International Journal of Earth Sciences

, Volume 104, Issue 8, pp 2007–2032 | Cite as

Origin and geodynamic relationships of the Late Miocene to Quaternary alkaline basalt volcanism in the Pannonian basin, eastern–central Europe

  • Szabolcs HarangiEmail author
  • M. Éva Jankovics
  • Tamás Sági
  • Balázs Kiss
  • Réka Lukács
  • Ildikó Soós
Original Paper


Alkaline basaltic volcanism has been taking place in the Carpathian–Pannonian region since 11 Ma and the last eruptions occurred only at 100–500 ka. It resulted in scattered low-magma volume volcanic fields located mostly at the margins of the Pannonian basin. Many of the basalts have compositions close to those of the primitive magmas and therefore can be used to constrain the conditions of the magma generation. Low-degree (2–3 %) melting could occur in the convective asthenosphere within the garnet–spinel transition zone. Melting started at about 100 km depth and continued usually up to the base of the lithosphere. Thus, the final melting pressure could indicate the ambient lithosphere–asthenosphere boundary. The asthenospheric mantle source regions of the basalts were heterogeneous, presumably in small scale, and included either some water or pyroxenite/eclogite lithology in addition to the fertile to slightly depleted peridotite. Based on the prevailing estimated mantle potential temperature (1,300–1,400 °C) along with the number of further observations, we exclude the existence of mantle plume or plume fingers beneath this region. Instead, we propose that plate tectonic processes controlled the magma generation. The Pannonian basin acted as a thin spot after the 20–12 Ma syn-rift phase and provided suction in the sublithospheric mantle, generating asthenospheric flow from below the adjoining thick lithospheric domains. A near-vertical upwelling along the steep lithosphere–asthenosphere boundary beneath the western and northern margins of the Pannonian basin could result in decompressional melting producing low-volume melts. The youngest basalt volcanic field (Perşani) in the region is inferred to have been formed due to the dragging effect of the descending lithospheric slab beneath the Vrancea zone that could result in narrow rupture at the base of the lithosphere. Continuation of the basaltic volcanism cannot be excluded as inferred from the still fusible condition of the asthenospheric mantle. This is reinforced by the detected low-velocity seismic anomalies in the upper mantle beneath the volcanic fields.


Basalt Spinel Carpathian–Pannonian region Magma genesis Monogenetic volcanic field Asthenosphere flow 



Our ideas about the basaltic volcanism in the CPR have refined during the number of instructive and sometimes heavy discussions with several colleagues such as Hilary Downes, Theodoros Ntaflos, Ioan Seghedi, Frank Horváth, Károly Németh, Csaba Szabó, István Kovács, Orlando Vaselli, László Lenkey, Marge Wilson, Michele Lustrino, Jaroslav Lexa, Kadosa Balogh, Zoltán Pécskay and László Fodor. These were promoted by great workshops started with the PANCARDI meetings in the 1990s and early 2000s, followed by the ILP PLUME workshop at Mt. Sainte-Odile in 2006, the EMAW conference in Ferrara in 2007 and the Basalt 2013 in Görlitz in 2013. Discussions about the mantle potential temperature calculations with Claude Herzberg and Keith Putirka were particularly stimulated. Terry Plank kindly provided the calculation scheme of the Langmuir et al.’s (1992) melting model. Participation of the young scientists, M. Éva Jankovics, Balázs Kiss and Réka Lukács, was supported in this research by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP-4.2.4.A/2-11/1-2012-0001 “National Excellence Program”. Constructive comments provided by Stefan Jung and an anonymous reviewer helped us to clarify our views.

