International Journal of Earth Sciences

, Volume 104, Issue 4, pp 927–962 | Cite as

Setting new constrains on the age of crustal-scale extensional shear zone (Vivero fault): implications for the evolution of Variscan orogeny in the Iberian massif

  • Marco A. Lopez-Sanchez
  • Alberto Marcos
  • Francisco J. Martínez
  • Alexander Iriondo
  • Sergio Llana-Fúnez
Original Paper


The Vivero fault is crustal-scale extensional shear zone parallel to the Variscan orogen in the Iberian massif belt with an associated dip-slip movement toward the hinterland. To constrain the timing of the extension accommodated by this structure, we performed zircon U–Pb LA-ICP-MS geochronology in several deformed plutons: some of them emplaced syntectonically. The different crystallization ages obtained indicate that the fault was active at least between 303 ± 2 and 287 ± 3 Ma, implying a minimum tectonic activity of 16 ± 5 Ma along the fault. The onset of the faulting is established to have occurred later than 314 ± 2 Ma. The geochronological data confirm that the Vivero fault postdates the main Variscan deformation events in the NW of the Iberian massif and that the extension direction of the Late Carboniferous–Early Permian crustal-scale extensional shear zones along the Ibero-Armorican Arc was consistently perpendicular to the general arcuate trend of the belt in SW Europe.


Vivero fault Variscan orogeny Late Carboniferous–Early Permian extension Iberian massif Ibero-Armorican Arc U–Pb LA-ICP-MS zircon dating 


  1. Alcock JE, Martínez Catalán JR, Arenas R, Díez Montes A (2009) Use of thermal modeling to assess the tectono-metamorphic history of the Lugo and Sanabria gneiss domes, Northwest Iberia. Bulletin de la Societé Géologique de France 180:179–197. doi:10.2113/gssgfbull.180.3.179 CrossRefGoogle Scholar
  2. Alonso J, Marcos A, Suárez A (2006) Structure and organization of the Porma Melange: progressive denudation of a submarine nappe toe by gravitational collapse. Am J Sci 306:32–65. doi:10.2475/ajs.306.1.32 CrossRefGoogle Scholar
  3. Andersen T (2002) Correction of common lead in U–Pb analyses that do not report 204Pb. Chem Geol 192:59–79. doi:10.1016/S0009-2541(02)00195-X CrossRefGoogle Scholar
  4. Aranguren A (1994) Estructura y cinemática del emplazamiento de los granitos del Domo de Lugo y del Antiforme del Ollo de Sapo. Serie Nova Terra 10Google Scholar
  5. Aranguren A, Tubía JM (1992) Structural evidence for the relationship between thrusts, extensional faults and granite intrusions in the Variscan belt of Galicia (Spain). J Struct Geol 14:1229–1237. doi:10.1016/0191-8141(92)90072-5 CrossRefGoogle Scholar
  6. Arenas R, Martínez Catalán JR (2003) Low-P metamorphism following a Barrovian-type evolution. Complex tectonic controls for a common transition, as deduced in the Mondoñedo thrust sheet (NW Iberian massif). Tectonophysics 365:143–164. doi:10.1016/S0040-1951(03)00020-9 CrossRefGoogle Scholar
  7. Arias D, Farias P, Marcos A (2002) Estratigrafía y estructura del Antiforme del Ollo de Sapo en el área de Viana do Bolo-A Gudiña (Provincia de Orense, NO de España): nuevos datos sobre la posición estratigráfica de la Formación porfiroide Ollo de Sapo. Trabajos de Geología 23:9–19Google Scholar
