International Journal of Earth Sciences

, Volume 105, Issue 4, pp 1273–1285 | Cite as

Changes in monsoon-driven upwelling in the South China Sea over glacial Terminations I and II: a multi-proxy record

  • Henrik Sadatzki
  • Michael Sarnthein
  • Nils Andersen
Original Paper


Upwelling intensity in the South China Sea has changed over glacial–interglacial cycles in response to orbital-scale changes in the East Asian Monsoon. Here, we evaluate new multi-proxy records of two sediment cores from the north-eastern South China Sea to uncover millennial-scale changes in winter monsoon-driven upwelling over glacial Terminations I and II. On the basis of U/Th-based speleothem chronology, we compare these changes with sediment records of summer monsoon-driven upwelling east of South Vietnam. Ocean upwelling is traced by reduced (UK’37-based) temperature and increased nutrient and productivity estimates of sea surface waters (δ13C on planktic foraminifera, accumulation rates of alkenones, chlorins, and total organic carbon). Accordingly, strong winter upwelling occurred north-west of Luzon (Philippines) during late Marine Isotope Stage 6.2, Heinrich (HS) and Greenland stadials (GS) HS-11, GS-26, GS-25, HS-1, and the Younger Dryas. During these stadials, summer upwelling decreased off South Vietnam and sea surface salinity reached a maximum suggesting a drop in monsoon rains, concurrent with speleothem records of aridity in China. In harmony with a stadial-to-interstadial see-saw pattern, winter upwelling off Luzon in turn was weak during interstadials, in particular those of glacial Terminations I and II, when summer upwelling culminated east of South Vietnam. Most likely, this upwelling terminated widespread deep-water stratification, coeval with the deglacial rise in atmospheric CO2. Yet, a synchronous maximum in precipitation fostered estuarine overturning circulation in the South China Sea, in particular as long as the Borneo Strait was closed when sea level dropped below −40 m.


Coastal upwelling East Asian Monsoon South China Sea Glacial Terminations I and II Stable isotopes/planktic δ13Palaeoproductivity 



We are grateful to Thomas Blanz and Silvia Koch for alkenone measurements, Dirk Nürnberg and Jutta Heinze for assistance in chlorin measurements, and Baoqi Huang for providing her sea surface temperature data based on planktic foraminifera census counts in core GIK 17928-3. Moreover, we thank David Naafs and an unknown reviewer for their valuable comments that helped to improve our manuscript.

Supplementary material

531_2015_1227_MOESM1_ESM.doc (3.5 mb)
Supplementary material 1 (DOC 3592 kb)