Supplementary material

531_2014_1105_MOESM1_ESM.xlsx (66 kb)
Supplementary material 1 (XLSX 66 kb)


  1. Aldanmaz E, Koprubasi N, Gurer ÖF, Kaymakci N, Gourgaud A (2006) Geochemical constraints on the Cenozoic, OIB-type alkaline volcanic rocks of NW Turkey: implications for mantle sources and melting processes. Lithos 86:50–76CrossRefGoogle Scholar
  2. Ali S, Ntaflos T (2011) Alkali basalts from Burgenland, Austria: petrological constraints on the origin of the westernmost magmatism in the Carpathian–Pannonian Region. Lithos 121:176–188CrossRefGoogle Scholar
  3. Ali S, Ntaflos T, Upton BGJ (2013) Petrogenesis and mantle source characteristics of Quaternary alkaline mafic lavas in the western Carpathian–Pannonian region, Styria, Austria. Chem Geol 337–338:99–113CrossRefGoogle Scholar
  4. Allan JF (1992) Cr-spinel as a petrogenetic indicator: deducing magma composition from spinel in highly altered basalts from the Japan Sea, Sites 794 and 797. Proc Ocean Drill Progr 127(128):837–847Google Scholar
  5. Allan JF, Sack RO, Batiza R (1988) Cr-rich spinels as petrogenetic indicators: MORB-type lavas from the Lamont seamount chain, eastern Pacific. Am Mineral 73:741–753Google Scholar
  6. Arai S (1992) Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineral Mag 56:173–184CrossRefGoogle Scholar
  7. Arai S (1994) Compositional variation of olivine–chromian spinel in Mg-rich magmas as a guide to their residual spinel peridotites. J Volcanol Geotherm Res 59:279–293CrossRefGoogle Scholar
  8. Bada G, Horváth F, Fejes I, Gerner P (1999) Review of the present-day geodynamics of the Pannonian basin: progress and problems. J Geodyn 27:501–527CrossRefGoogle Scholar
  9. Baker MB, Stolper EM (1994) Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim Cosmochim Acta 58:2811–2827CrossRefGoogle Scholar
  10. Balázs E, Nusszer A (1987) Unterpannonischer Vulkanismus der Beckengebiete Ungarns. Ann Hung Geol Inst 69:95–104Google Scholar
  11. Balogh K, Németh K (2005) Evidence for the Neogene small-volume intracontinental volcanism in the western Hungary: K/Ar geochronology of the Tihany Maar volcanic complex. Geol Carp 56:91–99Google Scholar
  12. Balogh K, Mihalikova A, Vass D (1981) Radiometric dating of basalt in Southern and Central Slovakia. Zap Karpaty ser Geol 7(113):126Google Scholar
  13. Balogh K, Jámbor A, Partényi Z, Ravaszné Baranyai L, Solti G (1982) A dunántúli bazaltok K/Ar radiometrikus kora. A Magyar Állami Földtani Intézet Évi Jelentése az 1980. évről:243–259Google Scholar
  14. Balogh K, Árva-Sós E, Pécskay Z, Ravasz-Baranyai L (1986) K/Ar dating of post-Sarmatian alkali basaltic rocks in Hungary. Acta Mineralogica et Petrographica Szeged 28:75–93Google Scholar
  15. Balogh K, Harald L, Pécskay Z, Ravasz Cs, Solti G (1990) K/Ar radiometric dating of the Tertiary volcanic rocks of East-Styria and Burgenland. MÁFI Évi Jel. 1988-ról:451–468Google Scholar
  16. Balogh K, Ebner F, Ravasz Cs (1994) K/Ar alter tertiärer Vulcanite de südöstlischen Steiermark und des südlischen Burgenlands. In: Császár G, Daurer A (eds) Jubiläumsschrift 20 Jahre Geologischen Zusammenarbeit Österreich-Ungarn Lobitzer, 55–72Google Scholar
  17. Balogh K, Itaya T, Németh K, Martin U, Wijbrans J, Thanh NX (2005) Study of controversial K/Ar and 40Ar/39Ar ages of the Pliocene alkali basalt of Hegyestű, Balaton Highland, Hungary: a progress report. Mineralia Slovaca 37:298–300Google Scholar