  8. Bastida F, Pulgar JA (1978) La estructura del manto de Mondoñedo entre Burela y Tapia de Casariego (Costa Cantábrica, NW de España). Trabajos de Geología 10:75–159Google Scholar
  9. Bastida F, Marcos A, Marquínez J et al (1984) Mapa Geológico de España e. 1:200.000. Hoja no 1 (La Coruña). Instituto Geológico y Minero de España, Madrid, EspañaGoogle Scholar
  10. Bastida F, Martínez Catalán JR, Pulgar JA (1986) Structural, metamorphic and magmatic history of the Mondoñedo nappe (Hercynian belt, NW Spain). J Struct Geol 8:415–430. doi:10.1016/0191-8141(86)90060-X CrossRefGoogle Scholar
  11. Bea F, Montero P, González Lodeiro F et al (2006) Zircon thermometry and U–Pb ion-microprobe dating of the gabbros and associated migmatites of the Variscan Toledo Anatectic Complex, Central Iberia. J Geol Soc 163:847–855. doi:10.1144/0016-76492005-143 CrossRefGoogle Scholar
  12. Beaumont C, Jamieson RA, Nguyen MH, Lee B (2001) Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414:738–742. doi:10.1038/414738a CrossRefGoogle Scholar
  13. Bellido F, Brande JL, Lasala M, Reyes J (1992) Consideraciones petrológicas y cornológicas sobre las rocas graníticas hercínicas de Galicia. Cadernos do Laborotorio Xeolóxico de Laxe 17:241–261Google Scholar
  14. Burchfield BC, Zhiliang C, Hodges KV et al (1992) The South Tibetan detachment system, himalayan orogen: extension contemporaneous with and parallel to shortening in a collisional mountain belt. Geol Soc Am Spec Pap 269:1–41Google Scholar
  15. Burg JP, Van Den Driessche J, Brun JP (1994) Syn- to post-thickening extension in the Variscan Belt of Western Europe: modes and structural consequences. Géol Fr 3:33–51Google Scholar
  16. Capdevila R (1969) Le métamorphisme régional progressif et les granites dans le segmentet hercynien Galice nord orientale (NW l’Espagne). Dissertation, Université de Montpellier, FranceGoogle Scholar
  17. Charlier BLA, Wilson CJN, Lowenstern JB et al (2005) Magma generation at a large, hyperactive silicic volcano (Taupo, New Zealand) revealed by U–Th and U–Pb systematics in zircons. J Petrol 46:3–32. doi:10.1093/petrology/egh060 CrossRefGoogle Scholar
  18. Colchen M (1974) Geologie de la Sierra de la Demanda. Burgos-Logroño (Espagne). Memorias del Instituto Geológico y Minero de España 8. MadridGoogle Scholar
  19. Coleman DS, Gray W, Glazner AF (2004) Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 32:433. doi:10.1130/G20220.1 CrossRefGoogle Scholar
  20. Dallmeyer RD, Martínez Catalán JR, Arenas R et al (1997) Diachronous Variscan tectonothermal activity in the NW Iberian massif: evidence from 40Ar/39Ar dating of regional fabrics. Tectonophysics 277:307–337. doi:10.1016/S0040-1951(97)00035-8 CrossRefGoogle Scholar
  21. Díaz Alvarado J, Fernández C, Castro A, Moreno-Ventas I (2013) SHRIMP U–Pb zircon geochronology and thermal modeling of multilayer granitoid intrusions. Lithos 175–176:104–123. doi:10.1016/j.lithos.2013.05.006 CrossRefGoogle Scholar
  22. Díez Balda MA, Martínez Catalán JR, Ayarza P (1995) Syn-collisional extensional collapse parallel to the orogenic trend in a domain of steep tectonics: the Salamanca Detachment Zone (Central Iberian Zone, Spain). J Struct Geol 17:163–182. doi:10.1016/0191-8141(94)E0042-W CrossRefGoogle Scholar
  23. Doblas M, López-Ruiz J, Oyarzun R et al (1994) Extensional tectonics in the central Iberian Peninsula during the Variscan to Alpine transition. Tectonophysics 238:95–116. doi:10.1016/0040-1951(94)90051-5 CrossRefGoogle Scholar