  1. Adkins JF (2013) The role of deep ocean circulation in setting glacial climates. Paleoceanography 28:539–561. doi: 10.1002/palo.20046 CrossRefGoogle Scholar
  2. Bemis BE, Spero HJ, Bijma J, Lea DW (1998) Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations. Paleoceanography 13(2):150–160CrossRefGoogle Scholar
  3. Berger A, Loutre MF (1999) Parameters of the Earths orbit for the last 5 Million years in 1 kyr resolution. doi:10.1594/PANGAEAGoogle Scholar
  4. Broecker WS (1982) Glacial to interglacial changes in ocean chemistry. Prog Oceanogr 11:151–197CrossRefGoogle Scholar
  5. Broecker W, Barker S (2007) A 190‰ drop in atmosphere’s Δ14C during the “Mystery Interval” (17.5 to 14.5 kyr). Earth Planet Sci Lett 256:90–99CrossRefGoogle Scholar
  6. Bronk Ramsey C, Staff RA, Bryant CL, Brock F, Kitagawa H, van der Plicht J, Schlolaut G, Marshall MH, Brauer A, Lamb HF, Payne RL, Tarasov PE, Haraguchi T, Gotanda K, Yonenobu H, Yokoyama Y, Tada R, Nakagawa T (2012) A complete terrestrial radiocarbon record for 11.2 to 52.8 kyr B.P. Science 338:370–374CrossRefGoogle Scholar
  7. Bühring C, Sarnthein M, Erlenkeuser H (2004) Toward a high-resolution isotope stratigraphy of the last 1.1 million years: Site 1144, South China Sea. In: Prell WL, Wang P, Blum P, Rea DK, Clemens SC (eds) Proc ODP Sci Results 184:1–29 (online)Google Scholar
  8. Caballero-Gill RP, Clemens SC, Prell WL (2012) Direct correlation of Chinese speleothem δ18O and South China Sea planktonic δ18O: transferring a speleothem chronology to the benthic marine chronology. Paleoceanography 27(PA2203):1–10. doi: 10.1029/2011PA002268 Google Scholar
  9. Chao S-Y, Shaw P-T, Wu SY (1996) Deep water ventilation in the South China Sea. Deep Sea Res I 43(4):445–466CrossRefGoogle Scholar
  10. Chen Y-LL, Chen H-Y, Chung C-W (2007) Seasonal variability of coccolithophore abundance and assemblage in the northern South China Sea. Deep Sea Res II 54:1617–1633CrossRefGoogle Scholar
  11. Cheng H, Edwards RL, Broecker WS, Denton GH, Kong X, Wang Y, Zhang R, Wang X (2009) Ice age terminations. Science 326:248–252. doi: 10.1126/science.1177840 CrossRefGoogle Scholar
  12. Clemens SC (2005) Millennial-scale climate spectrum resolved and linked to centennial-scale solar cycles. Quatern Sci Rev 24:521–531CrossRefGoogle Scholar
  13. Drysdale RN, Hellstrom JC, Zanchetta G, Fallick AE, Sánchez Goñi MF, Couchoud I, McDonald J, Maas R, Lohmann G, Isola I (2009) Evidence for obliquity forcing of glacial Termination II. Science 325:1527–1531. doi: 10.1126/science.1170371 CrossRefGoogle Scholar
  14. Dykoski CA, Edwards RL, Cheng H, Yuan D, Cai Y, Zhang M, Lin Y, Qing J, An Z, Revenaugh J (2005) A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet Sci Lett 233:71–86CrossRefGoogle Scholar
  15. Etourneau J, Schneider R, Blanz T, Martinez P (2010) Intensification of the Walker and Hadley atmospheric circulations during the Pliocene-Pleistocene climate transition. Earth Planet Sci Lett 297:103–110CrossRefGoogle Scholar
  16. Farris A, Wimbush M (1996) Wind-induced Kuroshio intrusion into the South China Sea. J Oceanogr 52:771–784CrossRefGoogle Scholar
  17. Harris PG, Maxwell JR (1995) A novel method for the rapid determination of chlorin concentrations at high stratigraphic resolution in marine sediments. Org Geochem 23(9):853–856CrossRefGoogle Scholar
  18. Heilig S (1996) Paläo-Ozeanographie vor Vietnam im Wandel von Glazial zu Interglazial. Unveröffentl. Diplomarbeit (Teil I: Laborarbeit), Mathematisch-Naturwissenschaftliche Fakultät der Christian-Albrechts-Universität zu Kiel, 43 ppGoogle Scholar
  19. Hemleben C, Spindler M, Anderson OR (1989) Modern planktonic foraminifera. Springer, New York, p 969CrossRefGoogle Scholar
  20. Huang B, Jian Z, Cheng X, Wang PX (2001) Late Quaternary upper-water column structures in upwelling areas of the South China Sea. Chin Sci Bull 46(20):1741–1744CrossRefGoogle Scholar
  21. Huang B, Jian Z, Cheng X, Wang PX (2002) Foraminiferal responses to upwelling variations in the South China Sea over the last 220000 years. Mar Micropaleontol 47:1–15CrossRefGoogle Scholar
  22. Jian Z, Li B, Pflaumann U, Wang PX (1996) Late Holocene cooling event in the western Pacific. Sci China D 39(5):543–550Google Scholar
  23. Jian Z, Huang B, Kuhnt W, Lin H-L (2001) Late Quaternary upwelling intensity and East Asian Monsoon forcing in the South China Sea. Quatern Res 55:363–370. doi: 10.1006/qres.2001.2231 CrossRefGoogle Scholar
