) Pre-Mesozoic geology of Iberia. Springer, Germany, pp 222–236Google Scholar
  123. Ribeiro ML, Munhá J, Solá R et al (2010) Magmatismo do Paleozóico Inferior no Sudoeste da Zona Centro Ibérica. In: Neiva JMC, Ribeiro A, Mendes Victor L, Noronha F, Ramalho MM (eds) Ciências Geológicas—Ensino e Investigação e sua História, vol 1. Universidade de Évora, Lisboa, pp 249–260Google Scholar
  124. Robardet M (2003) The Armorica ‘microplate’: fact or fiction? Critical review of the concept and contradictory palaeobiogeographical data. Palaeogeogr Palaeoclimatol Palaeoecol 195:125–148. doi: 10.1016/S0031-0182(03)00305-5 CrossRefGoogle Scholar
  125. Rodrigues JF, Pereira E, Ribeiro A (2006) Sucessão parautóctone da Zona Galiza—Trás-os-Montes: singularidade paleogeográfica versus complexidade tectónica. In: Mirão J, Balbina A (eds) VII congresso nacional de geologia, vol 1. Universidade de Évora, Estremoz, pp 115–118Google Scholar
  126. Rodríguez Alonso MD, Peinado M, López-Plaza M et al (2004) Neoproterozoic-Cambrian synsedimentary magmatism in the Central Iberian Zone (Spain): geology, petrology and geodynamic significance. Int J Earth Sci 93:897–920. doi: 10.1007/s00531-004-0425-4 CrossRefGoogle Scholar
  127. Roger F, Respaut J-P, Brunel M et al (2004) Première datation U/Pb des orthogneiss œillés de la zone axiale de la Montagne noire (Sud du Massif central): nouveaux témoins du magmatisme ordovicien dans la chaı̂ne Varisque. CR Geosci 336:19–28. doi: 10.1016/j.crte.2003.10.014 CrossRefGoogle Scholar
  128. Rubio-Ordóñez A, Valverde-Vaquero P, Corretgé LG et al (2012) An Early Ordovician tonalitic–granodioritic belt along the Schistose-Greywacke domain of the Central Iberian Zone (Iberian Massif, Variscan belt). Geol Mag Rapid Commun 1–13 doi: 10.1017/S0016756811001129
  129. Rubio-Ordóñez A, Gutiérrez-Alonso G, Valverde-Vaquero P et al (2013) Arc-related Ediacaran magmatism along the northern margin of Gondwana: Geochronology and isotopic geochemistry from northern Iberia. Gondwana Res. doi: 10.1016/ (in press) Google Scholar
  130. Sá AA, Meireles C, Coke C et al (2005) Unidades litoestratigráficas do Ordovícico da região de Trás-os-Montes (Zona Centro Ibérica). Comunicações Geol 92:31–74Google Scholar
  131. Sánchez Martı́nez S, Arenas R, Fernández-Suárez J et al (2009) From Rodinia to Pangaea: ophiolites from NW Iberia as witness for a long-lived continental margin. Geol Soc Lond Spec Publ 327:317–341. doi: 10.1144/sp327.14 CrossRefGoogle Scholar
  132. Sánchez-García T, Quesada C, Bellido F et al (2008) Two-step magma flooding of the upper crust during rifting: the Early Paleozoic of the Ossa Morena Zone (SW Iberia). Tectonophysics 461:72–90. doi: 10.1016/j.tecto.2008.03.006 CrossRefGoogle Scholar
  133. Sarmiento GN, Piçarra JM, Rebelo JA et al (1998) Le Silurien du Synclinorium de Moncorvo (NE du Portugal): biostratigraphie et importance paléogéographique. Geobios 32:749–767. doi: 10.1016/S0016-6995(99)80062-X CrossRefGoogle Scholar
  134. Shaw J, Gutiérrez-Alonso G, Johnston ST et al (2014) Provenance variability along the Early Ordovician north Gondwana margin: paleogeographic and tectonic implications of U–Pb detrital zircon ages from the Armorican Quartzite of the Iberian Variscan belt. Geol Soc Am Bull. doi: 10.1130/b30935.1 Google Scholar
  135. Simancas JF, Azor A, Martínez-Poyatos D et al (2009) Tectonic relationships of Southwest Iberia with the allochthons of Northwest Iberia and the Moroccan variscides. CR Geosci 341:103–113. doi: 10.1016/j.crte.2008.11.003 CrossRefGoogle Scholar
  136. Sircombe KN (2004) AgeDisplay: an Excel workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions. Comput Geosci 30:21–31. doi: 10.1016/j.cageo.2003.09.006 CrossRefGoogle Scholar
  137. Solá R, Pereira MF, Williams IS et al (2008) New insights from U–Pb zircon dating of Early Ordovician magmatism on the northern Gondwana margin: the Urra formation (SW Iberian Massif, Portugal). Tectonophysics 461:114–129. doi: 10.1016/j.tecto.2008.01.011 CrossRefGoogle Scholar
  138. Solá R, Williams IS, Neiva AMR et al (2009) U–Th–Pb SHRIMP ages and oxygen isotope composition of zircon from two contrasting late Variscan granitoids, Nisa-Albuquerque batholith, SW Iberian Massif: petrologic and regional implications. Lithos 111:156–167. doi: 10.1016/j.lithos.2009.03.045 CrossRefGoogle Scholar
