Advertisement

International Journal of Earth Sciences

, Volume 105, Issue 2, pp 557–579 | Cite as

Monazite U–Th–Pb EPMA and zircon U–Pb SIMS chronological constraints on the tectonic, metamorphic, and thermal events in the inner part of the Variscan orogen, example from the Sioule series, French Massif Central

  • Damien Do Couto
  • Michel FaureEmail author
  • Romain Augier
  • Alain Cocherie
  • Philippe Rossi
  • Xian-Hua Li
  • Wei Lin
Original Paper

Abstract

In the northern Variscan French Massif Central, the Sioule metamorphic series exposes from top to bottom the tectonic superposition of the Upper Gneiss Unit (UGU), Lower Gneiss Unit (LGU), and Para-autochthonous Unit (PAU). The nappe stacking developed throughout two prograde syn-metamorphic events: D1 is a top-to-the-SW shearing coeval with a probable Devonian migmatization and D2 is a top-to-the-NW shearing event. Both events were completed before the unconformable deposition of the undeformed and unmetamorphosed “Tufs anthracifères” formation, dated at ca 330 Ma (Late Visean). Furthermore, the UGU experienced a high-pressure metamorphism ascribed to a D0 event during which eclogite or granulite crystallized in several parts of the UGU. Monazite U–Th–Pb and zircon U–Pb SIMS datings were carried out in order to constrain the ages of these D0, D1, and D2 tectono-metamorphic events. These new geochronological results are placed in a P–T-t diagram constructed for the UGU, LGU, and PAU. Monazite sampled in UGU, LGU, and PAU rocks yields similar 365–350 Ma ages consistent with the D2 event dated in other places of the French Massif Central. A zoned monazite grain from a granulitic paragneiss yields 416 ± 15 and 362 ± 14 Ma ages interpreted as those of the D0 and D2 events, respectively. Zircon from the same granulitic paragneiss yields SIMS ages at 343 ± 2 and 328 ± 2 Ma that are interpreted as recrystallization processes associated with post-thickening thermal events, possibly recording the onset of orogenic collapse of the Northern Massif Central. It is worth to note that neither monazite nor zircon recorded the D1 event.

Keywords

Variscan orogeny Monazite chemistry Monazite U–Th–Pb chemical dating Zircon SIMS geochronology Granulite facies Monazite chemistry French Massif Central 

Notes

Acknowledgments

Field and analytical expenses for this study have been supported by the French national program “Carte géologique de la France au 1/50 000” led in BRGM and by a National Natural Science Foundation of China (NNSFC) Grant 41273070. Ida di Carlo and Olivier Rouer are acknowledged for their help for the acquisition of SEM and EPMA analyses. Jean-Marc Lardeaux and Emilien Oliot are thanked for their constructive reviews.

