International Journal of Earth Sciences

, Volume 104, Issue 5, pp 1459–1482 | Cite as

Tephra from andesitic Shiveluch volcano, Kamchatka, NW Pacific: chronology of explosive eruptions and geochemical fingerprinting of volcanic glass

  • Vera PonomarevaEmail author
  • Maxim Portnyagin
  • Maria Pevzner
  • Maarten Blaauw
  • Philip Kyle
  • Alexander Derkachev
Original Paper


The ~16-ka-long record of explosive eruptions from Shiveluch volcano (Kamchatka, NW Pacific) is refined using geochemical fingerprinting of tephra and radiocarbon ages. Volcanic glass from 77 prominent Holocene tephras and four Late Glacial tephra packages was analyzed by electron microprobe. Eruption ages were estimated using 113 radiocarbon dates for proximal tephra sequence. These radiocarbon dates were combined with 76 dates for regional Kamchatka marker tephra layers into a single Bayesian framework taking into account the stratigraphic ordering within and between the sites. As a result, we report ~1,700 high-quality glass analyses from Late Glacial–Holocene Shiveluch eruptions of known ages. These define the magmatic evolution of the volcano and provide a reference for correlations with distal fall deposits. Shiveluch tephras represent two major types of magmas, which have been feeding the volcano during the Late Glacial–Holocene time: Baidarny basaltic andesites and Young Shiveluch andesites. Baidarny tephras erupted mostly during the Late Glacial time (~16–12.8 ka BP) but persisted into the Holocene as subordinate admixture to the prevailing Young Shiveluch andesitic tephras (~12.7 ka BP–present). Baidarny basaltic andesite tephras have trachyandesite and trachydacite (SiO2 < 71.5 wt%) glasses. The Young Shiveluch andesite tephras have rhyolitic glasses (SiO2 > 71.5 wt%). Strongly calc-alkaline medium-K characteristics of Shiveluch volcanic glasses along with moderate Cl, CaO and low P2O5 contents permit reliable discrimination of Shiveluch tephras from the majority of other large Holocene tephras of Kamchatka. The Young Shiveluch glasses exhibit wave-like variations in SiO2 contents through time that may reflect alternating periods of high and low frequency/volume of magma supply to deep magma reservoirs beneath the volcano. The compositional variability of Shiveluch glass allows geochemical fingerprinting of individual Shiveluch tephra layers which along with age estimates facilitates their use as a dating tool in paleovolcanological, paleoseismological, paleoenvironmental and archeological studies. Electronic tables accompanying this work offer a tool for statistical correlation of unknown tephras with proximal Shiveluch units taking into account sectors of actual tephra dispersal, eruption size and expected age. Several examples illustrate the effectiveness of the new database. The data are used to assign a few previously enigmatic wide-spread tephras to particular Shiveluch eruptions. Our finding of Shiveluch tephras in sediment cores in the Bering Sea at a distance of ~600 km from the source permits re-assessment of the maximum dispersal distances for Shiveluch tephras and provides links between terrestrial and marine paleoenvironmental records.


Explosive eruptions Tephra Volcanic glass Chronology Kamchatka Shiveluch 



This study was supported by the Russian–German project KALMAR, funded by the German Ministry of Science and Education (BMBF), Russian Foundation for Basic Research (Grant #13-05-00346) and the Otto Schmidt Laboratory for Polar and Marine Research. The large part of the samples was collected thanks to the field grant from the National Geographic Society. The authors thank Mario Thöner (GEOMAR) for the help with the microprobe analysis, and Natalia Gorbach and Sergei Khubunaya for tephra samples from AD 2001 and 2005 eruptions. Philip Kyle acknowledges support from the Division of Polar Programs, NSF (USA). Thorough reviews of two anonymous reviewers are very much appreciated.