  24. Escuder Viruete J (1998) Relationships between structural units in the Tormes gneiss dome (NW Iberian massif, Spain): geometry, structure and kinematics of contractional and extensional Variscan deformation. Geol Rundsch 87:165–179. doi:10.1007/s005310050199 CrossRefGoogle Scholar
  25. Escuder Viruete J, Arenas R, Martínez Catalán JR (1994) Tectonothermal evolution associated with Variscan crustal extension in the Tormes Gneiss Dome (NW Salamanca, Iberian massif, Spain). Tectonophysics 238:117–138. doi:10.1016/0040-1951(94)90052-3 CrossRefGoogle Scholar
  26. Escuder Viruete J, Hernáiz Huerta PP, Valverde Vaquero P et al (1998) Variscan syncollisional extension in the Iberian massif: structural, metamorphic and geochronological evidence from the Somosierra sector of the Sierra de Guadarrama (Central Iberian Zone, Spain). Tectonophysics 290:87–109. doi:10.1016/S0040-1951(98)00014-6 CrossRefGoogle Scholar
  27. Farias P, Gallastegui G, González Lodeiro F et al (1987) Aportaciones al conocimiento de la litoestratigrafía y estructura de Galicia Central. Memórias da Facultade de Ciências. Universidade do Porto 1:411–431Google Scholar
  28. Faure M (1995) Late orogenic carboniferous extensions in the Variscan French Massif Central. Tectonics 14:132. doi:10.1029/94TC02021 CrossRefGoogle Scholar
  29. Fernández-Suárez J, Dunning GR, Jenner GA, Gutiérrez-Alonso G (2000) Variscan collisional magmatism and deformation in NW Iberia: constraints from U–Pb geochronology of granitoids. J Geol Soc 157:565–576. doi:10.1144/jgs.157.3.565 CrossRefGoogle Scholar
  30. Galán G (1987) Las rocas graníticas del macizo de Vivero en el sector norte (Lugo, NO de España). Corpus Geologicum Gallaeciae Segunda serie II. La CoruñaGoogle Scholar
  31. Galán G, Pin C, Duthou JL (1996) Sr–Nd isotopic record of multi-stage interactions between mantle-derived magmas and crustal components in a collision context: the ultramafic-granitoid association from Vivero (Hercynian belt, NW Spain). Chem Geol 131:67–91. doi:10.1016/0009-2541(96)00027-7 CrossRefGoogle Scholar
  32. Gehrels G, Valencia V, Ruiz J (2008) Enhanced precision, accuracy, efficiency, and spatial resolution of U–Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry. Geochem Geophys Geosyst 9:1–13. doi:10.1029/2007GC001805 CrossRefGoogle Scholar
  33. González Clavijo E, Díez Balda MA, Alvarez F (1993) Structural study of a semiductile strike-slip system in the Central Iberian Zone (Variscan Fold Belt, Spain): structural controls on gold deposits. Geol Rundsch 82:448–460. doi:10.1007/BF00212409 CrossRefGoogle Scholar
  34. González Lodeiro F, Hernández Urroz J, Klein E et al (1981) Mapa Geológico de España e. 1:200.000. Hoja no 8 (Lugo). Instituto Geológico y Minero de España, Madrid, EspañaGoogle Scholar
  35. Goscombe BD, Passchier CW (2003) Asymmetric boudins as shear sense indicators: an assessment from field data. J Struct Geol 25:575–589. doi:10.1016/S0191-8141(02)00045-7 CrossRefGoogle Scholar
  36. Gutiérrez-Alonso G, Fernández-Suárez J, Jeffries TE et al (2010) Absolute age (40Ar*–39Ar and U–Pb) constrains on orocline development and related lithospheric delamination in the Iberian Armorican Arc. e-Terra 23(4).