References

  1. Bé Mézème E, Cocherie A, Faure M, Legendre O, Rossi P (2006) Electron microprobe monazite geochronology: a tool for evaluating magmatic age domains. Examples from the Variscan French Massif Central. Lithos 87:276–288CrossRefGoogle Scholar
  2. Bellot J-P, Roig J-Y (2007) Episodic exhumation of HP rocks inferred from structural data and P-T paths from the southwestern part Massif Central (Variscan belt, France). J Struct Geol 29:1538–1557CrossRefGoogle Scholar
  3. Berger J, Féménias O, Ohnenstetter D, Bruguier O, Plissart G, Mercier JC, Demaiffe D (2010) New occurrence of UHP eclogites in Limousin (French Massif Central): age, tectonic setting and fluid–rock interactions. Lithos 118:365–382CrossRefGoogle Scholar
  4. Berthier F, Duthou JL, Roques M (1979) Datation géochronologique Rb/Sr sur roches totales du granite de Guéret (Massif central). Âge fini-Dévonien de mise en place de l’un de ses faciès types. Bull Bur Rech Geol Min I:31–42Google Scholar
  5. Black LP, Kamo SL, Allen CM, Davis D, Aleinikoff JN, Valley JW, Mundil R, Campbell IH, Korsch RJ, Williams IS, Foudoulis C (2004) Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem Geol 205:115–140CrossRefGoogle Scholar
  6. Boutin R, Montigny R (1993) Datation 39Ar/40Ar des amphibolites du complexe leptyno-amphibolique du plateau d’Aigurande: collision varisque à 390 Ma dans le Nord-Ouest du Massif central français. C R Acad Sci Paris Ser II 316:1391–1398Google Scholar
  7. Bruguier O, Becq-Giraudon JF, Bosch D, Lancelot JR (1998) Late Visean (Upper Missisipian) hidden basins in the internal zones of the Variscan Belt: U–Pb zircon evidence from the French Massif Central. Geology 26:627–630CrossRefGoogle Scholar
  8. Cabella R, Lucchetti G, Marescotti P (2001) Authigenic monazite and xenotime from pelitic metachert in pumpellyite-actinolite facies conditions, Sestri-Voltaggio zone, Central Liguria, Italy. Can Mineral 39:717–727CrossRefGoogle Scholar
  9. Caron C (1994) Les minéralisations Pb–Zn associées au Paléozoïque inférieur d’Europe méridionale. Traçage isotopique Pb–Pb des gîtes de l’Iglesiente (SW Sardaigne) et des Cévennes et évolution de socle encaissant par la géochronologie U–Pb, 40Ar–39Ar et KAr Thèse, Univ. Montpellier, 288 ppGoogle Scholar
  10. Cartannaz C, Rolin P, Cocherie A, Marquer D, Legendre O, Fanning CM, Rossi P (2007) Characterization of wrench tectonics from dating of syn- to post-magmatism in the northwestern French Massif Central. Int J Earth Sci 96:271–287CrossRefGoogle Scholar
  11. Cheilletz A, Archibald DA, Cuney M, Charoy B (1992) Ages 40Ar/39Ar du leucogranite à topaze-lépidolithe de Beauvoir et des pegmatites sodomithiques de Chédeville (Nord du Massif Central, France). C R Acad Sci Paris 315:329–336Google Scholar
  12. Cocherie A, Albarède F (2001) An improved U–Th–Pb age calculation for electron microprobe dating of monazite. Geochim Cosmochim Acta 65:4509–4522CrossRefGoogle Scholar
  13. Cocherie A, Legendre O (2007) Potential minerals for determining U–Th–Pb chemical age using electron microprobe. Lithos 93:288–309CrossRefGoogle Scholar
  14. Cocherie A, Legendre O, Peucat JJ, Kouamelan AN (1998) Geochronology of polygenetic monazites constained by in situ electron microprobe Th–U–total Pb determination: implications for lead behaviour in monazite. Geochim Cosmochim Acta 62:2475–2497CrossRefGoogle Scholar
  15. Cocherie A, Bé Mézème E, Legendre O, Fanning M, Faure M, Rossi P (2005) Electron microprobe dating as a tool for understanding closure of U–Th–Pb system in monazite from migmatite. Am Mineral 90:607–618CrossRefGoogle Scholar
  16. Cocks LRM (2000) The Early Paleozoic geography of Europe. J Geol Soc Lond 157:1–10CrossRefGoogle Scholar
  17. Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. In: Hanchar JM, Hoskin PWO (eds) Zircon. Reviews in mineralogy and geochemistry, vol 53. pp 469–500Google Scholar
  18. Costa S (1989) Age radiométrique 40Ar/39Ar du métamorphisme des séries du Lot et du charriage du groupe leptyno-amphibolique de Marvejols (Massif central français). C R Acad Sci Paris Ser II 309:561–567Google Scholar
  19. Costa S, Maluski S (1988) Datations par la méthode 40Ar/39Ar de matériel magmatique et métamorphique paléozoïque provenant du forage de Couy-Sancerre (Cher, France) Programme GPF. C R Acad Sci Paris Ser II 306:351–356Google Scholar