Supplementary material

531_2015_1156_MOESM1_ESM.pdf (438 kb)
Supplementary material 1 (PDF 438 kb)
531_2015_1156_MOESM2_ESM.doc (52 kb)
Supplementary material 2 (OXCAL 52 kb)
531_2015_1156_MOESM3_ESM.xlsx (19 kb)
Supplementary material 3 (XLSX 19 kb)
531_2015_1156_MOESM4_ESM.xlsx (2.8 mb)
Supplementary material 4 (XLSX 2848 kb)
531_2015_1156_MOESM5_ESM.xlsx (33 kb)
Supplementary material 5 (XLSX 32 kb)
531_2015_1156_MOESM6_ESM.xlsx (42 kb)
Supplementary material 6 (XLSX 41 kb)


  1. Armb JT (1995) CITZAF: a package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin films, and particles. Microbeam Anal 4:177–200Google Scholar
  2. Auer S, Bindeman I, Wallace P, Ponomareva V, Portnyagin M (2009) The origin of hydrous, high-δ18O voluminous volcanism: diverse oxygen isotope values and high magmatic water contents within the volcanic record of Klyuchevskoy volcano, Kamchatka, Russia. Contrib Mineral Petrol 157(2):209–230CrossRefGoogle Scholar
  3. Bazanova LI, Pevzner MM (2001) Khangar: one more active volcano in Kamchatka, transactions (Doklady) of the Russian Academy of Sciences. Earth Sci 377A:307–310Google Scholar
  4. Belousov AB (1995) The Shiveluch volcanic eruption of 12 November 1964—explosive eruption provoked by failure of the edifice. J Volcanol Geotherm Res 66:357–365CrossRefGoogle Scholar
  5. Blundy J, Cashman K (2001) Ascent-driven crystallisation of dacite magmas at Mount St Helens, 1980–1986. Contrib Mineral Petrol 140(6):631–650CrossRefGoogle Scholar
  6. Blundy J, Cashman K, Humphreys M (2006) Magma heating by decompression-driven crystallization beneath andesite volcanoes. Nature 443:76–80CrossRefGoogle Scholar
  7. Borchardt G, Aruscavage P, Millard HJ (1972) Correlation of the Bishop ash, a Pleistocene marker bed, using instrumental neutron activation analysis. J Sediment Petrol 42:301–306Google Scholar
  8. Botscharnikov RE, Almeev RR, Koepcke J, Holtz F (2008) Phase relations and liquid lines of descent in hydrous ferrobasalt—implications for the Skaergaard intrusion and Columbia River flood basalts. J Petrol 49(9):1687–1727CrossRefGoogle Scholar
  9. Bourgeois J, Pinegina TK, Ponomareva VV, Zaretskaia NE (2006) Holocene tsunamis in the southwestern Bering Sea, Russian Far East and their tectonic implications. Geol Soc Amer Bull 11(3/4):449–463. doi: 10.1130/B25726.1 CrossRefGoogle Scholar
  10. Braitseva OA, Melekestsev IV, Ponomareva VV (1983) Age divisions of the Holocene volcanic formations of the Tolbachik Valley. In: Fedotov SA (ed) The great Tolbachik fissure eruption: geological and geophysical data 1975–1976, Cambrige Earth Sci Series, pp 83–95Google Scholar
  11. Braitseva OA, Florenskii IV, Ponomareva VV, Litasova SN (1989) The history of the activity of Kikhpinych volcano in the Holocene. Volcanol Seismol 7(6):845–872Google Scholar
  12. Braitseva OA, Melekestsev IV, Bogoyavlenskaya GE, Maksimov AP (1991) Bezymianny volcano: eruptive history and activity dynamics. Volcanol Seismol 12(2):165–194Google Scholar
  13. Braitseva OA, Sulerzhitsky LD, Litasova SN, Melekestsev IV, Ponomareva VV (1993) Radiocarbon dating and tephrochronology in Kamchatka. Radiocarbon 35:463–476Google Scholar
  14. Braitseva OA, Melekestsev IV, Ponomareva VV, Sulerzhitsky LD (1995) The ages of calderas, large explosive craters and active volcanoes in the Kuril–Kamchatka region. Russia. Bull Volcanol 57(6):383–402Google Scholar
  15. Braitseva OA, Ponomareva VV, Sulerzhitsky LD, Melekestsev IV, Bailey J (1997) Holocene key-marker tephra layers in Kamchatka. Russia. Quat Res 47(2):125–139CrossRefGoogle Scholar
  16. Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–360Google Scholar
