International Journal of Earth Sciences

, Volume 104, Issue 5, pp 1167–1183 | Cite as

The multistage crystallization of zircon in calc-alkaline granitoids: U–Pb age constraints on the timing of Variscan tectonic activity in SW Iberia

  • M. F. Pereira
  • M. Chichorro
  • P. Moita
  • J. F. Santos
  • A. M. R. Solá
  • I. S. Williams
  • J. B. Silva
  • R. A. Armstrong
Original Paper

Abstract

CL imaging and U–Th–Pb data for a population of zircons from two of the Évora Massif granitoids (Ossa-Morena Zone, SW Iberia) show that both calc-alkaline granitoids have zircon populations dominated by grains with cores and rims either showing or not showing differences in Th/U ratio, and having ages in the range ca. 350–335 Ma (Early Carboniferous). Multistage crystallization of zircon is revealed in two main growth stages (ca. 344–342 Ma and ca. 336–335 Ma), well represented by morphologically complex zircons with cores and rims with different ages and different Th/U ratios that can be explained by: (1) crystallization from melts with different compositions (felsic peraluminous to felsic-intermediate metaluminous; 0.001 < Th/U ratio < 0.5) and (2) transient temperature fluctuations in a system where anatectic felsic melts periodically underwent injection of more mafic magmas at higher temperatures. The two studied calc-alkaline granitoids do not include inherited zircons (pre-Carboniferous), probably because they were formed at the highest grade of metamorphism (T > 837 °C; granulite facies) and/or because they were derived from inheritance-poor felsic and mafic rocks from a previous cycle, as suggested by the internal structures of zircon cores. These Variscan magmatic rocks with crystallization ages estimated at ca. 336–335 Ma are spatially and temporally related to high-temperature metamorphism, anatexis, processes of interaction between crustal- and mantle-derived magmas and intra-orogenic extension that acted in SW Iberia during the Early Carboniferous.

Keywords

Igneous zircon U–Th–Pb SHRIMP data Crustal- and mantle-derived magmas Intra-orogenic extension Early Carboniferous Ossa-Morena Zone 

References

  1. Antunes A, Santos JF, Azevedo MR, Corfu F (2011) New U–Pb zircon age constraints for the emplacement of the Reguengos de Monsaraz Massif (Ossa Morena Zone). Seventh Hutton symposium on granites and related rocks—abstracts book, Ávila, 9–10Google Scholar
  2. Azor A, Rubatto D, Simancas JF, González Lodeiro F, Martínez Poyatos D, Martín Parra LM, Matas J (2008) Rheic Ocean ophiolitic remnants in southern Iberia questioned by SHRIMP U–Pb zircon ages on the Beja–Acebuches amphibolites. Tectonics 27:TC002306CrossRefGoogle Scholar
  3. Braid JA, Murphy JB, Quesada C (2010) Structural analysis of an accretionary prism in a continental collisional setting, the Late Paleozoic Pulo do Lobo Zone, Southern Iberia. Gondwana Res 17:422–439CrossRefGoogle Scholar
  4. Braid JA, Murphy JB, Quesada C, Mortensen J (2011) Tectonic escape of a crustal fragment during the closure of the Rheic Ocean: U–Pb detrital zircon data from the Late Palaeozoic Pulo do Lobo and South Portuguese zones, southern Iberia. J Geol Soc London 168:383–392CrossRefGoogle Scholar
  5. Cambeses A, Scarrow JH, Montero P, Molina JF, Moreno JA (2014) SHRIMP U–Pb zircon dating of the Valencia del Ventoso plutonic complex, Ossa-Morena Zone, SW Iberia: early Carboniferous intra-orogenic extension related ‘calc-alkaline’ magmatism. Gondwana Res. doi:10.1016/j.gr.2014.05.013 Google Scholar
  6. Casquet C, Galindo C (2004) Magmatismo varisco y postvarisco en la Zona de Ossa-Morena. In: Vera JA (ed) Geología de España. Soc. Geol. España; IGME, Madrid, pp 194–198Google Scholar