  37. Gutiérrez-Alonso G, Fernández-Suárez J, Jeffries TE et al (2011) Diachronous post-orogenic magmatism within a developing orocline in Iberia, European Variscides. Tectonics. doi:10.1029/2010TC002845
  38. Hernández Enrile JL (1991) Extensional tectonics of the Toledo ductile-brittle shear zone, Central Iberian Massif. Tectonophysics 191:311–324. doi:10.1016/0040-1951(91)90064-Y CrossRefGoogle Scholar
  39. Horn I, Günter D (2003) The influence of ablation carrier gasses Ar, He, and Ne on the particle size distribution and transport efficiencies of laser ablation-induced aerosols: implications for LA-ICP-MS. Appl Surf Sci 207:144–157. doi:10.1016/S0169-4332(02)01324-7 CrossRefGoogle Scholar
  40. Iglesias Ponce de León M, Varea Nieto R (1982) Mapa geológico de España, scale 1:50.000, 2nd series, no. 228, Viana del Bollo. Madrid, Instituto Geológico y Minero de España, p 26, 1 fold mapGoogle Scholar
  41. Jackson S, Longerich H, Dunning R, Fryer B (1992) The application of laser-ablation microprobe-inductively coupled plasma mass spectrometry LAM-ICP-MS to in situ trace element determinations in minerals. Can Mineral 30:1049–1064Google Scholar
  42. Julivert M, Marcos A (1973) Superimposed folding under flexural conditions in the Cantabrian Zone (Hercynian Cordillera, northwest Spain). Am J Sci 273:353–375. doi:10.2475/ajs.273.5.353 CrossRefGoogle Scholar
  43. Julivert M, Fontboté J, Ribeiro A, Conde I (1972) Mapa tectónico de la Península Ibérica y Baleares. Instituto Geológico y Minero de España, Madrid, pp 246–265Google Scholar
  44. Kruhl JH (1996) Prism- and basal-plane parallel subgrain boundaries in quartz: a microstructural geothermobarometer. J Metamorph Geol 14:581–589. doi:10.1046/j.1525-1314.1996.00413.x CrossRefGoogle Scholar
  45. Llana-Fúnez S, Marcos A (2001) The Malpica–Lamego Line: a major crustal-scale shear zone in the Variscan belt of Iberia. J Struct Geol 23:1015–1030. doi:10.1016/S0191-8141(00)00173-5 CrossRefGoogle Scholar
  46. Llana-Fúnez S, Marcos A (2002) Structural record during exhumation and emplacement of high-pressure-low-to intermediate-temperature rocks in the Malpica-Tui unit (Variscan Belt of Iberia). Geol Soc Am Spec Pap 364:125–142. doi:10.1130/0-8137-2364-7.125 Google Scholar
  47. Llana-Fúnez S, Marcos A (2007) Convergence in a thermally softened thick crust: Variscan intracontinental tectonics in Iberian plate rocks. Terra Nova 19:393–400. doi:10.1111/j.1365-3121.2007.00763.x CrossRefGoogle Scholar
  48. Lopez-Sanchez MA (2013) Análisis tectónico de la Falla de Vivero (Galicia, NO de España). Dissertation, Universidad de Oviedo, España.
  49. López-Sánchez MA (2007) Estudio geológico de la falla de Vivero y estructuras asociadas en la región de Guntín (Lugo, NO de la Península Ibérica). Trabajos de Geología 27:97–157Google Scholar
  50. Lotze F (1945) Zur Gliederung der Varisziden der Iberischen Meseta. Geotekton Forsch 6:78–92Google Scholar
  51. Ludwig KR (2012) Isoplot 3.75: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication No. 5Google Scholar
  52. Macaya J, González Lodeiro F, Martínez Catalán JR, Alvarez F (1991) Continuous deformation, ductile thrusting and backfolding of cover and basement in the Sierra de Guadarrama, Hercynian orogen of central Spain. Tectonophysics 191:291–309. doi:10.1016/0040-1951(91)90063-X CrossRefGoogle Scholar
  53. Marcos A (1971) Cabalgamientos y estructuras menores asociadas originados en el transcurso de una nueva fase herciniana de deformación en el occidente de Asturias (NW de España). Breviora Geol Asturica 15:59–64Google Scholar