  17. Churikova TG, Gordeichik BN, Belousov AB, Babansky AD (2010) Finding of the eruptive center for basalts at Shiveluch volcano. In: Gordeev EI (ed) Proceedings of the all-Russia conference in honor of the 75th anniversary of the Kamchatka volcanological station. Petropavlovsk-Kamchatsky. Institute of Volcanology and Seismology FED RASGoogle Scholar
  18. Davaille A, Lees JM (2004) Thermal modelling of subducted plates: tear and hotspot at the Kamchatka corner. Earth Planet Sci Lett 226:293–304CrossRefGoogle Scholar
  19. Davidson J, DeSilva S (2000) Composite volcanoes. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic Press, San Diego, pp 663–682Google Scholar
  20. Davies SM, Wastegård S, Rasmussen TL, Johnsen SJ, Steffensen JP, Andersen KK, Svensson A (2008) Identification of the Fugloyarbanki tephra in the NGRIP ice-core: a key tie-point for marine and ice-core sequences during the last glacial period. J Quat Sci 23:409–414CrossRefGoogle Scholar
  21. Davies SM, Abbott PM, Pearce NJG, Wastegård S, Blockley SPE (2012) Integrating the INTIMATE records using tephrochronology: rising to the challenge. Quat Sci Rev 36:11–27CrossRefGoogle Scholar
  22. Dirksen O, Humphreys MCS, Pletchov P, Melnik O, Demyanchuk Y, Sparks RSJ, Mahony S (2006) The 2001–2004 dome-forming eruption of Shiveluch volcano, Kamchatka: observation, petrological investigation and numerical modelling. J Volcanol Geotherm Res 155:201–226CrossRefGoogle Scholar
  23. Dirksen O, van den Bogaard C, Danhara T, Diekmann B (2011) Tephrochronological investigation at Dvuh-yurtochnoe lake area, Kamchatka: numerous landslides and lake tsunami, and their environmental impacts. Quat Int 246:298–311CrossRefGoogle Scholar
  24. Dirksen V, Dirksen O, Diekmann B (2013) Holocene vegetation dynamics in Kamchatka, Russian Far East. Rev Palaeobot Palynol 190:48–65CrossRefGoogle Scholar
  25. Donoghue SL, Vallance J, Smith IEM, Stewart RB (2007) Using geochemistry as a tool for correlating proximal andesitic tephra: case studies from Mt Rainier (USA) and Mt Ruapehu (New Zealand). J Quatern Sci 22(4):395–410CrossRefGoogle Scholar
  26. Dvigalo VN (1984) Growth of the dome in the crater of Shiveluch volcano in 1980–1981 according to photogrammetric data. Volcanol Seismol 2:104–109 (in Russian)Google Scholar
  27. Eichelberger JC (1995) Silicic volcanism: ascent of viscous magmas from crustal reservoirs. Annu Rev Earth Planet Sci 23:41–63CrossRefGoogle Scholar
  28. Fedotov SA, Zharinov NA, Dvigalo VN, Seliverstov NI, Khubunaya SA (2004) The 2001–2004 eruptive cycle of Shiveluch volcano. Volcanol Seismol 6:3–14 (in Russian)Google Scholar
  29. Froggatt PC (1992) Standardization of the chemical analysis of tephra deposits: report of the ICCT working group. Quat Int 13(14):93–96CrossRefGoogle Scholar
  30. Gill JB (1981) Orogenic andesites and plate tectonics. Springer-Verlag, Berlin-Heidelberg 390 ppCrossRefGoogle Scholar
  31. Goebel T, Waters MR, Dikova M (2003) The archaeology of Ushki Lake, Kamchatka, and the Pleistocene peopling of the Americas. Science 301:501–505CrossRefGoogle Scholar
  32. Gorbach NV, Portnyagin MV (2011) Geology and petrology of the lava complex of Young Shiveluch volcano (Kamchatka). Petrology 19(2):136–168CrossRefGoogle Scholar
  33. Gorbach NV, Portnyagin MV, Tembrel I (2013) Volcanic structure and composition of Old Shiveluch volcano, Kamchatka. J Volcanol Geotherm Res 263:193–208. doi: 10.1016/j.jvolgeores.2012.12.012 CrossRefGoogle Scholar
  34. Gorelchik VI, Shirokov VA, Firstov PP, Chubarova OS (1997) Shiveluch volcano: seismicity, deep structure and forecasting eruptions (Kamchatka). J Volcanol Geotherm Res 78:21–132Google Scholar
