International Journal of Earth Sciences

, Volume 104, Issue 5, pp 1365–1385 | Cite as

U–Pb ages and Hf isotopic composition of zircons in Austrian last glacial loess: constraints on heavy mineral sources and sediment transport pathways

Original Paper

Abstract

Loess sediments in Austria deposited ca. 30–20 ka ago yield different zircon age signatures for samples collected around Krems (SE Bohemian Massif; samples K23 and S1) and Wels (halfway between the Bohemian Massif and the Eastern Alps; sample A16). Cathodoluminescence (CL) imaging reveals both old, multistage zircons with complex growth histories and inherited cores, and young, first-cycle magmatic zircons. Paleoproterozoic ages between 2,200 and 1,800 Ma (K23 and S1), an age gap of 1,800–1,000 Ma for S1 and abundant Cadomian grains, indicate NW African/North Gondwanan derivation of these zircons. Also, A16 yields ages between 630 and 600 Ma that can be attributed to “Pan-African” orogenic processes. Significant differences are seen for the <500 Ma part of the age spectra with major age peaks at 493–494 and 344–335 Ma (K23 and S1), and 477 and 287 Ma (A16). All three samples show negative initial ɛHf signatures (−25 to −10, except one grain with +9.4) implying zircon crystallization from magmas derived by recycling of older continental crust. Hf isotopic compositions of 330- to 320-Ma-old zircons from S1 and K23 preclude a derivation from Bavarian Forest granites and intermediate granitoids. Rather, all the data suggest strong contributions of eroded local rocks (South Bohemian pluton, Gföhl unit) to loess material at the SE edge of the Bohemian Massif (K23 and S1) and sourcing of zircons from sediment donor regions in the Eastern Alps for loess at Wels (A16). We tentatively infer primary fluvial transport and secondary eolian reworking and re-deposition of detritus from western/southwestern directions. Finally, our data highlight that loess zircon ages are fundamentally influenced by fluvial transport, its directions, the interplay of sediment donor regions through the mixing of detritus and zircon fertility of rocks, rather than Paleowind directions.

Keywords

Loess Zircon U‒Pb geochronology Hf isotope geochemistry Provenance 

Supplementary material

531_2014_1139_MOESM1_ESM.pdf (263 kb)
Supplementary material 1 (PDF 262 kb)
531_2014_1139_MOESM2_ESM.pdf (173 kb)
Supplementary material 2 (PDF 173 kb)
531_2014_1139_MOESM3_ESM.xls (66 kb)
Supplementary material 3 (XLS 66 kb)
531_2014_1139_MOESM4_ESM.xls (62 kb)
Supplementary material 4 (XLS 61 kb)
531_2014_1139_MOESM5_ESM.xls (48 kb)
Supplementary material 5 (XLS 48 kb)

References

  1. Aleinikoff JN, Muhs DR, Sauer RR, Fanning CM (1999) Late Quaternary loess in northeastern Colorado, II: Pb isotopic evidence for the variability of loess sources. Geol Soc Am Bull 111:1876–1883Google Scholar
  2. Aleinikoff JN, Muhs DR, Bettis EA III, Johnson WC, Fanning CM, Benton R (2008) Isotopic evidence for the diversity of late Quaternary loess in Nebraska: glaciogenic and nonglaciogenic sources. Geol Soc Am Bull 120:1362–1377Google Scholar
  3. Amelin YV, Lee DC, Halliday AN (2000) Early–middle Archaean crustal evolution deduced from Lu–Hf and U–Pb isotopic studies of single zircon grains. Geochim Cosmochim Acta 64:4205–4225Google Scholar
  4. Andersen T (2005) Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chem Geol 216:249–270Google Scholar
  5. Augustsson C, Münker M, Bahlburg H, Fanning CM (2006) Provenance of Late Palaeozoic metasediments of the SW South American Gondwana margin from combined U–Pb ages and Hf isotope compositions of single detrital zircons. J Geol Soc Lond 163:983–995Google Scholar