  54. Marcos A (1973) Las series del Paleozoico Inferior y la estructura herciniana del occidente de Asturias (NW de España). Trabajos de Geología 6:3–107Google Scholar
  55. Martínez Catalán JR (1983) Deformación heterogénea en los macizos graníticos de Sarria y Santa Eulalia de Pena (provincia de Lugo). Studia Geologica Salmanticensia 18:39–64Google Scholar
  56. Martínez Catalán JR (1985) Estratigrafía y estructura del Domo de Lugo (Sector Oeste de la zona Asturoccidental-leonesa. Corpus Geologicum Gallaeciae Segunda serie II, La CoruñaGoogle Scholar
  57. Martínez Catalán JR, Arenas R, Díez Balda MA (2003) Large extensional structures developed during emplacement of a crystalline thrust sheet: the Mondoñedo nappe (NW Spain). J Struct Geol 25:1815–1839. doi:10.1016/S0191-8141(03)00038-5 CrossRefGoogle Scholar
  58. Martínez Catalán JR, Arenas R, Abati J et al (2007) Space and time in the tectonic evolution of the northwestern Iberian massif: implications for the Variscan belt. In: Hatcher Jr RD, Carlson MP, McBride JH, Martínez Catalán JR (eds), 4-D framework of continental crust. Geol Soc Am Memoir 200:403–423. doi:10.1130/2007.1200(21)
  59. Martínez FJ, Rôlet J (1988) Late Palaeozoic metamorphism in the northwestern Iberian Peninsula, Brittany and related areas in SW Europe. Geol Soc Lond Spec Publ 38:611–620. doi:10.1144/GSL.SP.1988.038.01.42 CrossRefGoogle Scholar
  60. Martínez FJ, Julivert M, Sebastian A et al (1988) Structural and thermal evolution of high-grade areas in the northwestern parts of the Iberian massif. Am J Sci 288:969–996. doi:10.2475/ajs.288.10.969 CrossRefGoogle Scholar
  61. Martínez FJ, Carreras J, Arboleya ML, Dietsch C (1996) Structural and metamorphic evidence of local extension along the Vivero fault coeval with bulk crustal shortening in the Variscan chain (NW Spain). J Struct Geol 18:61–73. doi:10.1016/0191-8141(95)00080-W CrossRefGoogle Scholar
  62. Martínez FJ, Reche J, Arboleya ML (2001) P–T modelling of the andalusite–kyanite–andalusite sequence and related assemblages in high-Al graphitic pelites. Prograde and retrograde paths in a late kyanite belt in the Variscan Iberia. J Metamorph Geol 19:661–677. doi:10.1046/j.0263-4929.2001.00335.x CrossRefGoogle Scholar
  63. Martín-González F (2007) Evolution of an extensional shear zone in retrograde metamorphic conditions in the Iberian massif: Santa María de la Alameda shear zone (Spanish Central System). Cadernos do Laboratorio Xeolóxico de Laxe 32:63–81Google Scholar
  64. Matte P (1968) La structure de la virgation hercynienne de Galice (Espagne). Geol Alp 44:155–280Google Scholar
  65. Matte P (1986) Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics 126:329–374. doi:10.1016/0040-1951(86)90237-4 CrossRefGoogle Scholar
  66. Matte P, Ribeiro A (1975) Forme et réorientation de l’ellipsoide de déformation dans la virgation hercynienne de Galice. Relations avec le plissement et hypothèses sur la genèse de l’arc ibéro-armorican. Comptes Rendus Academie Des Sciences Paris 280:2825–2828Google Scholar
  67. Merino-Tomé OA, Bahamonde JR, Colmenero JR et al (2009) Emplacement of the Cuera and Picos de Europa imbricate system at the core of the Iberian–Armorican arc (Cantabrian zone, north Spain): new precisions concerning the timing of arc closure. Geol Soc Am Bull 121:729–751. doi:10.1130/B26366.1 CrossRefGoogle Scholar
  68. Miller JS, Matzel JEP, Miller CF et al (2007) Zircon growth and recycling during the assembly of large, composite arc plutons. J Volcanol Geotherm Res 167:282–299. doi:10.1016/j.jvolgeores.2007.04.019 CrossRefGoogle Scholar