  35. Gorshkov GS, Dubik YuM (1970) Gigantic directed blast at Shiveluch volcano (Kamchatka). Bull Volcanol 34:261–288CrossRefGoogle Scholar
  36. Hulse EL, Keeler DM, Zubrow EBW, Korosec GJ, Ponkratova IY, Curtis C (2011) A preliminary report on archaeological fieldwork in the Kamchatka region of Russia. Sibirica 1:48–74CrossRefGoogle Scholar
  37. Humphreys MCS, Blundy JD, Sparks RSJ (2006) Magma evolution and open-system processes at Shiveluch volcano: insights from phenocryst zoning. J Petrol 47(12):2303–2334. doi: 10.1093/petrology/egl045 CrossRefGoogle Scholar
  38. Humphreys MCS, Blundy JD, Sparks RSJ (2008) Shallow-level decompression crystallisation and deep magma supply at Shiveluch volcano. Contrib Mineral Petrol 155(1):45–61CrossRefGoogle Scholar
  39. Jarosewich EJ, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostandards Newsletter 4:43–47CrossRefGoogle Scholar
  40. Khubunaya SA, Zharinov NA, Muravyev YD, Ivanov VV, Boloyavlenskaya GE, Novgorodtseva TY, Demyanchuk YV, Budnikov VA, Fazlullin SM (1995) 1993 eruption of Shiveluch volcano. Volcanol Seismol 17:1–20Google Scholar
  41. Kirianov VY, Egorova IA, Litasova SN (1990) Volcanic ash on Bering Island (Commander Islands) and Kamchatkan Holocene eruptions. Volcanol Seismol 8:850–868Google Scholar
  42. Kozhurin A, Acocella V, Kyle PR, Lagmay FM, Melekestsev IV, Ponomareva VV, Rust D, Tibaldi A, Tunesi A, Corazzato C, Rovida A, Sakharov A, Tengonciang A, Uy H (2006) Trenching active faults in Kamchatka, Russia: paleoseismological and tectonic implications. Tectonophysics 417:285–304CrossRefGoogle Scholar
  43. Kozhurin AI, Pinegina TK, Ponomareva VV, Zelenin EA, Mikhailyukova PG (2014) Rate of collisional deformation in Kamchatsky Peninsula, Kamchatka. Geotectonics 48(2):122–138CrossRefGoogle Scholar
  44. Kuehn SC, Froese DG, Shane PAR (2011) The INTAV intercomparison of electron-beam microanalysis of glass by tephrochronology laboratories: results and recommendations. Quat Int 246:19–47. doi: 10.1016/j.quaint.2011.08.022 CrossRefGoogle Scholar
  45. Kyle PR, Ponomareva VV, Rourke Schluep R (2011) Geochemical characterization of marker tephra layers from major Holocene eruptions in Kamchatka, Russia. Int Geol Rev 53(9):1059–1097CrossRefGoogle Scholar
  46. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750CrossRefGoogle Scholar
  47. Lowe DJ (2011) Tephrochronology and its application: a review. Quat Geochronol 6:107–153CrossRefGoogle Scholar
  48. Melekestsev IV, Kurbatov AV (1998) Frequency of large paleoearthquakes at the northwestern coast of the Bering Sea and in the Kamchatka basin during late Pleistocene/Holocene time. Volcanol Seismol 19:257–267Google Scholar
  49. Melekestsev IV, Volynets ON, Ermakov VA, Kirsanova TP, Masurenkov YuP (1991) Shiveluch volcano. In: Fedotov SA, Masurenkov YP (eds) Active volcanoes of Kamchatka, vol 1. Nauka Press, Moscow, pp 84–103Google Scholar
  50. Mosbah M, Metrich N, Massiot P (1991) PIGME fluorine determination using a nuclear microprobe with application to glass inclusions. Nucl Instrum Methods B58:227–231CrossRefGoogle Scholar
  51. O’Hara MJ (1977) Geochemical evolution during fractional crystallization of a periodically refilled magma chamber. Nature 266:503–507CrossRefGoogle Scholar
  52. Oladottir B, Sigmarsson O, Larsen G, Thordarson T (2008) Katla volcano, Iceland: magma composition, dynamics and eruption frequency as recorded by Holocene tephra layers. Bull Volcanol 70(4):475–493CrossRefGoogle Scholar
  53. Peacock MA (1931) Classification of igneous rocks. J Geol 39:54–67CrossRefGoogle Scholar