  139. Stampfli GM, Hochard C, Vérard C et al (2013) The formation of Pangea. Tectonophysics 593:1–19. doi: 10.1016/j.tecto.2013.02.037 CrossRefGoogle Scholar
  140. Sun S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345. doi: 10.1144/gsl.sp.1989.042.01.19 CrossRefGoogle Scholar
  141. Talavera C, Montero P, Bea F et al (2013) U–Pb zircon geochronology of the Cambro-Ordovician metagranites and metavolcanic rocks of central and NW Iberia. Int J Earth Sci 102:1–23. doi: 10.1007/s00531-012-0788-x CrossRefGoogle Scholar
  142. Timmermann H, Dörr W, Krenn E et al (2006) Conventional and in situ geochronology of the Teplá Crystalline unit, Bohemian Massif: implications for the processes involving monazite formation. Int J Earth Sci 95:629–647. doi: 10.1007/s00531-005-0060-8 CrossRefGoogle Scholar
  143. Trombetta A, Cirrincione R, Corfu F et al (2004) Mid-Ordovician U–Pb ages of porphyroids in the Peloritan mountains (NE Sicily): palaeogeographical implications for the evolution of the Alboran microplate. J Geol Soc 161:265–276. doi: 10.1144/0016-764903-068 CrossRefGoogle Scholar
  144. Valladares MI, Barba P, Ugidos JM et al (2000) Upper Neoproterozoic-Lower Cambrian sedimentary successions in the Central Iberian Zone (Spain): sequence stratigraphy, petrology and chemostratigraphy. Implications for other European zones. Int J Earth Sci 89:2–20. doi: 10.1007/s005310050314 CrossRefGoogle Scholar
  145. Valladares MI, Barba P, Ugidos JM et al (2009) El límite Cámbrico-Ordovícico en el sinclinal de la Peña de Francia: evidencias litológicas, sedimentológicas y geoquímicas. Geogaceta 47:49–52Google Scholar
  146. Valverde-Vaquero P, Dunning GR (2000) New U–Pb ages for Early Ordovician magmatism in Central Spain. J Geol Soc 157:15–26. doi: 10.1144/jgs.157.1.15 CrossRefGoogle Scholar
  147. Valverde-Vaquero P, Marcos A, Farias P et al (2005) U–Pb dating of Ordovician felsic volcanics in the Schistose domain of the Galicia-Trás-os-Montes Zone near Cabo Ortegal (NW Spain). Geol Acta 3:27–37. doi: 10.1344/105.000001412 Google Scholar
  148. Valverde-Vaquero P, Farias P, Marcos A et al (2007) U–Pb dating of Siluro-Ordovician volcanism in the Verín Synform (Ourense; Schistose Domain, Galicia-Trás-os-Montes Zone). Geogaceta 41:247–250Google Scholar
  149. Vermeesch P (2012) On the visualisation of detrital age distributions. Chem Geol 312–313:190–194. doi: 10.1016/j.chemgeo.2012.04.021 CrossRefGoogle Scholar
  150. von Raumer JF, Stampfli GM (2008) The birth of the Rheic Ocean—Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics 461:9–20. doi: 10.1016/j.tecto.2008.04.012 CrossRefGoogle Scholar
  151. von Raumer JF, Stampfli GM, Bussy F (2003) Gondwana-derived microcontinents—the constituents of the Variscan and Alpine collisional orogens. Tectonophysics 365:7–22. doi: 10.1016/S0040-1951(03)00015-5 CrossRefGoogle Scholar
  152. Walter MJ (1998) Melting of garnet Peridotite and the origin of Komatiite and depleted lithosphere. J Petrol 39:29–60. doi: 10.1093/petroj/39.1.29 CrossRefGoogle Scholar
  153. White R, McKenzie D (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geophys Res Solid Earth 94:7685–7729. doi: 10.1029/JB094iB06p07685 CrossRefGoogle Scholar
  154. Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343. doi: 10.1016/0009-2541(77)90057-2 CrossRefGoogle Scholar
  155. Xia L, Xia Z, Xu X et al (2013) Late Paleoproterozoic rift-related magmatic rocks in the North China Craton: geological records of rifting in the Columbia supercontinent. Earth Sci Rev 125:69–86. doi: 10.1016/j.earscirev.2013.06.004 CrossRefGoogle Scholar
  156. Zeck HP, Whitehouse MJ, Ugidos JM (2007) 496 ± 3 Ma zircon ion microprobe age for pre-Hercynian granite, Central Iberian Zone, NE Portugal (earlier claimed 618 ± 9 Ma). Geol Mag 144:21–31. doi: 10.1017/S0016756806002718 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Instituto Dom LuizFaculdade de Ciências da Universidade de Lisboa, Campo GrandeLisbonPortugal
  2. 2.Departamento de Geociências, Instituto Dom LuizECT, Universidade de ÉvoraÉvoraPortugal
  3. 3.Department of Geological SciencesUniversity of FloridaGainesvilleUSA
  4. 4.Instituto Geológico y Minero de EspañaUnidad de SalamancaSalamancaSpain

Personalised recommendations