  20. Costa S, Maluski S, Lardeaux J-M (1993) 40Ar/39Ar chronology of Variscan tectono-metamorphic events in an exhumed crustal nappe: the Monts du Lyonnais complex (Massif Central, France). Chem Geol 105:339–359CrossRefGoogle Scholar
  21. Duguet M, Le Breton N, Faure M (2006) P–T paths reconstruction of a collisional event: the example of the Thiviers–Payzac Unit in the Variscan French Massif Central. Lithos 98:210–232CrossRefGoogle Scholar
  22. Duthou JL, Pin C (1987) Etude isotopique Rb–Sr de l’apex granitique d’Echassières. Géol Fr 2:63–67Google Scholar
  23. Duthou JL, Cantagrel JM, Didier J, Vialette Y (1984) Paleozoic granitoids from the French Massif Central: age and origin studied by 87Rb/87Sr system. Phys Earth Planet Int 35:131–144CrossRefGoogle Scholar
  24. Duthou JL, Chenevoy M, Gay M (1994) Age Rb/Sr Dévonien moyen des migmatittes à cordiérite du Lyonnais (Massif central français). C R Acad Sci 319:791–796Google Scholar
  25. Faure M (1995) Late orogenic Carboniferous extensions in the Variscan French Massif Central. Tectonics 14:132–153CrossRefGoogle Scholar
  26. Faure M, Grolier J, Pons J (1993) Extensional ductile tectonics of the Sioule metamorphic series (Variscan French Massif Central). Geol Rundsch 82:461–474CrossRefGoogle Scholar
  27. Faure M, Leloix C, Roig JY (1997) L’évolution polycyclique de la chaîne hercynienne. Bull Soc Geol Fr 168:695–705Google Scholar
  28. Faure M, Monié P, Maluski H, Pin C, Leloix C (2002) Late Visean thermal event in the northern part of the French Massif Central. New 40Ar/39Ar and Rb–Sr isotopic constraints on the Hercynian syn-orogenic extension. Int J Earth Sci 91:53–75CrossRefGoogle Scholar
  29. Faure M, Bé Mézème E, Duguet M, Cartier C, Talbot J-Y (2005) Paleozoic tectonic evolution of Medio-Europa from the example of the French Massif Central and Massif Armoricain. J Virtual Explor. Electronic edition ISSN 1441-8142, 19 paper 5Google Scholar
  30. Faure M, Bé Mézème E, Cocherie A, Rossi P, Chemenda A, Boutelier D (2008) Devonian geodynamic evolution of the Variscan Belt, insights from the French Massif Central and Massif Armoricain. Tectonics. doi: 10.1029/2007TC002115 Google Scholar
  31. Faure M, Lardeaux JM, Ledru P (2009) A review of the pre-Permian geology of the French Massif Central. C R Géosci Themat Issue Variscan Orogeny 341:202–213. doi: 10.1016/j.crte.2008.12.001 CrossRefGoogle Scholar
  32. Faure M, Cocherie A, Bé-Mézème E, Charles N, Rossi P (2010) Middle Carboniferous crustal melting in the Variscan Belt: new insights from U–Th–Pbtot. monazite and U–Pb zircon ages of the Montagne Noire Axial Zone (southern French Massif Central). Gondwana Res. doi: 10.1016/j.gr.2010.02.005 Google Scholar
  33. Feybesse JL, Teygey M (1987) Evolution tectonométamorphique dévonienne de la série de la Sioule. Géol Fr 2:33–41Google Scholar
  34. Franz G, Andrehs G, Rhede D (1996) Crystal chemistry of monazite and xenotime from Saxothuringian-Moldanubian metapelites, NE Bavaria, Germany. Eur J Mineral 8:1097–1118CrossRefGoogle Scholar
  35. Grolier J (1971) Contribution à l’étude géologique des séries crystallophylliennes inverses du massif Central français: la série de la Sioule (Puy de Dôme, Allier). Mem BRGM 64, 163 ppGoogle Scholar
  36. Janots E, Negro F, Brunet F, Goffé B, Engi M, Bouybaouène ML (2006) Evolution of REE mineralogy in HP-LT metapelites of the Sebtides complex, Rif, Morocco: monazite stability and geochronology. Lithos 87:214–234CrossRefGoogle Scholar
  37. Joly A, Chen Y, Faure M, Martelet G (2007) A multidisciplinary study of a syntectonic pluton close to a major lithospheric-scale fault: relationships between the Montmarault granitic massif and the Sillon Houiller Fault in the Variscan French Massif Central. Part I: geochronology, mineral fabrics and tectonic implications. J Geophys Res 112:B10104. doi: 10.1029/2006JB004745 CrossRefGoogle Scholar
  38. Jourdan F, Mark D, Verrati C (2014) Advances in 40Ar/39Ar dating: from archaeology to planetary sciences—introduction. In: Jourdan F, Mark DF, Verati C (eds) Advances in 40Ar/39Ar dating: from archaeology to planetary sciences, vol 378. Geological Society, Special Publications, London, pp 1–8Google Scholar