  54. Pendea IF, Ponomareva V, Bourgeois J, Korosec G, LaSelle S-P, Ponkratova I, Ferguson C, Fraser R, Keeler D, Zubrow E (2012) Late Glacial to Holocene environmental history of eastern Kamchatka Peninsula, North Pacific. In: Abstracts of the geological association of Canada conference, May 2012, St John’s, NLGoogle Scholar
  55. Pevzner MM (2003) Tephrostratigraphic reference layers in the Holocene soil sections of the southern part of the Sredinny Range and some peculiarities in 14C dating of the peats. Volcanol Seismol 4:1–15Google Scholar
  56. Pevzner MM (2010) The northern boundary of volcanic activity of Kamchatka in Holocene. Bulletin of Kamchatka regional association “Educational-scientific center”. Earth Sciences. 1/15:231–258 (in Russian)
  57. Pevzner MM, Babansky AD (2011) Basaltic activity episode at 4600–3100 14C years BP (3370–1400 cal BC) at andesitic Shiveluch volcano, Kamchatka. In: Abstracts of the international Biennial workshop on subduction processes emphasizing the Japan-Kurile-Kamchatka-Aleutian Arcs (JKASP). Petropavlovsk-Kamchatsky, Russia, 25–30 Aug, pp 262–263Google Scholar
  58. Pevzner MM, Ponomareva VV, Melekestsev IV (1998) Chernyi Yar—reference section of the Holocene ash markers at the northeastern coast of Kamchatka. Volcanol Seismol 19(4):389–406Google Scholar
  59. Pevzner MM, Tolstykh ML, Babansky AD, Kononkova NN (2013) Reconstruction of the magmatic system in the Shiveluch volcanic massif as a result of large-scale collapses of its edifice in the late Pleistocene-early Holocene. Dokl Earth Sci 448(1):35–37CrossRefGoogle Scholar
  60. Pevzner MM, Tolstykh ML, Babansky AD, Layer P, Volynets AO (2014) First data on the isotope age and composition of the parental melts of the initial stage of the Shiveluch volcanic massif. Volcanism and associated processes. Materials of the annual conference celebrating the Volcanologist day. Petropavlovsk-Kamchatsky, Institute of Volcanology and Seismology, pp 104–107 (in Russian)
  61. Pinegina TK, Kozhurin AI, Ponomareva VV (2012) Seismic and tsunami hazard for Ust’-Kamchatsk village, Kamchatka, based on paleoseismological data. Bulletin of Kamchatka Regional Association “Educational-scientific Center”. Earth Sciences. 1/19:138–159 (in Russian)
  62. Ponomareva VV (1990) The history of Krasheninnikov volcano and the dynamics of its activity. Volcanol Seismol 9:714–741Google Scholar
  63. Ponomareva VV, Pevzner MM, Melekestsev IV (1998) Large debris avalanches and associated eruptions in the Holocene eruptive history of Shiveluch volcano, Kamchatka, Russia. Bull Volcanol 59:490–505CrossRefGoogle Scholar
  64. Ponomareva VV, Kyle PR, Pevzner MM, Sulerzhitsky LD, Hartman M (2007) Holocene eruptive history of Shiveluch volcano. Kamchatka Peninsula. In: Eichelberger J, Gordeev E, Kasahara M, Izbekov P, Lees J (eds) Volcanism and subduction: the Kamchatka region, vol 172. American Geophysical Union Geophysical Monograph Series, American Geophysical Union, Washington, pp 263–282CrossRefGoogle Scholar
  65. Ponomareva VV, Portnyagin MV, Melnikov DV (2012) Composition of tephra from modern (2009–2011) eruptions of the Kamchatka and Kuril Islands volcanoes. Bulletin of Kamchatka Regional Association “Educational-scientific Center”. Earth Sciences. 2/20:7–21 (in Russian)
  66. Ponomareva V, Portnyagin M, Derkachev A, Pendea IF, Bourgeois J, Reimer PJ, Garbe-Schönberg D, Krasheninnikov S, Nürnberg D (2013) Early Holocene M ~ 6 explosive eruption from Plosky volcanic massif (Kamchatka) and its tephra as a link between terrestrial and marine paleoenvironmental records. J Int Earth Sci 102(6):1673–1699. doi: 10.1007/s00531-013-0898-0 CrossRefGoogle Scholar