  6. Bahlburg H, Vervoort JD, Du Frane SA, Bock B, Augustsson C, Reimann C (2009) Timing of crust formation and recycling in accretionary orogens: insights learned from the western margin of South America. Earth Sci Rev 97:215–241Google Scholar
  7. Bahlburg H, Vervoort JD, Du Frane SA (2010) Plate tectonic significance of Middle Cambrian and Ordovician siliciclastic rocks of the Bavarian Facies, Armorican Terrane Assemblage, Germany—U–Pb and Hf isotope evidence from detrital zircons. Gondwana Res 17:223–235Google Scholar
  8. Beck-Mannagetta P (1964) Geologische Übersichtskarte der Republik Österreich. Geologische Bundesanstalt, WienGoogle Scholar
  9. Betzer PR, Carder KL, Duce RA, Merrill JT, Tindale NW, Uematsu M, Costello DK, Young RW, Feely RA, Breland JA, Bernstein RE, Greco AM (1988) Long-range transport of giant mineral aerosol particles. Nature 336:568–571Google Scholar
  10. Bodet F, Schärer U (2000) Evolution of the SE-Asian continent from U–Pb and Hf isotopes in single grains of zircon and baddeleyite from large rivers. Geochim Cosmochim Acta 64:2067–2091Google Scholar
  11. Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273:48–57Google Scholar
  12. Brunnacker K, Fink J, Razirad M, Tillmanns W (1979) Der Hollabrunner Schotter östlich von Krems, Niederösterreich. Zeitschrift der Deutschen Geologischen Gesellschaft 130:303–322Google Scholar
  13. Buggle B, Glaser B, Zöller L, Hambach U, Markovic S, Glaser I, Gerasimenko N (2008) Geochemical characterization and origin of Southeastern and Eastern European loesses (Serbia, Romania, Ukraine). Quatern Sci Rev 27:1058–1075Google Scholar
  14. Cawood P, Nemchin A, Freeman M, Sircombe K (2003) Linking source and sedimentary basin: detrital zircon record of sediment flux along a modern river system and implications for provenance studies. Earth Planet Sci Lett 210:259–268Google Scholar
  15. Cesare B, Rubatto D, Hermann J, Barzi L (2002) Evidence for Late Carboniferous subduction type magmatism in mafic–ultramafic cumulates of the SW Tauern window (Eastern Alps). Contrib Miner Petrol 142:449–464Google Scholar
  16. Chu NC, Taylor RN, Chavagnac V, Nesbitt RW, Boella RM, Milton JA, German CR, Bayon G, Burton K (2002) Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. J Anal At Spectrom 17:1567–1574Google Scholar
  17. Cilek V (2001) The loess deposits of the Bohemian Massif: silt provenance, palaeometeorology and loessification processes. Quatern Int 76(77):123–128Google Scholar
  18. Condie KC, Beyer E, Belousova EA, Griffin WL, O’Reilly SY (2005) U–Pb isotopic ages and Hf isotopic composition of single zircons: the search for juvenile Precambrian continental crust. Precambr Res 139:42–100Google Scholar
  19. Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. In: Hanchar JM, Hoskin PWO (eds) Zircon, Reviews in mineralogy and geochemistry, vol 53, Mineralogical Society of America and Geochemical Society, pp 469–500Google Scholar
  20. Dallmeyer RD, Neubauer F, Höck V (1992) Chronology of late Paleozoic tectonothermal activity in the southeastern Bohemian Massiv, Austria (Moldanubian and Moravo-Silesian zones): 40Ar/39Ar mineral age controls. Tectonophysics 210:135–153Google Scholar
  21. Dickinson W (2008) Impact of differential zircon fertility of granitoid basement rocks in North America on age populations of detrital zircons and implications for granite petrogenesis. Earth Planet Sci Lett 275:80–92Google Scholar