  39. Kelly NM, Harley SL, Möller A (2012) Complexity in the behavior and recrystallization of monazite during high-T metamorphism and fluid infiltration. Chem Geol 322–323:192–208CrossRefGoogle Scholar
  40. Kohn JM, Malloy MA (2004) Formation of monazite via prograde metamorphic reactions among common silicates: implications for age determinations. Geochim Cosmochim Acta 68:101–113CrossRefGoogle Scholar
  41. Lardeaux JM, Ledru P, Daniel I, Duchène S (2001) The Variscan French Massif Central—a new addition to the ultra-high pressure metamorphic ‘‘club’’: exhumation processes and geodynamic consequences. Tectonophysics 323:143–167CrossRefGoogle Scholar
  42. Lardeaux JM, Schulmann K, Faure M, Janousek V, Lexa O, Skrzypek E, Edel J-B, Stipska P (2014) The Moldanubian Zone in French Massif Central, Vosges/Schwarzwald and Bohemian Massif revisited: differences and similarities. In: Schulmann K, Martínez Catalán JR, Lardeaux JM, Janousek V, Oggiano G (eds) The Variscan Orogeny: extent, timescale and the formation of the European crust, vol 405. Geological Society, Special Publications, London. doi: 10.1144/SP405.14 Google Scholar
  43. Ledru P, Lardeaux JM, Santallier D, Autran A, Quenardel JM, Floc’h JP, Lerouge G, Maillet N, Marchand J, Ploquin A (1989) Où sont les nappes dans le Massif central français? Bull Soc Géol Fr 8:605–618Google Scholar
  44. Leloix C, Faure M, Feybesse JL (1999) Hercynian polyphase tectonics in north-east French Massif Central : the closure of the Brévenne Devonian-Dinantian rift. Int J Earth Sci 88:409–421CrossRefGoogle Scholar
  45. Li XH, Liu Y, Li QL, Guo CH (2009) Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochem Geophys Geosyst 10:Q04010. doi: 10.1029/2009GC002400 Google Scholar
  46. Linthout K (2007) Tripartite division of the system 2REEPO4-CaTh(PO4)2–2ThSiO4, discreditation of Brabantite, and recognition of Cheraliteas the name for members dominated by CaTh(PO4)2. Can Mineral 45:503–508CrossRefGoogle Scholar
  47. Ludwig KR (2001) ISOPLOT/EX, version 2.49. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, Special Publications, 4Google Scholar
  48. Martins L, Farias Vlach SR, Janasi VdA (2009) Reaction microtextures of monazite: correlation between chemical and age domains in the Nazaré Paulista migmatite, SE Brazil. Chem Geol 261:271–285CrossRefGoogle Scholar
  49. Matte P (1986) Tectonic and plate tectonic model for the Variscan belt of Europe. Tectonophysics 126:329–374CrossRefGoogle Scholar
  50. Matte P (2001) The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate. Terra Nova 13:122–128CrossRefGoogle Scholar
  51. Mc Farlane CRM, Frost BR (2009) Constraints on the early metamorphic evolution of Broken Hill Australia, from in situ U–Pb dating and REE geochemistry of monazite. J Metamorph Geol 27:3–17CrossRefGoogle Scholar
  52. Melleton J, Faure M, Cocherie A (2009) Monazite U–Th/Pb chemical dating of the Early Carboniferous syn-kinematic MP/MT metamorphism in the Variscan French Massif Central. Bull Soc Géol Fr 180:283–292CrossRefGoogle Scholar
  53. Melleton J, Gloaguen E, Frei D, Lima A (2011) U–Pb dating of columbite-tantalite from Variscan rare-elements granites and pegmatites. Goldschm Conf Abstr Min Mag 75:1432Google Scholar
  54. Mercier L, Lardeaux JM, Davy P (1991) On the tectonic significance of the retromorphic P-T paths of the French Massif Central eclogites. Tectonics 10:131–140CrossRefGoogle Scholar
  55. Montel JM, Foret S, Veschambre M, Nicollet C, Provost A (1996) Electron microprobe dating of monazite. Chem Geol 131:37–53CrossRefGoogle Scholar
  56. Murphy B, Cousens B, Braid L, Strachan R, Dostal J, Keppie D, Nance D (2011) Highly depleted oceanic lithosphere in the Rheic Ocean: implications for Paleozoic plate reconstructions. Lithos 123:165–175CrossRefGoogle Scholar
  57. Nagy G, Draganits E, Demeny A, Panto G, Arkai P (2002) Genesis and transformations of monazite, florencite and rhabdophane during medium grade metamorphism: examples from the Sopron Hills, Eastern Alps. Chem Geol 191:25–46CrossRefGoogle Scholar
  58. Olliot E, Melleton J, Schneider J, Corsini M, Gardien V, Rolland Y (2015) Variscan crustal thickening in the Maures-Tanneron massif (South Variscan belt, France): new in situ monazite U–Th–Pb chemical dating of high-grade rocks. Bull Soc Géol Fr 186:145–169CrossRefGoogle Scholar