  67. Portnyagin M, Bindeman I, Hoernle K, Hauff F (2007) Geochemistry of primitive lavas of the Central Kamchatka Depression: magma generation at the edge of the Pacific Plate. In: Eichelberger J, Gordeev E, Kasahara M, Izbekov P, Lees J (eds) Volcanism and subduction: the Kamchatka region, vol 172. American Geophysical Union Geophysical Monograph Series, American Geophysical Union, Washington, pp 199–239CrossRefGoogle Scholar
  68. Portnyagin M, Ponomareva V, Bindeman I, Hauff F, Krasheninnikov S, Kuvikas O, Mironov N, Pletchova A, van den Bogaard C, Hoernle K (2009) Millennial variations of major and trace element and isotope compositions of Klyuchevskoy magmas, Kamchatka. Terra Nostra 1:64–65Google Scholar
  69. Portnyagin M, Mironov N, Ponomareva V, Bindeman I, Hauff F, Sobolev A, Kayzar T, Garbe-Schönberg D, Hoernle K (2011) Arc magmas from slab to eruption: the case of Kliuchevskoy volcano. Mineralogical magazine. In: Abstracts of the 2011 Goldcshmidt conference, Prague, p 1661;
  70. Portnyagin M, Hoernle K, Mironov NL (2012) Contrasting compositional trends of rocks and olivine-hosted melt inclusions from Cerro Negro volcano (Central America): implications for decompression-driven fractionation of hydrous magmas. Int J Earth Sci. doi: 10.1007/s00531-012-0810-3 Google Scholar
  71. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):1869–1887CrossRefGoogle Scholar
  72. Shane P, Nairn IA, Smith VC (2005) Magma mingling in the ~50 ka Rotoiti eruption from Okataina volcanic centre: implications for geochemical diversity and chronology of large volume rhyolites. J Volcanol Geotherm Res 139:295–313CrossRefGoogle Scholar
  73. Tolstykh ML, Naumov VB, Babanskii AD et al (2000) Chemical composition, trace elements, and volatile components of melt inclusions in minerals from andesites of the Shiveluch volcano, Kamchatka. Geochem Int 38(Suppl 1):S123–S132Google Scholar
  74. Turner M, Bebbington M, Cronin S, Stewart R (2009) Merging eruption datasets: building an integrated Holocene eruptive record for Mt Taranaki, New Zealand. Bull Volcanol 71(8):903–918CrossRefGoogle Scholar
  75. Volynets ON (1979) Heterotaxitic lavas and pumices and the problem of magma mixing. In: Sobolev VS (ed) Problems of deep magmatism. Nauka Press, Moscow, pp 181–197 (in Russian)Google Scholar
  76. Volynets ON, Ponomareva VV, Babansky AD (1997) Magnesian basalts of Shiveluch andesite volcano, Kamchatka. Petrology 5(2):183–196Google Scholar
  77. Zharinov NA, Demyanchuk YV (2013) Large explosive eruptions of Shiveluch volcano, Kamchatka resulting in partial destruction of the extrusive dome (February 28, 2005 and October 27, 2010). J Volcanol Seismol 7(2):131–144CrossRefGoogle Scholar
  78. Zharinov NA, Bogoyavlenskaya GE, Khubunaya SA, Demyanchuk YV (1995) A new eruption cycle of Shiveluch volcano, 1980–1993. Volcanol Seismol 17:21–30Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Vera Ponomareva
    • 1
    Email author
  • Maxim Portnyagin
    • 2
    • 3
  • Maria Pevzner
    • 4
  • Maarten Blaauw
    • 5
  • Philip Kyle
    • 6
  • Alexander Derkachev
    • 7
  1. 1.Institute of Volcanology and SeismologyPetropavlovsk-KamchatskyRussia
  2. 2.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  3. 3.Vernadsky Institute of Geochemistry and Analytical ChemistryMoscowRussia
  4. 4.Geological InstituteMoscowRussia
  5. 5.School of Geography, Archaeology and PalaeoecologyQueen’s University BelfastBelfastUK
  6. 6.Department of Earth and Environmental ScienceNew Mexico Institute of Mining and TechnologySocorroUSA
  7. 7.V. I. Il`ichev Pacific Oceanological InstituteVladivostokRussia

Personalised recommendations