  22. Egal E, Thiéblemont D, Lahondère D, Guerrot C, Costea CA, Iliescu D, Delor C, Goujou J-C, Lafon JM, Tegyey M, Diaby S, Kolié P (2002) Late Eburnean granitization and tectonics along the western and northwestern margin of the Archean Kénéma-Man domain (Guinea, West African Craton). Precambr Res 117:57–84Google Scholar
  23. Eichhorn R, Höll R, Loth G, Kennedy A (1999) Implications of U–Pb SHRIMP zircon data on the age and evolution of the Felbertal tungsten deposit (Tauern Window, Austria). Int J Earth Sci 88:496–512Google Scholar
  24. Eichhorn R, Loth G, Höll R, Finger F, Schermaier A, Kennedy A (2000) Multistage Variscan magmatism in the Tauern Window (Austria) unveiled by U/Pb SHRIMP zircon data. Contrib Miner Petrol 139:418–435Google Scholar
  25. Eichhorn R, Loth G, Kennedy A (2001) Unravelling the pre-Variscan evolution of the Habach terrane (Tauern Window, Austria) by U–Pb SHRIMP zircon data. Contrib Miner Petrol 142:147–162Google Scholar
  26. Einwögerer T, Händel M, Neugebauer-Maresch C, Simon U, Steier P, Teschler-Nicola M, Wild EM (2009) 14C dating of the Upper Paleolithic site at Krems-Wachtberg, Austria. Radiocarbon 51:847–855Google Scholar
  27. Fedo CM, Sircombe KN, Rainbird RH (2003) Detrital zircon analysis of the sedimentary record. In: Hanchar JM, Hoskin PWO (eds) Zircon, Reviews in Mineralogy and Geochemistry, vol 53. Mineralogical Society of America and Geochemical Society, pp 277‒303Google Scholar
  28. Fietzke J, Liebetrau V, Günther D, Gürs K, Hametner K, Zumholz K, Hansteen TH, Eisenhauer A (2008) An alternative data acquisition and evaluation strategy for improved isotope ratio precision using LA-MC-ICP-MS applied to stable and radiogenic strontium isotopes in carbonates. J Anal At Spectrom 23:955–961Google Scholar
  29. Finger F, Gerdes A, Janoušek V, René M, Riegler G (2007) Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and the Moravo-Moldanubian tectonometamorphic phases. J Geosci 52:9–28Google Scholar
  30. Fink J (1961) Die Gliederung des Jungpleistozäns in Österreich. Mitteilungen der Geologischen Gesellschaft 54:1–25Google Scholar
  31. Fink J, Kukla GJ (1977) Pleistocene climates in Central Europe: at least 17 interglacials after the Olduvai Event. Quatern Res 7:363–371Google Scholar
  32. Fisher CM, Hanchar JM, Samson SD, Dhuime B, Blichert-Toft J, Vervoort JD, Lam R (2011) Synthetic zircon doped with hafnium and rare earth elements: a reference material for in situ hafnium isotope analysis. Chem Geol 286:32–47Google Scholar
  33. Florineth D, Schlüchter Ch (2000) Alpine evidence for atmospheric circulation patterns in Europe during the Last Glacial Maximum. Quatern Res 54:295–308Google Scholar
  34. Frank Ch, Nagel D, Rabeder G (1997) Chronologie des österreichischen Plio-Pleistozäns. In: Döppes D, Rabeder G (eds) Pliozäne und pleistozäne Faunen Österreichs. Ein Katalog der wichtigsten Fossilfundstellen und ihrer Faunen. Mitt. Komm. Quartärforsch. Österr. Akad. Wiss., vol 10. Wien, pp 359–374Google Scholar
  35. Friedl G, Finger F, Paquette J-L, von Quadt A, McNaughton NJ, Fletcher IR (2004) Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U–Pb zircon ages. Int J Earth Sci 93:802–823Google Scholar
  36. Friedl G, Cooke RA, Finger F, McNaughton NJ, Fletcher IR (2011) Timing of Variscan HP-HT metamorphism in the Moldanubian Zone of the Bohemian Massif: U–Pb SHRIMP dating on multiply zoned zircons from a granulite from the Dunkelsteiner Wald Massif, Lower Austria. Mineral Petrol 102:63–75Google Scholar
  37. Gallet S, Jahn B, Van Vliet Lanoë B, Dia A, Rossello E (1998) Loess geochemistry and its implications for particle origin and composition of the upper continental crust. Earth Planet Sci Lett 156:157–172Google Scholar