  7. Casquet C, Galindo C, Darbyshire DPF, Noble SR, Tornos F (1998) Fe-U–REE mineralization at Mina Monchi, Burguillos del Cerro, SW Spain. Age and isotope (U–Pb, Rb–Sr and Sm–Nd) constraints on the evolution of the ores. In: GAC-MAC-APGGQ Quebec ‘98 Conference Abstracts, 23, A-28Google Scholar
  8. Castro A, Moreno-Ventas I, De la Rosa J (1991) Multistage crystallization of tonalitic enclaves in granitoid rocks (Hercynian belt, Spain): implications for magma mixing. Geol Rundsch 80(1):109–120CrossRefGoogle Scholar
  9. Chichorro M (2006) A evolução tectónica da Zona de Cisalhamento de Montemor-o-Novo (Sudoeste da Zona de Ossa Morena—área de Santiago do Escoural—Cabrela). Unpublished PhD thesis from Universidade de Évora, pp 521Google Scholar
  10. Chichorro M, Pereira MF, Díaz-Azpiroz M, Williams IS, Fernández C, Pin C, Silva JB (2008) Cambrian ensialic rift-related magmatism in the Ossa-Morena Zone (Évora–Aracena metamorphic belt, SW Iberian Massif): Sm–Nd isotopes and SHRIMP zircon U–Th–Pb geochronology. Tectonophysics 461:91–113CrossRefGoogle Scholar
  11. Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of Zircon Textures. In: Hanchar M, Hoskin PWO (eds) Zircon. Reviews in Mineralogy and Geochemistry 53, Chapter 16, pp 469–500Google Scholar
  12. Dallmeyer RD, Fonseca PE, Quesada C, Ribeiro A (1993) 40Ar/39Ar mineral age constraints for the tectonothermal evolution of a Variscan suture in southwest Ibéria. Tectonophysics 222:177–194CrossRefGoogle Scholar
  13. de la Rosa JD, Castro A (2004) Magmatismo de la Zona Sudportuguesa. In: JA Vera, Geología de España, SGE-IGME, Madrid, pp 215–222Google Scholar
  14. de la Rosa J, Jenner J, Castro A (2002) A study of inherited zircons in granitoid rocks from the South Portuguese and Ossa-Morena Zones, Iberian Massif: support for the exotic origin of the South Portuguese Zone. Tectonophysics 352:245–256CrossRefGoogle Scholar
  15. Díaz Azpiroz M, Fernandez C, Castro A, El-Biad M (2006) Tectonometamorphic evolution of the Aracena metamorphic belt (SW Spain) resulting from ridge-trench interaction during Variscan plate convergence. Tectonics 25:TC001742CrossRefGoogle Scholar
  16. Dunning GR, Díez Montes A, Matas J, Martín Parra LM, Almarza J, Donaire M (2002) Geocronología U–Pb del volcanismo ácido y granitoides de la Faja Pirítica Ibérica (Zona Surportuguesa). Geogaceta 32:127–130Google Scholar
  17. Eden CP (1991) Tectonostratigraphic analysis of the northern extent of the oceanic exotic terrane, Northwestern Huelva Province, Spain. Ph.D. thesis, University of Southampton, EnglandGoogle Scholar
  18. Eguiluz L, Gil-Ibarguchi JI, Abalos B, Apraiz A (2000) Superposed Hercynian and Cadomian orogenic cycles in the Ossa-Morena zone and related areas of the Iberian Massif. Geol Soc Am Bull 112:1398–1413Google Scholar
  19. Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. Geological Society of London Special Publication 179:35–61Google Scholar
  20. Gladney ER, Braid JA, Murphy JB, Quesada C, McFarlane CRM (2014) U–Pb geochronology and petrology of the late Paleozoic Gil Marquez pluton: magmatism in the Variscan suture zone, southern Iberia, during continental collision and the amalgamation of Pangea. Int J Earth Sci 103:1433–1451CrossRefGoogle Scholar
  21. Hanchar JM, Miller CF (1993) Zircon zonation patterns as revealed by cathodoluminescence and backscattered alectron images: implications for interpretation of complex crustal histories. Chem Geol 110:1–13CrossRefGoogle Scholar
  22. Heaman LM, Bowins R, Crocket J (1990) The chemical composition of igneous zircon studies: implications for geochemical tracer studies. Geochim Cosmochim Acta 54:1597–1607CrossRefGoogle Scholar
  23. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62CrossRefGoogle Scholar