  69. Mouslopoulou V, Walsh JJ, Nicol A (2009) Fault displacement rates on a range of timescales. Earth Planet Sci Lett 278:186–197. doi:10.1016/j.epsl.2008.11.031 CrossRefGoogle Scholar
  70. Mukherjee S (2013a) Channel flow extrusion model to constrain dynamic viscosity and Prandtl number of the Higher Himalayan Shear Zone. Int J Earth Sci 102:1811–1835. doi:10.1007/s00531-012-0806-z CrossRefGoogle Scholar
  71. Mukherjee S (2013b) Higher Himalaya in the Bhagirathi section (NW Himalaya, India): its structures, backthrusts and extrusion mechanism by both channel flow and critical taper mechanisms. Int J Earth Sci 102:1851–1870. doi:10.1007/s00531-012-0861-5 CrossRefGoogle Scholar
  72. Mukherjee S, Koyi HA (2010a) Higher Himalayan Shear Zone, Sutlej section: structural geology and extrusion mechanism by various combinations of simple shear, pure shear and channel flow in shifting modes. Int J Earth Sci 99:1267–1303. doi:10.1007/s00531-009-0459-8 CrossRefGoogle Scholar
  73. Mukherjee S, Koyi HA (2010b) Higher Himalayan Shear Zone, Zanskar Indian Himalaya: microstructural studies and extrusion mechanism by a combination of simple shear and channel flow. Int J Earth Sci 99:1083–1110. doi:10.1007/s00531-009-0447-z CrossRefGoogle Scholar
  74. Mukherjee S, Mukherjee B, Thiede R (2013) Geosciences of the Himalaya–Karakoram–Tibet orogen. Int J Earth Sci 102:1757–1758. doi:10.1007/s00531-013-0934-0 CrossRefGoogle Scholar
  75. Nicol A, Walsh JJ, Watterson J, Underhill J (1997) Displacement rates of normal faults. Nature 390:157–159. doi:10.1038/36548 CrossRefGoogle Scholar
  76. Ortega Cuesta LA (1988) Estudio petrogenético del granito sincinemático de dos micas de A Espenuca (A Coruña). Serie Nova Terra, Laboratorio Xeolóxico de Laxe 14:1–377Google Scholar
  77. Ortega LA, Aranguren A, Menéndez M, Gil Ibarguchi I (2000) Petrogénesis, edad y emplazamiento del granito tardi-hercínico de Veiga (antiforme del Ollo de Sapo, Noroeste de España). Cadernos do Laboratorio Xeolóxico de Laxe 25:265–268Google Scholar
  78. Pamplona J, Rodrigues BC (2010) Kinematic interpretation of shearband boudins: New parameters and ratios useful in HT simple shear zones. J Struct Geol 33:38–50. doi:10.1016/j.jsg.2010.10.004 CrossRefGoogle Scholar
  79. Parga Pondal I, Matte P, Capdevila R (1964) Introduction à la géologie de l “Ollo de Sapo”, formation porphyroide anté-silurienne du Nord-Ouest de l’Espagne. Notas y Comunicaciones del Instituto Geológico y Minero de España 76:119–153Google Scholar
  80. Parga Pondal I, Matte P, Capdevila R et al (1967) Carte géologique du Nord-ouest de la Peninsule Ibérique (Hercynien et ante-hercynien). e. 1:500.000. Direcçao Geral de Minas e Serviços Geológicos de Portugal. LisboaGoogle Scholar
  81. Parga Pondal I, Parga Peinador JR, Vegas R, Marcos A (1982) Mapa Xeolóxico de Macizo Hespérico e. 1:500.000. Publicaciones del Área de Xeoloxía e Minería. Seminario de estudos galegos, Edificio de Castro, A CoruñaGoogle Scholar
  82. Paterson SR, Tobisch OT (1988) Using pluton ages to date regional deformations: problems with commonly used criteria. Geology 16:1108–1111. doi:10.1130/0091-7613(1988 CrossRefGoogle Scholar
  83. Paterson S, Žák J, Janoušek V (2008) Growth of complex sheeted zones during recycling of older magmatic units into younger: Sawmill Canyon area, Tuolumne batholith, Sierra Nevada, California. J Volcanol Geotherm Res 177:457–484. doi:10.1016/j.jvolgeores.2008.06.024 CrossRefGoogle Scholar