  38. Gebauer D, Friedl G (1993) A 1.38 Ga protolith age for the Dobra orthogneiss (Moldanubian zone of the southern Bohemian massif, NE-Austria): evidence from ion-microprobe (SHRIMP)-dating of zircon. Eur J Mineral 5:115Google Scholar
  39. Gerdes A, Zeh A (2006) Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons; comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in central Germany. Earth Planet Sci Lett 249:47–61Google Scholar
  40. Gerdes A, Wörner G, Finger F (1996) Mantle sources in Hercynian granitoids? A trace element and isotope study. J Conf Abstr 1:201Google Scholar
  41. Gerdes A, Friedl G, Parrish RR, Finger F (2003) High-resolution geochronology of Variscan granite emplacement—the South Bohemian Batholith. J Czech Geol Soc 48:53–54Google Scholar
  42. Griffin WL, Belousova EA, Shee SR, Pearson NJ, O’Reilly SY (2004) Archean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons. Precambr Res 131:231–282Google Scholar
  43. Griffin WL, Pearson NJ, Belousova EA, Saeed A (2006) Comment: Hf-isotope heterogeneity in zircon 91500. Chem Geol 233:358–363Google Scholar
  44. Haase D, Fink J, Haase G, Ruske R, Pecsi M, Richter H, Altermann M, Jäger KD (2007) Loess in Europe—its spatial distribution based on a European Loess Map, scale 1:2,500,000. Quatern Sci Rev 26:1301–1312Google Scholar
  45. Hanchar JM, Miller CF (1993) Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: implications for interpretation of complex crustal histories. Chem Geol 110:1–13Google Scholar
  46. Harrison TM, Watson EB (1983) Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. Contrib Miner Petrol 84:66–72Google Scholar
  47. Hawkesworth CJ, Kemp AIS (2006) Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem Geol 226:144–162Google Scholar
  48. Hietpas J, Samson S, Moecher D, Chakraborty S (2011) Enhancing tectonic and provenance information from detrital zircon studies: assessing terrane-scale sampling and grain-scale characterization. J Geol Soc Lond 168:309–318Google Scholar
  49. Hoinkes G, Koller F, Demény A, Schuster R, Miller C, Thöni M, Kurz W, Krenn K, Walter F (2010) Metamorphism in the Eastern Alps. Acta Miner Petrogr Field Guide Ser 1:1–47Google Scholar
  50. Howard KE, Hand M, Barovich KM, Reid A, Wade BP, Belousova EA (2009) Detrital zircon ages: improving interpretation via Nd and Hf isotopic data. Chem Geol 262:277–292Google Scholar
  51. Johnsson MJ (1993) The system controlling the composition of clastic sediments. In: Johnsson MJ, Basu A (eds) Processes controlling the composition of clastic sediments, geological society of America special paper 284, Boulder, pp 1‒20Google Scholar
  52. Kebede T, Klötzli U, Kosler J, Skiöld T (2005) Understanding pre-Variscan and Variscan basement components of the central Tauern Window, Eastern Alps (Austria): constraints from new single zircon U–Pb geochronology. Int J Earth Sci 94:336–353Google Scholar
  53. Kemp AIS, Foster GL, Scherstén A, Whitehouse MJ, Darling J, Storey C (2009) Concurrent Pb–Hf isotope analysis of zircon by laser ablation multi-collector ICPMS, with implications for the crustal evolution of Greenland and the Himalayas. Chem Geol 261:244–260Google Scholar
  54. Kinny PD, Maas R (2003) Lu–Hf and Sm–Nd isotope systems in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon, Reviews in Mineralogy and Geochemistry, vol 53. Mineralogical Society of America and Geochemical Society, pp 327‒341Google Scholar
  55. Klötzli US, Parrish RR (1996) Zircon U/Pb and Pb/Pb geochronology of the Rastenberg graniodiorite, South Bohemian Massif, Austria. Mineral Petrol 58:197–214Google Scholar