  18. Barnes SJ, Roeder PL (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol 42:2279–2302CrossRefGoogle Scholar
  19. Barruol G, Bonnin M, Pedersen H, Bokelmann GHR, Tiberi C (2011) Belt-parallel mantle flow beneath a halted continental collision: the Western Alps. Earth Planet Sci Lett 302:429–438CrossRefGoogle Scholar
  20. Beccaluva L, Bianchini G, Bonadiman C, Coltorti M, Milani L, Salvini L, Siena F, Tassinari R (2007) Intraplate lithospheric and sub-lithospheric components in the Adriatic domain: nephelinite to tholeiite magma generation in the Paleogene Veneto Volcanic Province, Southern Alps. In: Beccaluva L, Bianchini G, Wilson M (eds) Cenozoic Volcanism in the Mediterranean Area: Geological Society of America, special paper 418:131–152Google Scholar
  21. Beccaluva L, Bianchini G, Natali C, Siena F (2011) Geodynamic control on orogenic and anorogenic magmatic phases in Sardinia and Southern Spain: inferences for the Cenozoic evolution of the western Mediterranean. Lithos 123:218–224CrossRefGoogle Scholar
  22. Bianchini G, Beccaluva L, Siena F (2008) Postcollisional and intraplate Cenozoic volcanism in the rifted Apennines/Adriatic domain. Lithos 101:125–140CrossRefGoogle Scholar
  23. Blondes MS, Reiners PW, Ducea MN, Singer BS, Chesley J (2008) Temporal-compositional trends over short and long time-scales in basalts of the Big Pine Volcanic Field, California. Earth Planet Sci Lett 269:140–154CrossRefGoogle Scholar
  24. Borsy Z, Balogh K, Kozák M, Pécskay Z (1986) Újabb adatok a Tapolcai-medence fejlõdéstörténetéhez. Acta Geographica Debrecina 23:79–104Google Scholar
  25. Bradshaw TK, Hawkesworth CJ, Gallagher K (1993) Basaltic volcanism in the Southern Basin and Range: no role for a mantle plume. Earth Planet Sci Lett 116:45–62CrossRefGoogle Scholar
  26. Brenna M, Cronin SJ, Smith IEM, Sohn YK, Németh K (2010) Mechanisms driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, South Korea. Contrib Mineral Petrol 160:931–950CrossRefGoogle Scholar
  27. Brenna M, Cronin SJ, Smith IEM, Maas R, Sohn YK (2012) How small-volume basaltic magmatic systems develop: a case study from the Jeju Island Volcanic Field, Korea. J Petrol 53:985–1018CrossRefGoogle Scholar
  28. Buikin A, Trieloff M, Hopp J, Althaus T, Korochantseva E, Schwarz WH, Altherr R (2005) Noble gas isotopes suggest deep mantle plume source of late Cenozoic mafic alkaline volcanism in Europe. Earth Planet Sci Lett 230:143–162CrossRefGoogle Scholar
  29. Burov E, Cloetingh S (2009) Controls of mantle plumes and lithospheric folding on modes of intraplate continental tectonics: differences and similarities. Geophys J Int 178:1691–1722CrossRefGoogle Scholar
  30. Cebriá JM, Wilson M (1995) Cenozoic mafic magmatism in western/central Europe: a common European asthenospheric reservoir? Terra Nova 7:162Google Scholar
  31. Cebriá JM, López-Ruiz J (1995) Alkali basalts and leucitites in an extensional intracontinental plate setting: the late Cenozoic Calatrava Volcanic Province (central Spain). Lithos 35:27–46CrossRefGoogle Scholar
  32. Chaffey DJ, Cliff RA, Wilson BM (1989) Characterization of the St. Helena magma source. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geological Society Special Publication 42:257–276Google Scholar