  84. Pereira MF, Chichorro M, Williams IS et al (2009) Variscan intra-orogenic extensional tectonics in the Ossa-Morena Zone (Évora-Aracena-Lora del Rı́o metamorphic belt, SW Iberian massif): SHRIMP zircon U–Th–Pb geochronology. Geol Soc Lond Spec Publ 327:215–237. doi:10.1144/SP327.11 CrossRefGoogle Scholar
  85. Pérez-Estaún A, Bea F (2004) Macizo Ibérico. In: Vera JA (ed) Geología de España. SGE-IGME, Madrid, pp 465–527Google Scholar
  86. Pérez-Estaún A, Martínez Catalán JR, Bastida F (1991) Crustal thickening and deformation sequence in the footwall to the suture of the Variscan belt of northwest Spain. Tectonophysics 191:243–253. doi:10.1016/0040-1951(91)90060-6 CrossRefGoogle Scholar
  87. Pérez-Estáun A, Bastida F, Alonso JL et al (1988) A thin-skinned tectonics model for an arcuate fold and thrust belt; the Cantabrian Zone (Variscan Ibero-Armorican Arc). Tectonics 7:517–537. doi:10.1029/TC007i003p00517 CrossRefGoogle Scholar
  88. Pitra P, Poujol M, Van Den Driessche J et al (2012) Early Permian extensional shearing of an Ordovician granite: the Saint-Eutrope ‘C/S-like’ orthogneiss (Montagne Noire, French Massif Central). CR Geosci 344:377–384. doi:10.1016/j.crte.2012.06.002 CrossRefGoogle Scholar
  89. Poilvet JC, Poujol M, Pitra P et al (2011) The Montalet granite, Montagne Noire, France: an Early Permian syn-extensional pluton as evidenced by new U–Th–Pb data on zircon and monazite. CR Geosci 343:454–461. doi:10.1016/j.crte.2011.06.002 CrossRefGoogle Scholar
  90. Ponce Iglesias, de León M, Choukroune P (1980) Shear zones in the Iberian Arc. J Struct Geol 2:63–68. doi:10.1016/0191-8141(80)90035-8 CrossRefGoogle Scholar
  91. Rathore JS, Courrioux G, Choukroune P (1983) Study of ductile shear zones (Galicia, Spain) using texture goniometry and magnetic fabric methods. Tectonophysics 98:87–109. doi:10.1016/0040-1951(83)90212-3 CrossRefGoogle Scholar
  92. Reche J, Martínez FJ, Arboleya ML (1998a) Low- to medium-pressure Variscan metamorphism in Galicia (NW Spain): evolution of a kyanite-bearing synform and associated bounding antiformal domains. Geol Soc Lond Spec Publ 138:61–79. doi:10.1144/GSL.SP.1996.138.01.05 CrossRefGoogle Scholar
  93. Reche J, Martínez FJ, Arboleya ML et al (1998b) Evolution of a kyanite-bearing belt within a HT-LP orogen: the case of NW Variscan Iberia. J Metamorph Geol 16:379–394. doi:10.1111/j.1525-1314.1998.00142.x CrossRefGoogle Scholar
  94. Ribeiro A (1970) Position structural des Massifs de Morais et Bragança (Tras-os-Montes). Commun Serv Geol Port 54:115–138Google Scholar
  95. Richards BC (2013) Current status of the International Carboniferous time scale. In: Lucas SG et al (eds) The Carboniferous-Permian transition. N M Mus Nat Hist Sci Bull 60:348–353Google Scholar
  96. Ries AC (1979) Variscan metamorphism and K–Ar dates in the Variscan fold belt of S Brittany and NW Spain. J Geol Soc 136:89–103. doi:10.1144/gsjgs.136.1.0089 CrossRefGoogle Scholar
  97. Rodríguez J, Cosca MA, Gil Ibarguchi JI, Dallmeyer RD (2003) Strain partitioning and preservation of 40Ar/39Ar ages during Variscan exhumation of a subducted crust (Malpica-Tui complex, NW Spain). Lithos 70:111–139. doi:10.1016/S0024-4937(03)00095-1 CrossRefGoogle Scholar
  98. Román-Berdiel T, Pueyo-Morer EL, Casas-Sainz AM (1995) Granite emplacement during contemporary shortening and normal faulting: structural and magnetic study of the Veiga Massif (NW Spain). J Struct Geol 17:1689–1706. doi:10.1016/0191-8141(95)00062-I CrossRefGoogle Scholar
  99. Rutter EH, Mecklenburgh J, Brodie KH (2011) Rock mechanics constraints on mid-crustal low-viscosity flow beneath Tibet. In: Prior DJ, Rutter EH, Tatham DJ (eds) Deformation mechanisms, rheology and tectonics: microstructures, mechanics and anisotropy. Geol Soc Lond Spec Publ 360:329–336. doi:10.1144/SP360.19