  56. Klötzli US, Frank W, Scharbert S, Thöni M (1999) The evolution of the SE Bohemian Massif based on geochronological data: a review. Jahrbuch der Geologischen Bundesanstalt 141:377–394Google Scholar
  57. Klötzli US, Koller F, Scharbert S, Höck V (2001) Cadomian lower-crustal contributions to Variscan granite petrogenesis (South Bohemian Pluton, Austria): constraints from zircon typology and geochronology, whole-rock, and feldspar Pb–Sr isotope systematics. J Petrol 42:1621–1642Google Scholar
  58. Klötzli U, Klötzli E, Günes Z, Košler J (2009) External accuracy of laser ablation U–Pb zircon dating: results from a test using five different reference zircons. Geostand Geoanal Res 33:5–15Google Scholar
  59. Klötzli-Chowanetz E, Klötzli U, Koller F (1997) Lower Ordovician migmatisation in the Ötztal crystalline basement (Eastern Alps, Austria): linking U–Pb and Pb–Pb dating with zircon morphology. Schweiz Mineral Petrogr Mitt 77:315–324Google Scholar
  60. Košler J, Konopásek J, Sláma J, Vrána S (2014) U–Pb zircon provenance of Moldanubian metasediments in the Bohemian Massif. J Geol Soc Lond 171:83–95Google Scholar
  61. Krogh TE (1982) Improved accuracy of U–Pb zircon dating by selection of more concordant fractions using a high gradient magnetic separation technique. Geochim Cosmochim Acta 46:631–635Google Scholar
  62. Kröner A, Wendt I, Liew TC, Compston W, Todt W, Fiala J, Vankova V, Vanek J (1988) U–Pb zircon and Sm-Nd model ages of high-grade Moldanubian metasediments, Bohemian Massif, Czechoslovakia. Contrib Miner Petrol 99:257–266Google Scholar
  63. Linnemann U, Pereira F, Jeffries TE, Drost K, Gerdes A (2008) The Cadomian Orogeny and the opening of the Rheic Ocean: the diachrony of geotectonic processes constrained by LA–ICP–MS U–Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461:21–43Google Scholar
  64. Lisá L (2004) Exoscopy of Moravian eolian sediments. Bull Geosci 79:177–182Google Scholar
  65. Lisá L, Uher P (2006) Provenance of Würmian loess and loess-like sediments of Moravia and Silesia (Czech Republic): a study of zircon typology and cathodoluminescence. Geol Carpath 57:397–403Google Scholar
  66. Lisá L, Buriánek D, Uher P (2009) New approach to garnet redistribution during aeolian transport. Geol Q 53:333–340Google Scholar
  67. Lomax J, Fuchs M, Preusser F, Fiebig M (2014) Luminescence based loess chronostratigraphy of the Upper Palaeolithic site Krems-Wachtberg, Austria. Quatern Int 351:88–97Google Scholar
  68. Ludwig KR (2008) User’s manual for Isoplot 3.70: a geochronological toolkit for Microsoft® Excel. Berkeley Geochronology Center Special Publication No 4, USA, p 76Google Scholar
  69. Malusa MG, Carter A, Limoncelli M, Villa IM, Garzanti E (2013) Bias in detrital zircon geochronology and thermochronometry. Chem Geol 359:90–107Google Scholar
  70. Meinhold G, Morton AC, Fanning CM, Frei D, Howard JP, Phillips RJ, Strogen D, Whitham AG (2011) Evidence from detrital zircons for recycling of Mesoproterozoic and Neoproterozoic crust recorded in Paleozoic and Mesozoic sandstones of southern Libya. Earth Planet Sci Lett 312:164–175Google Scholar
  71. Meinhold G, Morton AC, Avigad D (2013) New insights into peri-Gondwana paleogeography and the Gondwana super-fan system from detrital zircon U–Pb ages. Gondwana Res 23:661–665Google Scholar
  72. Miller C, Konzett J, Tiepolo M, Armstrong RA, Thöni M (2007) Jadeite-gneiss from the Eclogite Zone, Tauern Window, Eastern Alps, Austria: metamorphic, geochemical and zircon record of a sedimentary protolith. Lithos 93:68–88Google Scholar