  33. Chernyshev IV, Konečný V, Lexa J, Kovalenker VA, Jeleň S, Lebedev VA, Goltsman YV (2013) K–Ar and Rb–Sr geochronology and evolution of the Štiavnica Stratovolcano (Central Slovakia). Geol Carpath 64:327–351CrossRefGoogle Scholar
  34. Class C, Goldstein SL (1997) Plume–lithosphere interactions in the ocean basins: constraints from the source mineralogy. Earth Planet Sci Lett 150:245–260CrossRefGoogle Scholar
  35. Cloetingh SAPL, Ziegler PA, Bogaard PJF, Andriessen PAM, Artemieva IM, Bada G, Balen RT, Beekman F, Ben-Avraham Z, Brun JP, Bunge HP, Burov EB, Carbonell R, Facenna C, Friedrich A, Gallart J, Green AG, Heidbach O, Jones AG, Matenco L, Mosar J, Oncken O, Pascal C, Peters G, Sliaupa S, Soesoo A, Spakman W, Stephenson RA, Thybo H, Torsvik T, de Vicente G, Wenzel F, Wortel MJR, TOPO-EUROPE Working Group 2 (2007) TOPO-EUROPE: the geoscience of coupled deep Earth-surface processes. Glob Planet Chang 58:1–118CrossRefGoogle Scholar
  36. Clynne MA, Borg LE (1997) Olivine and chromian spinel in primitive calc-alkaline and tholeiitic lavas from the southernmost Cascade Range, California: a reflection of relative fertility of the source. Can Mineral 35:453–472Google Scholar
  37. Condit CD, Connor CB (1996) Recurrence rates of volcanism in basaltic volcanic fields: an example from the Springerville volcanic field, Arizona. Geol Soc Am Bull 108:1225–1241CrossRefGoogle Scholar
  38. Connor CB, Conway FM (2000) Basaltic Volcanic Fields. In: Sigurdsson H (ed) Encyclopedia of Volcanoes. Academic Press, San Diego, pp 331–343Google Scholar
  39. Courtillot V, Davaille A, Besse J, Stock J (2003) Three distinct types of hotspots in the Earth’s mantle. Earth Planet Sci Lett 205:295–308CrossRefGoogle Scholar
  40. Csontos L, Nagymarosy A, Horváth F, Kovác M (1992) Tertiary evolution of the intra-Carpathian area: a model. Tectonophysics 208:221–241CrossRefGoogle Scholar
  41. Dando BDE, Stuart GW, Houseman GA, Hegedűs E, Brückl E, Radovanovic S (2011) Teleseismic tomography of the mantle in the Carpathian–Pannonian region of central Europe. Geophys J Int 186:11–31CrossRefGoogle Scholar
  42. Dasgupta R, Hirschmann MM, Stalker K (2006) Immiscible transition from carbonate-rich to silicate-rich melts in the 3 GPa melting interval of eclogite + CO3 and genesis of silica-undersaturated ocean island lavas. J Petrol 47:647–671CrossRefGoogle Scholar
  43. Dasgupta R, Jackson MG, Lee CTA (2010) Major element chemistry of ocean island basalts—conditions of mantle melting and heterogeneity of mantle source. Earth Planet Sci Lett 289:377–392CrossRefGoogle Scholar
  44. DePaolo DJ, Daley EE (2000) Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension. Chem Geol 169:157–185CrossRefGoogle Scholar
  45. Dérerova J, Zeyen H, Bielik M, Salman K (2006) Application of integrated geophysical modeling for determination of the continental lithospheric thermal structure in the eastern Carpathians. Tectonics 25:TC3009. doi: 10.1029/2005TC001883 CrossRefGoogle Scholar
  46. Dick HJB, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Miner Petrol 86:54–76CrossRefGoogle Scholar
  47. Dobosi G (1989) Clinopyroxene zoning patterns in the young alkali basalts of Hungary and their petrogenetic significance. Contrib Miner Petrol 101:112–121CrossRefGoogle Scholar