  24. Jeon H, Williams IS, Chappell BW (2012) Magma to mud to magma: rapid crustal recycling by Permian granite magmatism near the eastern Gondwana margin. Earth Planet Sci Lett 319–320(2012):104–117CrossRefGoogle Scholar
  25. Jesus A, Munhá J, Mateus A, Tassinari C, Nutman A (2007) The Beja layered gabbroic sequence (Ossa-Morena Zone, Southern Portugal): geochronology and geodynamic implications. Geodin Acta 20:139–157CrossRefGoogle Scholar
  26. Koksal S, Goncuoglu MC (2008) Sr and Nd isotopic characteristics of some S-, I- and A-type granitoids from Central Anatolia. Turk J Earth Sci 17:111–127Google Scholar
  27. Lima SM, Corfu F, Neiva AMR, Ramos JMF (2011) Source and age constraints of a Variscan plutonic suite from the Ossa-Morena Zone (SW Portugal): from U–Pb and δ18O systematics in zircon. VII Hutton Symposium on granites and related rocks, Avila, Abstracts, 91Google Scholar
  28. Lima SM, Corfu F, Neiva AMR, Ramos MF (2012) Dissecting complex magmatic processes: an in-depth U–Pb Study of the Pavia Pluton, Ossa-Morena Zone, Portugal. J Petrol 53(9):1887–1911CrossRefGoogle Scholar
  29. Linnemann U, Pereira MF, Jeffries T, Drost K, Gerdes A (2008) Cadomian Orogeny and the opening of the Rheic Ocean: new insights in the diacrony of geotectonic processes constrained by LA–ICP–MS U–Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461:21–43CrossRefGoogle Scholar
  30. Machado G, Hladil J, Koptikova L, Fonseca P, Rocha FT, Galle A (2009) The Odivelas Limestone: evidence for a Middle Devonian reef system in western Ossa-Morena Zone. Geol Carpath 60(2):121–137CrossRefGoogle Scholar
  31. Martinez-Catalan JR, Arenas R, Diaz Garcia F, Gomez-Barrero J, Gonzalez Cuadra P, Abati J, Castineiras P, Fernandez-Suarez J, Sanchez Martinez S, Andanaegui P, Gonzalez Clavijo E, Diez Montes A, Rubio Pascual FJ, Valle Aguado B (2007) Space and time in the tectonic evolution of the northwestern Iberian Massif. Implications for the comprehension of the Variscan belt. In: Hatcher Jr. RD, Carlson MP, McBride JH, Martinez-Catalan JR (eds) 4-D framework of continental crust. Geological Society of America Memoir, p 200Google Scholar
  32. Matte Ph (2001) The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova 13:122–128CrossRefGoogle Scholar
  33. Miller C, Wooden J (1994) Anatexis, hybridization, and the modification of ancient crust: mesozoic plutonism in the Old Woman Mountains area, California. Lithos 32(111):133Google Scholar
  34. Miller CF, McDowell SM, Mapes RW (2003) Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31(6):529–532CrossRefGoogle Scholar
  35. Moita P (2007) Granitóides no SW da Zona de Ossa Morena (Montemor-o-Novo-Évora): Petrogénese e processos geodinâmicos. Unpublished PhD thesis, Universidade de Évora, pp 351Google Scholar
  36. Moita P, Santos JF, Pereira MF (2009) Layered granitoids: interaction between continental crust recycling processes and mantle-derived magmatism. Examples from the Évora Massif (Ossa-Morena Zone, southwest Iberia, Portugal). Lithos 111(3–4):125–141CrossRefGoogle Scholar
  37. Moita P, Santos JF, Costa MM, Corfu F (2013) New U–Pb ages for syn-orogenic magmatism in the SW sector of the Ossa-Morena Zone (Portugal). Goldschmidt Conference Abstracts. doi:10.1180/minmag.2013.077.5.13
  38. Moller A, O’Brien PJ, Kennedy A, Kroner A (2003) Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland (SW Norway). In: VD Muller, Villa IM (eds) Geochronology: linking the isotopic record with petrology and textures. Geological Society, London, Special Publications 220:65–81Google Scholar
  39. Montero P, Salman K, Bea F, Azor A, Exposito I, González-Lodeiro F, Martine Poyatos DJ, Simancas JF (2000) New data on the geochronology of the Ossa Morena Zone, Iberian Massif. Basement Tecton 15:136–138Google Scholar