  73. Moecher DP, Samson SD (2006) Differential zircon fertility of source terranes and natural bias in the detrital zircon record: implications for sedimentary provenance analysis. Earth Planet Sci Lett 247:252–266Google Scholar
  74. Nehyba S, Roetzel R (2004) The Hollabrunn–Mistelbach formation (Upper Miocene, Pannonian) in the Alpine-Carpathian Foredeep and the Vienna basin in lower Austria—an example of a Coarse-grained Fluvial System. Jahrbuch des Geologischen Bundesanstalt 144:191–221Google Scholar
  75. Nemchin AA, Cawood PA (2005) Discordance of the U–Pb system in detrital zircons: implication for provenance studies of sedimentary rocks. Sed Geol 182:143–162Google Scholar
  76. Neubauer F, Klötzli U, Poscheschnik P (2001) Two stages of Cadomian magmatism in the Alps recorded in Late Ordovician sandstones of the Carnic Alps: results from zircon Pb/Pb evaporation dating. 21st IAS meeting of sedimentology, pp 126–127Google Scholar
  77. Neubauer F, Frisch W, Hansen BT (2002) Early Palaeozoic tectonothermal events in basement complexes of the eastern Graywacke Zone (Eastern Alps): evidence from U–Pb zircon data. Int J Earth Sci 91:775–786Google Scholar
  78. Patchett PJ, Kouvo O, Hedge CE, Tatsumoto M (1981) Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes. Contrib Miner Petrol 78:279–297Google Scholar
  79. Petrakakis K (1997) Evolution of Moldanubian rocks in Austria: review and synthesis. J Metamorph Geol 15:203–222Google Scholar
  80. Preusser F, Fiebig M (2009) European Middle Pleistocene loess chronostratigraphy: some considerations based on evidence from the Wels site, Austria. Quatern Int 198:37–45Google Scholar
  81. Pullen A, Kapp P, McCallister AT, Chang H, Gehrels GE, Garzione CN, Heermance RV, Ding L (2011) Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications. Geology 39:1031–1034Google Scholar
  82. Pupin JP (1980) Zircon and granite petrology. Contrib Miner Petrol 73:207–220Google Scholar
  83. Pye K (1995) The nature, origin and accumulation of loess. Quatern Sci Rev 14:653–667Google Scholar
  84. Reitner JM (2007) Glacial dynamics at the beginning of Termination I in the Eastern Alps and their stratigraphic implications. Quatern Int 164–165:64–84Google Scholar
  85. Renssen H, Kasse C, Vandenberghe J, Lorenz SJ (2007) Weichselian Late Pleniglacial surface winds over northwest and central Europe: a model-data comparison. J Quat Sci 22:281–293Google Scholar
  86. Richter S, Goldberg SA, Mason PB, Traina AJ, Schwieters JB (2001) Linearity tests for secondary electron multipliers used in isotope ratio mass spectrometry. Int J Mass Spectrom 206:105–127Google Scholar
  87. Samson SD, D’Lemos RS, Miller BV, Hamilton MA (2005) Neoproterozoic palaeogeography of the Cadomia and Avalon terranes: constraints from detrital zircon U–Pb ages. J Geol Soc Lond 162:65–71Google Scholar
  88. Scherer EE, Whitehouse MJ, Münker C (2007) Zircon as a monitor of crustal growth. In: Harley SL, Kelly NM (eds) Zircon: tiny but timely, Elements, vol 3. Mineralogical Society of America (ISSN 1811-5209), pp 19‒24Google Scholar
  89. Schmid SM, Fügenschuh B, Kissling E, Schuster R (2004) Tectonic map and overall architecture of the Alpine orogen. Eclogae Geol Helv 97:93–117Google Scholar
  90. Shao Y (2009) Physics and modelling of wind erosion. In: Atmospheric and oceanographic sciences library, vol 37. Springer, Netherlands. ISBN 978-1-4020-8894-0. http://dx.doi.org/10.1007/978-1-4020-8895-7
  91. Siebel W, Chen F (2010) Zircon Hf isotope perspective on the origin of granitic rocks from eastern Bavaria, SW Bohemian Massif. Int J Earth Sci 99:993–1005Google Scholar