  24. Kirch A (1997) Zur Paläoozeanographie westlich von Luzon (Philippinen). Unveröffentl. Diplomarbeit (2. Teil Laborarbeit), Mathematisch-Naturwissenschaftliche Fakultät der Christian-Albrechts-Universität zu Kiel, 24 ppGoogle Scholar
  25. Li L, Wang H, Li JR, Zhao MX, Wang PX (2009) Changes in sea surface temperature in western South China Sea over the past 450 ka. Chin Sci Bull 54:3335–3343CrossRefGoogle Scholar
  26. Liu Z, Wen X, Brady EC, Otto-Bliesner B, Yu G, Lu H, Cheng H, Wang Y, Zheng W, Ding Y, Edwards RL, Cheng J, Liu W, Yang H (2014) Chinese cave records and the East Asian Summer Monsoon. Quatern Sci Rev 83:115–128CrossRefGoogle Scholar
  27. Martrat B, Grimalt JO, Shackleton NJ, de Abreu L, Hutterli MA, Stocker TF (2007) Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin. Science 317:502–505. doi: 10.1126/science.1177159 CrossRefGoogle Scholar
  28. McManus JF, Oppo DW, Cullen JL (1999) A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science 283:971–975CrossRefGoogle Scholar
  29. Metzger EJ, Hurlburt HE (1996) Coupled dynamics of the South China Sea, the Sulu Sea, and the Pacific Ocean. J Geophys Res 101(C5):12331–12352CrossRefGoogle Scholar
  30. Monnin E, Indermühle A, Dällenbach A, Flückiger J, Stauffer B, Stocker TF, Raynaud D, Barnola J-M (2001) Atmospheric CO2 concentrations over the last glacial Termination. Science 291:112–114. doi: 10.1126/science.291.5501.112 CrossRefGoogle Scholar
  31. Parrenin F, Masson-Delmotte V, Köhler P, Raynaud D, Paillard D, Schwander J, Barbante C, Landais A, Wegner A, Jouzel J (2013) Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming. Science 339:1060–1063CrossRefGoogle Scholar
  32. Pedro JB, Rasmussen SO, van Ommen TD (2012) Tightened constraints on the time-lag between Antarctic temperature and CO2 during the last deglaciation. Clim Past 8:1213–1221. doi: 10.5194/cp-8-1213-2012 CrossRefGoogle Scholar
  33. Peeters FJC, Brummer G-JA, Ganssen G (2002) The effect of upwelling on the distribution and stable isotope composition of Globigerina bulloides and Globigerinoides ruber (plankic foraminifera) in modern surface waters of the NW Arabian Sea. Global Planet Change 34:269–291CrossRefGoogle Scholar
  34. Pelejero C, Grimalt JO (1997) The correlation between the Uk37 index and sea surface temperatures in the warm boundary: the South China Sea. Geochim Cosmochim Acta 61(22):4789–4797CrossRefGoogle Scholar
  35. Pflaumann U, Jian Z (1999) Modern distribution patterns of planktonic foraminifera in the South China Sea and West Pacific: a new transfer technique to estimate regional sea surface temperature. Mar Geol 156:41–83CrossRefGoogle Scholar
  36. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Haydas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) INTCAL13 and MARINE13 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 55:1869–1887CrossRefGoogle Scholar
  37. Sarnthein M, Pflaumann U, Wang PX et al (eds) (1994) Preliminary report on SONNE-95 cruise “monitor monsoon” to the South China Sea. Reports, Geol Paläont Inst Univ Kiel 68:1–205Google Scholar
  38. Sarnthein M, Schneider B, Grootes PM (2013a) Peak glacial 14C ventilation ages suggest major draw-down of carbon into the abyssal ocean. Clim Past 9:2595–2614CrossRefGoogle Scholar
  39. Sarnthein M, Sadatzki H, Jian Z (2013b) Stratigraphic gaps at northern South China Sea margin reflect changes in Pacific deepwater inflow at glacial Termination II. Sci China Earth Sci 56:1748–1758CrossRefGoogle Scholar
  40. Schlitzer R (2012) Ocean data view.
  41. Schmitt J, Schneider R, Elsig J, Leuenberger D, Lourantou A, Chappellaz J, Köhler P, Joos F, Stocker TF, Leuenberger M, Fischer H (2012) Carbon isotope constraints on the deglacial CO2 rise from ice cores. Science 23:711–714. doi: 10.1126/science.1217161 CrossRefGoogle Scholar
  42. Schneider R, Schmitt J, Köhler P, Joos F, Fischer H (2013) A reconstruction of atmospheric carbon dioxide and its stable carbon isotopic composition from the penultimate glacial maximum to the last glacial inception. Clim Past 9:2507–2523. doi: 10.5194/cp-9-2507-2013 CrossRefGoogle Scholar
  43. Schulz H, von Rad U, Erlenkeuser H (1998) Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature 393:54–57Google Scholar
  44. Shaw P-T, Chao S-Y (1994) Surface circulation in the South China Sea. Deep Sea Res I 41:1663–1683CrossRefGoogle Scholar
  45. Shaw P-T, Chao S-Y, Liu K-K, Pai S-C, Liu C-T (1996) Winter upwelling off Luzon in the northeastern South China Sea. J Geophys Res 101(C7):16435–16448CrossRefGoogle Scholar
  46. Sigman DM, Boyle EA (2000) Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407:859–869CrossRefGoogle Scholar