  59. Paquette JL, Monchoux P, Couturier JP (1995) Geochemical and isotopic study of a norite-eclogite transition in the EuropeanVariscan belt: implication for U–Pb zircon systematics in metabasic rocks. Geochim Cosmochim Acta 59:1611–1622CrossRefGoogle Scholar
  60. Parrish R (1990) U–Pb dating of monazite and its application to geological problems. Can J Earth Sci 27:1431–1450CrossRefGoogle Scholar
  61. Pin C (1990) Variscan oceans: ages, origins and geodynamic implications inferred from geochemical and radiometric data. Tectonophysics 177:215–227CrossRefGoogle Scholar
  62. Pin C (1991) Sr–Nd isotopic study of igneous and metasedimentary enclaves in some Hercynian granitoids from the Massif Central, France. In: Didier J, Barbarin B (eds) Developments in petrology 13 enclaves and granite petrology. Elsevier, Amsterdam, pp 333–343Google Scholar
  63. Pin C, Peucat J-J (1986) Ages des épisodes de métamorphisme paléozoïques dans le Massif central et le Massif armoricain. Bull Soc Géol Fr 8:461–469Google Scholar
  64. Pin C, Vielzeuf D (1988) Les granulites de haute pression d’Europe moyenne témoins d’une subduction éo-hercynienne. Implication sur l’origine des groupes leptyno-amphiboliques. Bull Soc Géol France 4:13–20Google Scholar
  65. Pommier A, Cocherie A, Legendre O (2002) EPMA dating user’s manual: age calculation from electron probe microanalyser measurements of U–Th–Pb. Bureau de Recherches Géologiques et Minières (BRGM), Internal Report 9Google Scholar
  66. Rasmussen B, Fletcher IR, Mc Naughton NJ (2001) Dating low-grade metamorphic events by SHRIMP U–Pb analysis of monazite in shales. Geology 29:963–966CrossRefGoogle Scholar
  67. Ravier J, Chenevoy M (1979) Présence de formations granulitiques jalonnant un linéament crustal dans la série crystallophyllienne de la Sioule (Massif central français). C R Acad Sci II 288:1703–1706Google Scholar
  68. Richard J (1938) Etude de la série cristallophyllienne renversée de la Sioule. Rev Sci Nat Ht Auvergne 4:1–37Google Scholar
  69. Roig JY, Faure M (2000) La tectonique cisaillante polyphasée du Sud-Limousin. Bull Soc Géol Fr 171:295–307CrossRefGoogle Scholar
  70. Santallier N (1981) Les roches basiques de la série métamorphique du Bas-Limousin, Massif Central (France). Thèse, Univ. Orléans, France, 350 ppGoogle Scholar
  71. Schulz B (2009) EMP-monazite age controls on P-T paths of garnet metapelites in the Variscan inverted metamorphic sequence of La Sioule, French Massif Central. Bull Soc Géol Fr 180:271–282CrossRefGoogle Scholar
  72. Schulz B, Triboulet C, Audren C, Feybesse JL (2001) P-T paths from metapelite garnet zonations, and crustal stacking in the Variscan inverted metamorphic sequence of La Sioule, French Massif Central. Z Dtsch Geol Ges 152:1–25Google Scholar
  73. Smith HA, Barreiro B (1990) Monazite U-Pb dating of staurolite grade metamorphism in pelitic schists. Contrib Miner Petrol 105:602–615CrossRefGoogle Scholar
  74. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221CrossRefGoogle Scholar
  75. Suzuki K, Adachi M (1991) Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragneiss in the South Kitakami terrane, Northeast Japan, revealed by the chemical Th–U–total Pb isochron ages of monazite, zircon and xenotime. Geochem J 25:357–376CrossRefGoogle Scholar
  76. Talbot JY, Faure M, Chen Y, Martelet G (2005) Pull apart emplacement of the Margeride granitic complex (French Massif Central). Implications for the Late evolution of the Variscan orogen. J Struct Geol 27:1610–1629CrossRefGoogle Scholar
  77. Wendt I, Carl C (1991) The statistical distribution of the mean squared weighted deviation. Chem Geol 86:275–285Google Scholar
  78. Wiedenbeck M, Allen P (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analysis. Geostand Newsl 19:1–23CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Damien Do Couto
    • 1
    • 2
  • Michel Faure
    • 1
    Email author
  • Romain Augier
    • 1
  • Alain Cocherie
    • 3
  • Philippe Rossi
    • 3
  • Xian-Hua Li
    • 4
  • Wei Lin
    • 4
  1. 1.CNRS/INSU, Institut des Sciences de la Terre d’Orléans (ISTO)Université d’OrléansOrléans Cedex 2France
  2. 2.Département des Sciences de la terreGenevaSwitzerland
  3. 3.BRGMOrléans Cedex 2France
  4. 4.State Key Laboratory of Lithospheric Evolution, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina

Personalised recommendations