  92. Siebel W, Thiel M, Chen F (2006) Zircon geochronology and compositional record of late- to post-kinematic granitoids associated with the Bavarian Pfahl zone (Bavarian Forest). Mineral Petrol 86:45–62Google Scholar
  93. Siebel W, Shang CK, Reitter E, Rohrmüller J, Breiter K (2008) Two distinctive granite suites in the south-western Bohemian Massif and their record of emplacement: constraints from zircon 207Pb/206Pb chronology and geochemistry. J Petrol 49:1853–1872Google Scholar
  94. Siebel W, Shang CK, Thern E, Danišík M, Rohrmüller J (2012) Zircon response to high-grade metamorphism as revealed by U–Pb and cathodoluminescence studies. Int J Earth Sci 101:2105–2123Google Scholar
  95. Siegesmund S, Heinrichs T, Romer RL, Doman D (2007) Age constraints on the evolution of the Austroalpine basement to the south of the Tauern Window. Int J Earth Sci 96:415–432Google Scholar
  96. Sláma J, Košler J (2012) Effects of sampling and mineral separation on accuracy of detrital zircon studies. Geochem Geophys Geosyst 13:Q05007. doi:10.1029/2012GC004106 Google Scholar
  97. Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35Google Scholar
  98. Smalley I, O’Hara-Dhand K, Wint J, Machalett B, Jary Z, Jefferson I (2009) Rivers and loess: the significance of long river transportation in the complex event-sequence approach to loess deposit formation. Quatern Int 198:7–18Google Scholar
  99. Söderlund U, Patchett JP, Vervoort JD, Isachsen C (2004) The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324Google Scholar
  100. Stampfli GM, von Raumer JF, Borel GD (2002) Paleozoic evolution of pre-Variscan terranes: from Gondwana to the Variscan collision. In: Martínez Catalán JR, Hatcher RD Jr, Arenas R, Díaz García F (eds) Variscan-Appalachian dynamics: the building of the late Paleozoic basement, Geological society of America special paper, vol 364, pp 263–280Google Scholar
  101. Stevens T, Palk C, Carter A, Lu H, Clift PD (2010) Assessing the provenance of loess and desert sediments in northern China using U–Pb dating and morphology of detrital zircons. Geol Soc Am Bull 122:1331–1344Google Scholar
  102. Stevens T, Carter A, Watson TP, Vermeesch P, Andó S, Bird AF, Lu H, Garzanti E, Cottam MA, Sevastjanova I (2013) Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau. Quatern Sci Rev 78:355–368Google Scholar
  103. Sylvester PJ, Ghaderi M (1997) Trace element analysis of scheelite by excimer laser ablation inductively coupled plasma mass spectrometry (ELA-ICP-MS) using a synthetic silicate glass standard. Chem Geol 141:49–65Google Scholar
  104. Tait JA, Bachtadse V, Franke W, Soffel HC (1997) Geodynamic evolution of the European Variscan fold belt: palaeomagnetic and geological constraints. Geol Rundsch 86:585–598Google Scholar
  105. Teipel U,·Eichhorn R,·Loth G, Rohrmüller J, Höll R, Kennedy A (2004) U–Pb SHRIMP and Nd isotopic data from the western Bohemian Massif (Bayerischer Wald, Germany): implications for upper Vendian and lower ordovician magmatism. Int J Earth Sci 93:782‒801Google Scholar
  106. Terhorst B, Ottner F, Wriessnig K (2012) Weathering intensity and pedostratigraphy of the Middle to Upper Pleistocene loess/palaeosol sequence of Wels-Aschet (Upper Austria). Quatern Int 265:142–154Google Scholar
  107. Thiel C, Buylaert J-P, Murray A, Terhorst B, Hofer I, Tsukamoto S, Frechen M (2010) Luminescence dating of the Stratzing loess profile (Austria)—testing the potential of an elevated temperature post-IR IRSL protocol. Quatern Int 234:23–31Google Scholar
  108. Tsoar H, Pye K (1987) Dust transport and the question of desert loess formation. Sedimentology 34:139–153Google Scholar