  47. Sirocko F, Garbe-Schönberg D, McIntyre A, Molfino B (1996) Teleconnections between the subtropical monsoons and high-latitude climates during the last deglaciation. Science 272:526–529CrossRefGoogle Scholar
  48. Skinner LC, Fallon S, Waelbroeck C, Michel E, Barker S (2010) Ventilation of the Deep Southern Ocean and deglacial CO2 rise. Science 328:1147–1151CrossRefGoogle Scholar
  49. Spero HJ, Lea DW (2002) The cause of carbon isotope minimum events on glacial Terminations. Science 296:522–525CrossRefGoogle Scholar
  50. Steffensen JP, Andersen KK, Bigler M, Clausen HB, Dahl-Jensen D, Fischer H, Goto-Azuma K, Hansson M, Johnsen SJ, Jouzel J, Masson-Delmotte V, Popp T, Rasmussen SO, Röthlisberger R, Ruth U, Stauffer B, Siggaard-Andersen M-L, Sveinbjörnsdóttir ÁE, Svensson A, White JWC (2008) High-resolution greenland ice core data show abrupt climate change happens in few years. Science 321:680–684CrossRefGoogle Scholar
  51. Steinke S, Glatz C, Mohtadi M, Groeneveld J, Li Q, Jian Z (2011) Past dynamics of the East Asian monsoon: no inverse behavior between the summer and winter monsoon during the Holocene. Global Planet Change 78:170–177CrossRefGoogle Scholar
  52. Thompson PR, Bé AWH, Duplessy J-C, Shackleton NJ (1979) Disappearance of pink-pigmented Globigerinoides ruber at 120,000 yr B.P. in the Indian and Pacific Oceans. Nature 280:554–558CrossRefGoogle Scholar
  53. Tjallingii R, Stattegger K, Wetzel A, Van Phach P (2010) Infilling and flooding of the Mekong River incised valley during deglacial sea-level rise. Quatern Sci Rev 29:1432–1444CrossRefGoogle Scholar
  54. Tu X, Zheng F, Wang J, Cai H, Wang P, Bühring C, Sarnthein M (2001) An abrupt cooling event early in the last interglacial in the northern South China Sea. Sci China D 44(10):865–870CrossRefGoogle Scholar
  55. Waelbroeck C, Labeyrie L, Michel E, Duplessy JC, McManus JF, Lambeck K, Balbon E, Labracherie M (2002) Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quatern Sci Rev 21:295–305CrossRefGoogle Scholar
  56. Wang L, Sarnthein M, Duplessy J-C, Erlenkeuser H, Jung S, Pflaumann U (1995) Paleo sea surface salinities in the low latitude Atlantic: the δ18O record of Globigerinoides ruber (white). Paleoceanography 10:749–761CrossRefGoogle Scholar
  57. Wang L, Sarnthein M, Erlenkeuser H, Grimalt J, Grootes P, Heilig S, Ivanova E, Kienast M, Pelejero C, Pflaumann U (1999) East Asian monsoon climate during the late Pleistocene: high-resolution sediment records from the South China Sea. Mar Geol 156:245–284CrossRefGoogle Scholar
  58. Wang YJ, Cheng H, Edwards RL, An ZS, Wu JY, Shen C-C, Dorale JA (2001) A high-resolution absolute-dated late pleistocene monsoon record from Hulu Cave, China. Science 294:2345–2348CrossRefGoogle Scholar
  59. Wang P, Clemens S, Beaufort L, Braconnot P, Ganssen G, Jian Z, Kershaw P, Sarnthein M (2005a) Evolution and variability of the Asian monsoon system: state of the art and outstanding issues. Quatern Sci Rev 24:595–629CrossRefGoogle Scholar
  60. Wang Y, Cheng H, Edwards RL, He Y, Kong X, An Z, Wu J, Kelly MJ, Dykoski CA, Li X (2005b) The Holocene Asian Monsoon: links to solar changes and North Atlantic climate. Science 308:854–857CrossRefGoogle Scholar
  61. Wang Y, Cheng H, Edwards RL, Kong X, Shao X, Chen S, Wu J, Jiang X, Wang X, An Z (2008) Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451:1090–1093CrossRefGoogle Scholar
  62. Wang P, Li Q, Tian J (2014) Pleistocene Paleoceanography of the South China Sea: progress over the past 20 years. Mar Geol 352:381–396CrossRefGoogle Scholar
  63. Wiesner MG, Zheng L, Wong HK et al (1996) Fluxes of particulate matter in the South China Sea. In: Ittekkot V, Schöfer P, Honjo S, Depetris PJ (eds) Particle flux in the Ocean. Wiley, London, pp 293–312Google Scholar
  64. Yu P-S, Mii H-S, Murayama M, Chen M-T (2008) Late quaternary planktic foraminifer fauna and monsoon upwelling records from the Western South China Sea, near the Vietnam Margin (IMAGES MD012394). Terr Atmos Ocean Sci 19(4):347–362CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Henrik Sadatzki
    • 1
    • 4
  • Michael Sarnthein
    • 1
    • 2
  • Nils Andersen
    • 3
  1. 1.Institute for GeosciencesUniversity of KielKielGermany
  2. 2.Institute for Geology and PaleontologyUniversity of InnsbruckInnsbruckAustria
  3. 3.Leibniz Laboratory for Radiometric Dating and Isotope ResearchUniversity of KielKielGermany
  4. 4.Department of Earth ScienceUniversity of BergenBergenNorway

Personalised recommendations