  40. Murphy JB, Gutierrez-Alonso G, Nance RD, Fernandez-Suarez J, Keppie JD, Quesada C, Dostal J, Braid JA (2009) Rheic Ocean mafic complexes: overview and synthesis Geological Society, London, Special Publication 327:343–369Google Scholar
  41. Oliveira JT (1990) South Portuguese Zone: stratigraphy and synsedimentary tectonism. In: Dallmeyer RD, Martinez Garcia E (eds) Pre-Mesozoic Geology of Iberia. Springer, Berlin, pp 334–347Google Scholar
  42. Oliveira JT, Quesada C (1998) A comparison of stratigraphy, structure and palaeogeography of the South Portuguese Zone and South-West England, European Variscides. In: Proceedings of the annual conference of the Ussher Society, The Scott Simpson Lecture, pp 141–150Google Scholar
  43. Onézime J, Charvet J, Faure M, Bourdier JL, Chauvet A (2003) A new geodynamic interpretation for the South Portuguese Zone (SW Iberia) and the Iberian Pyrite Belt genesis. Tectonics 22(4):TC001387CrossRefGoogle Scholar
  44. Ordóñez-Casado B (1998) Geochronological studies of the Pre-Mesozoic basement of the Iberian Massif: the Ossa Morena Zone and the Allochthonous Complexes within the Central Iberian Zone. Ph.D, thesis. Geology, Swiss Federal Institute of Technology Zurich, ETH, pp 1–207Google Scholar
  45. Pereira MF, Lucio PS (2007) Understanding geological data distribution and orientation via Correspondence Analysis. Case study: Évora high-grade metamorphic terrains—Portugal. Math Geol 39:673–695CrossRefGoogle Scholar
  46. Pereira Z, Oliveira V, Oliveira JT (2006) Palynostratigraphy of the Toca da Moura and Cabrela Complexes, Ossa-Morena Zone, Portugal. Geodynamic implications. Rev Palaeobot Palynol 139:227–240CrossRefGoogle Scholar
  47. Pereira MF, Silva JB, Chichorro M, Moita P, Santos J, Apraíz A, Ribeiro C (2007) Crustal growth and deformational processes in the northern Gondwana margin: constraints from the Évora Massif (Ossa-Morena Zone, SW Iberia, Portugal). Geological Society America, Special Paper 423:333–358Google Scholar
  48. Pereira MF, Chichorro M, Williams IS, Silva JB (2008) Zircon U–Pb geochronology of paragneisses and biotite granites from the SW Iberian Massif (Portugal): evidence for a paleogeographic link between the Ossa-Morena Ediacaran basins and the West African craton. In: JP Liégeois, E Nasser (eds) The boundaries of the West African Craton 297. Geological Society of London Special Publication, pp 385–408Google Scholar
  49. Pereira MF, Chichorro M, Williams IS, Silva JB, Fernández C, Díaz-Azpíroz M, Apraiz A, Castro A (2009) Variscan intra-orogenic extensional tectonics in the Ossa-Morena Zone (Évora-Aracena-Lora del Río metamorphic belt, SW Iberian Massif): SHRIMP zircon U–Th–Pb geochronology. Geological Society, London, Special Publication 327:215–237Google Scholar
  50. Pereira MF, Silva JB, Drost K, Chichorro M, Apraiz A (2010a) Relative timing of transcurrent displacements in northern Gondwana: new U–Pb laser ablation MS-ICP-MS zircon and monazite geochronology of gneisses and sheared granites from the Western Iberian Massif (Portugal). Gondwana Res 17(2–4):461–481CrossRefGoogle Scholar
  51. Pereira MF, Apraiz A, Chichorro M, Silva JB, Armstrong RA (2010b) Exhumation of high-pressure rocks in northern Gondwana during the Early Carboniferours (Coimbra–Cordoba shear zone, SW Iberian Massif): tectonothermal analysis and U–Th–Pb SHRIMP in situ zircon geochronology. Gondwana Res 17:440–460CrossRefGoogle Scholar
  52. Pereira MF, Chichorro M, Sola AMR, Sanchez-Garcia T, Bellido F (2011) Tracing the Cadomian magmatism with detrital/inherited zircon ages by in-situ U-Pb SHRIMP geochronology (Ossa-Morena Zone, SW Iberian Massif). Lithos 123(1–4):204–217CrossRefGoogle Scholar