  109. Újvári G, Varga A, Balogh-Brunstad Z (2008) Origin, weathering, and geochemical composition of loess in southwestern Hungary. Quatern Res 69:421–437Google Scholar
  110. Újvári G, Varga A, Ramos FC, Kovács J, Németh T, Stevens T (2012) Evaluating the use of clay mineralogy, Sr-Nd isotopes and zircon U–Pb ages in tracking dust provenance: an example from loess of the Carpathian Basin. Chem Geol 304–305:83–96Google Scholar
  111. Újvári G, Klötzli U, Kiraly F, Ntaflos T (2013) Towards identifying the origin of metamorphic components in Austrian loess: insights from detrital rutile chemistry, thermometry and U–Pb geochronology. Quatern Sci Rev 75:132–142Google Scholar
  112. van Husen D (1981) Geologisch-sedimentologische Aspekte im Quartär von Österreich. Mitteilungen der Geologischen Gesellschaft 74(75):197–230Google Scholar
  113. van Husen D (2000) Geological processes during the Quaternary. Mitteilungen der Geologischen Gesellschaft 92:135–156Google Scholar
  114. Vermeesch P (2004) How many grains are needed for a provenance study? Earth Planet Sci Lett 224:441–451Google Scholar
  115. Vermeesch P (2012) On the visualisation of detrital age distributions. Chem Geol 312–313:190–194Google Scholar
  116. Vervoort JD, Patchett PJ, Albarède F, Blichert-Toft J, Rudnick R, Downes H (2000) Hf–Nd isotopic evolution of the lower crust. Earth Planet Sci Lett 181:115–129Google Scholar
  117. Vervoort JD, Patchett PJ, Söderlund U, Baker M (2004) Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf by isotope dilution using MC-ICPMS. Geochem Geophys Geosyst 5:Q11002. doi:10.1029/2004GC000721 Google Scholar
  118. Veselá P, Söllner F, Finger F, Gerdes A (2011) Magmato-sedimentary Carboniferous to Jurassic evolution of the western Tauern window, Eastern Alps (constraints from U–Pb zircon dating and geochemistry). Int J Earth Sci 100:993–1027Google Scholar
  119. von Quadt A (1992) U–Pb zircon and Sm-Nd isotope geochronology of mafic and ultramafic rocks from the central part of the Tauern Window (eastern Alps). Contrib Miner Petrol 110:57–67Google Scholar
  120. Watson EB (1996) Dissolution, growth and survival of zircons during crustal fusion: kinetic principles, geological models and implications for isotopic inheritance. Trans R Soc Edinb Earth Sci 87:43–56Google Scholar
  121. Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304Google Scholar
  122. Weber B, Scherer EE, Martens UK, Mezger K (2012) Where did the lower Paleozoic rocks of Yucatan come from? A U–Pb, Lu–Hf, and Sm–Nd isotope study. Chem Geol 312–313:1–17Google Scholar
  123. Wendt JI, Kröner A, Fiala J, Todt W (1994) U–Pb zircon and Sm–Nd dating of Moldanubian HP/HT granulites from South Bohemia, Czech Republic. J Geol Soc 151:83–90Google Scholar
  124. Whitehouse MJ, Kamber BS, Moorbath S (1999) Age significance of U–Th–Pb zircon data from early Archaean rocks of west Greenland—a reassessment based on combined ion-microprobe and imaging studies. Chem Geol 160:201–224Google Scholar
  125. Woodhead JD, Hergt JM (2005) A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostand Geoanal Res 29:183–195Google Scholar
  126. Xiao G, Zong K, Li G, Hu Z, Dupont-Nivet G, Peng S, Zhang K (2012) Spatial and glacial–interglacial variations in provenance of the Chinese Loess Plateau. Geophys Res Lett 39:L20715. doi:10.1029/2012GL053304 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Geodetic and Geophysical InstituteMTA Research Centre for Astronomy and Earth SciencesSopronHungary
  2. 2.Department of Lithospheric ResearchUniversity of ViennaViennaAustria

Personalised recommendations