  100. Sambridge MS, Compston W (1994) Mixture modeling of multi-component data sets with application to ion-probe zircon ages. Earth Planet Sci Lett 128:373–390. doi:10.1016/0012-821X(94)90157-0 CrossRefGoogle Scholar
  101. Santos Zalduegui JF, Pin C, Aranguren A, Gil-Ibarguchi JI (1996) Application of specific extraction chromatographic methods to the Rb–Sr, Sm–Nd isotope study of geological samples: the Hombreiro-Santa Eulalia Granite (Lugo, NW Spain). Geogaceta 20:495–497Google Scholar
  102. Sláma J, Košler J, Condon DJ et al (2008) Pleŝovice zircon: a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35. doi:10.1016/j.chemgeo.2007.11.005 CrossRefGoogle Scholar
  103. Solari L, Tanner M (2011) UPb.age, a fast data reduction script for LA-ICP-MS U–Pb geochronology. Revista Mexicana de Ciencias Geológicas 28:83–91Google Scholar
  104. Solari L, Gómez-Tuena A, Bernal J et al (2010) U-Pb zircon geochronology by an integrated LA-ICPMS microanalytical workstation: achievements in precision and accuracy. Geostand Geoanal Res 34:5–18. doi:10.1111/j.1751-908X.2009.00027.x CrossRefGoogle Scholar
  105. Stacey JS, Kramers JD (1975) Approximation of terrestrial Lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221. doi:10.1016/0012-821X(75)90088-6 CrossRefGoogle Scholar
  106. Tera F, Wasserburg GJ (1972) U–Th–Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet Sci Lett 14:281–304. doi:10.1016/0012-821X(72)90128-8 CrossRefGoogle Scholar
  107. Twiss RJ, Moores EM (2007) Structural Geology, 2nd edn. W. H. Freeman and Company, New YorkGoogle Scholar
  108. Valverde Vaquero P, Hernáiz-Huerta PP, Escuder Viruete J, Dunning GR (1995) Comparison of the Precambrian and Paleozoic evolution of the Sierra de Guadarrama (Central Iberian Zone, Spain) and the Gondwanan Margin, Newfoundland Appalachians (GMNA). Terra Nova 7:278CrossRefGoogle Scholar
  109. Vegas N, Aranguren A, Tubia J (2001) Granites built by sheeting in a fault stepover (the Sanabria Massifs, Variscan Orogen, NW Spain). Terra Nova 13:180–187. doi:10.1046/j.1365-3121.2001.00343.x CrossRefGoogle Scholar
  110. Weil AB, Gutiérrez-Alonso G, Conan J (2010) New time constraints on lithospheric-scale oroclinal bending of the Ibero-Armorican Arc: a palaeomagnetic study of earliest Permian rocks from Iberia. J Geol Soc 167:127–143. doi:10.1144/0016-76492009-002 CrossRefGoogle Scholar
  111. Weil AB, Gutiérrez-Alonso G, Johnston ST, Pastor-Galán D (2013) Kinematic constraints on buckling a lithospheric-scale orocline along the northern margin of Gondwana: a geologic synthesis. Tectonophysics 582:25–49. doi:10.1016/j.tecto.2012.10.006 CrossRefGoogle Scholar
  112. Wendt I, Carl C (1991) The statistical distribution of the mean squared weighted deviation. Chem Geol Isot Geosci Sect 86:275–285. doi:10.1016/0168-9622(91)90010-T CrossRefGoogle Scholar
  113. Wetherill GW (1956) Discordant uranium-lead ages. Trans Am Geophys Union 37:320–326CrossRefGoogle Scholar
  114. Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci Rev 76:1–131. doi:10.1016/j.earscirev.2005.05.004 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Marco A. Lopez-Sanchez
    • 1
  • Alberto Marcos
    • 1
  • Francisco J. Martínez
    • 2
  • Alexander Iriondo
    • 3
  • Sergio Llana-Fúnez
    • 1
  1. 1.Departamento de GeologíaUniversidad de OviedoOviedoSpain
  2. 2.Departamento de GeologíaUniversidad Autónoma de BarcelonaBellaterra, BarcelonaSpain
  3. 3.Universidad Nacional Autónoma de MéxicoJuriquillaMexico

Personalised recommendations