  53. Pereira MF, Chichorro M, Silva JB, Ordóñez-Casado B, Lee JKW, Williams IS (2012a) Early Carboniferous wrenching, exhumation of high-grade metamorphic rocks and basin instability in SW Iberia: constraints derived from structural geology and U–Pb and 40Ar–39Ar geochronology. Tectonophysics 558–559(2012):28–44CrossRefGoogle Scholar
  54. Pereira MF, Chichorro M, Johnston ST, Gutierrez-Alonso G, Silva JB, Linnemann U, Hofmann M, Drost K (2012b) The missing Rheic Ocean magmatic arcs: provenance analysis of Late Paleozoic sedimentary clastic rocks of SW Iberia. Gondwana Res 22(3–4):882–891CrossRefGoogle Scholar
  55. Pereira MF, Sola AR, Chichorro M, Lopes L, Gerdes A, Silva JB (2012c) North-Gondwana assembly, break-up and paleogeography: U–Pb isotope evidence from detrital and igneous zircons of Ediacaran and Cambrian rocks of SW Iberia. Gondwana Res 22(3–4):866–881CrossRefGoogle Scholar
  56. Pereira MF, Ribeiro C, Vilallonga F, Chichorro M, Drost K, Silva JB, Albardeiro L, Hofmann M, Linnemann U (2013a) Variability over time in the sources of South Portuguese Zone turbidites: evidence of denudation of different crustal blocks during the assembly of Pangaea. Int J Earth Sci. doi:10.1007/s00531-013-0902-8 Google Scholar
  57. Pereira MF, Chichorro M, Fernández C, Silva JB, Matias FV (2013b) The role of strain localization in magma injection into a transtensional shear zone (Variscan belt, SW Iberia). J Geol Soc 170(1):93–106CrossRefGoogle Scholar
  58. Pereira MF, Castro A, Chichorro M, Fernández C, Diaz-Alvarado J, Martí J, Carmen C (2014) Chronological link between deep-seated processes in magma chambers and eruptions: Permo-Carboniferous magmatism in the core of Pangaea (Southern Pyrenees). Gondwana Res 25:290–308CrossRefGoogle Scholar
  59. Pin C, Fonseca PE, Paquette J-L, Castro P, Matte Ph (2008) The ca. 350 Ma Beja Igneous Complex: a record of transcurrent slab break-off in the Southern Iberia Variscan Belt? Tectonophysics 461:356–377CrossRefGoogle Scholar
  60. Quesada C, Robardet M, Gabaldón V (1990) Ossa-Morena zone stratigraphy: synorogenic phase (upper Ddevonian-Carboniferous-lower Permian). In: Dallmeyer RD, Martínez García E (eds) Pre-mesozoic geology of Iberia. Springer, Berlin, pp 273–279Google Scholar
  61. Quesada C, Fonseca PE, Munhá JM, Oliveira JT, Ribeiro A (1994) The Beja-Acebuches Ophiolite (southern Ibéria Variscan fold belt): geological characterization and geodynamic significance. Boletin Geol Minero 105:3–49Google Scholar
  62. Ribeiro A, Munhá J, Fonseca PE, Araújo A, Pedro JC, Mateus A, Tassinari C, Machado G, Jesus A (2010) Variscan ophiolite belts in the Ossa-Morena Zone (Southwest Iberia): geological characterization and geodynamic significance. Gondwana Res 17:408–421CrossRefGoogle Scholar
  63. Robardet M, Gutierrez-Marco JC (1990) Sedimentary and faunal domains in the Iberian Peninsula during lower Paleozoic times. In: Dallmeyer RD, Martinez-Garcia E (eds) Pré-Mesozoic Geology of Iberia. Springer, New York pp 383–395Google Scholar
  64. Robardet M, Gutierrez-Marco JC (2004) The Ordovician, Silurian andDevonian sedimentary rocks of the Ossa-Morena Zone (SW Iberian Peninsula, Spain). J Iber Geol 30:73–92Google Scholar
  65. Romeo I, Lunar R, Capote R, Quesada C, Dunning GR, Pina R, Ortega L (2006) U–Pb age constraints on Variscan magmatism and Ni–Cu–PGE metallogeny in the Ossa-Morena Zone (SW Iberia). J Geol Soc 163:837–846CrossRefGoogle Scholar
  66. Rosa DRN, Finch AA, Andersen T, Inverno C (2008) U–Pb geochronology and Hf isotope ratios of magmatic zircons from the Iberian Pyrite Belt. Mineral Petrol 95:47–69CrossRefGoogle Scholar
  67. Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chem Geol 184:123–138CrossRefGoogle Scholar
  68. Sánchez-Carretero R, Eguíluz L, Pascual E, Carracedo M (1990) Igneous rocks of the Ossa-morena Zone. In: Dallmeyer RD, Martinez-Garcia E (eds) In: Pre Mesozoic geology of Iberia. Springer, Berlin pp 292–314Google Scholar
  69. Sánchez-García T, Bellido F, Quesada C (2003) Geodynamic setting and geochemical signatures of Cambrian–Ordovician rift-related igneous rocks (Ossa-Morena Zone, SW Iberia). Tectonophysics 365:233–255CrossRefGoogle Scholar
  70. Sánchez-García T, Quesada C, Bellido F, Dunning GR, González del Tánago J (2008) Two-step magma flooding of the upper crust during rifting: the Early Paleozoic of the Ossa Morena Zone (SW Iberia). Tectonophysics 461:72–90CrossRefGoogle Scholar
  71. Sánchez-García T, Bellido F, Pereira MF, Chichorro M, Quesada C, Pin C, Silva JB (2010) Rift related volcanism predating the birth of the Rheic Ocean (Ossa-Morena Zone, SW Iberia). Gondwana Res 17(2–4):392–407CrossRefGoogle Scholar
  72. Santos JF, Andrade AS, Munhá JM (1990) Magmatismo orogénico Varisco no limite meridional da Zona de Ossa-Morena. Comunicações Serviços Geológicos de Portugal 76:91–124Google Scholar
  73. Silva JB, Oliveira JT, Ribeiro A (1990) Part VI South Portuguese Zone, structural outline. In: Dallmeyer RD, Martinez Garcia E (eds) Pre-Mesozoic Geology of Iberia. Springer, Berlin, pp 348–362Google Scholar
  74. Simancas JF, Carbonell R, Gonzalez Lodeiro F et al (2003) Crustal structure of the transpressional Variscan orogen of SW Iberia: SW Iberia deep seismic reflection profile (IBERSEIS). Tectonics 22:1062CrossRefGoogle Scholar
  75. Simancas JF, Tahiri A, Azor A, Gonzalez Lodeiro F, Martinez Poyatos DJ, El Hadi H (2005) The tectonic frame of the Variscan–Alleghanian orogen in Southern Europe and Northern Africa. Tectonophysics 398:181–198CrossRefGoogle Scholar
  76. Simancas JF, Azor A, Martínez-Poyatos DJ, Thahiri A, El-Hadi H, González-Lodeiro F, Pérez-Estaún A, Carbonell R (2009) Tectonic relationships of Southwest Iberia with the allochthons of Northwest Iberia and the Moroccan variscides. CR Geosci 341:103–113CrossRefGoogle Scholar
  77. Wang X, Griffin WL, Chen J, Huang P, Xiang L (2011) U and Th contents and Th/U ratios of zircon in felsic and mafic magmatic rocks: improved zircon-melt distributions coefficients. Acta Geol Sin (English edition) 85:164–174CrossRefGoogle Scholar
  78. Williams IS (2001) Response of detrital zircon and monazite, and their U–Pb isotopic systems, to regional metamorphism and host-rock partial melting, Cooma Complex, southeastern Australia. Aust J Earth Sci 48:557–580CrossRefGoogle Scholar
  79. Williams IS, Claesson S (1987) Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides, II Ion microprobe zircon U–Th–Pb. Contrib Miner Petrol 97:205–217CrossRefGoogle Scholar
  80. Williams IS, Hergt JM (2000) U–Pb dating of Tasmanian dolerites: a cautionary tale of SHRIMP analysis of high-U zircon. In: JD Woodhead, JM Hergt, WP Noble (eds) Beyond 2000: new frontiers in isotope science, Lorne, 2000, abstracts and proceedings, pp 185–188Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • M. F. Pereira
    • 1
  • M. Chichorro
    • 2
  • P. Moita
    • 3
  • J. F. Santos
    • 4
  • A. M. R. Solá
    • 5
  • I. S. Williams
    • 6
  • J. B. Silva
    • 7
  • R. A. Armstrong
    • 6
  1. 1.IDL/Departamento de Geociências, ECTUniversidade de ÉvoraÉvoraPortugal
  2. 2.CiCEGE/Departamento de Ciências da TerraUniversidade Nova de LisboaLisbonPortugal
  3. 3.Centro de Geofísica de Évora/Departamento de Geociências, ECTUniversidade de ÉvoraÉvoraPortugal
  4. 4.Geobiotec, Departamento de Geociências daUniversidade de AveiroAveiroPortugal
  5. 5.LNEG, Unidade de Geologia e Cartografia GeológicaPortoPortugal
  6. 6.Research School of Earth SciencesThe Australian National UniversityActonAustralia
  7. 7.IDL/Departamento de Geologia, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal

Personalised recommendations