  48. Dobosi G, Fodor RV (1992) Magma fractionation, replenishment, and mixing as inferred from green-core clinopyroxenes in Pliocene basanite, southern Slovakia. Lithos 28:133–150CrossRefGoogle Scholar
  49. Dobosi G, Fodor RV, Goldberg SA (1995) Late-Cenozoic alkali basalt magmatism in Northern Hungary and Slovakia: petrology, source compositions and relationship to tectonics. Acta Vulcanol 7:199–207Google Scholar
  50. Dombrádi E, Sokoutis D, Bada G, Cloetingh S, Horváth F (2010) Modelling deformation of the Pannonian lithosphere: lithospheric folding and tectonic topography. Tectonophysics 484:103–118CrossRefGoogle Scholar
  51. Downes H, Seghedi I, Szakács A, Dobosi G, James DE, Vaselli O, Rigby IJ, Ingram GA, Rex D, Pécskay Z (1995) Petrology and geochemistry of late Tertiary/Quaternary mafic alkaline volcanism in Romania. Lithos 35:65–81CrossRefGoogle Scholar
  52. Ellam RM (1992) Lithospheric thickness as a control on basalt geochemistry. Geology 20:153–156CrossRefGoogle Scholar
  53. Embey-Isztin A, Dobosi G (1995) Mantle source characteristics for Miocene–Pleistocene alkali basalts, Carpathian–Pannonian region: a review of trace elements and isotopic composition. Acta Vulcanol 7:155–166Google Scholar
  54. Embey-Isztin A, Dobosi G (2007) Composition of olivines in the young alkali basalts and their peridotite xenoliths from the Pannonian basin. Annales Historico-Naturales Musei Nationalis Hungarici 99:5–22Google Scholar
  55. Embey-Isztin A, Downes H, James DE, Upton BGJ, Dobosi G, Ingram GA, Harmon RS, Scharbert HG (1993) The petrogenesis of Pliocene alkaline volcanic rocks from the Pannonian basin, Eastern Central Europe. J Petrol 34:317–343CrossRefGoogle Scholar
  56. Embey-Isztin A, Dobosi G, Altherr R, Meyer HP (2001) Thermal evolution of the lithosphere beneath the western Pannonian basin: evidence from deep-seated xenoliths. Tectonophysics 331:285–306CrossRefGoogle Scholar
  57. Erlund EJ, Cashman KV, Wallace PJ, Pioli L, Rosi M, Johnson E, Granados HD (2010) Compositional evolution of magma from Parícutin Volcano, Mexico: the tephra record. J Volcanol Geotherm Res 197:167–187CrossRefGoogle Scholar
  58. Fekiacova Z, Mertz DF, Hofmann AW (2007) Geodynamic setting of the Tertiary Hocheifel volcanism (Germany), part II: geochemistry and Sr, Nd and Pb isotopic compositions. In: Ritter J, Christensen U (eds) Mantle plumes—a multidisciplinary approach. Springer, Berlin, pp 207–239CrossRefGoogle Scholar
  59. Fisk MR, Bence AE (1980) Experimental crystallization of chrome spinel in FAMOUS basalt 527-1-1. Earth Planet Sci Lett 48:111–123CrossRefGoogle Scholar
  60. Fitton JG, James D, Kempton PD, Ormerod DS, Leeman WP (1988) The role of lithospheric mantle in the generation of late Cenozoic basic magmas in the western United States. J Petrol Spec 1:331–349CrossRefGoogle Scholar
  61. Fitton JG, James D, Leeman WP (1991) Basic magmatism associated with late Cenozoic extension in the western United States: compositional variations in space and time. J Geophys Res 96:13693–13711CrossRefGoogle Scholar
  62. Gazel E, Plank T, Forsyth DW, Bendersky C, Lee C, Hauri E (2012) Lithosphere versus asthenosphere mantle sources at Big Pine Volcanic Field. Geochem Geophys Geosyst 13. doi: 10.1029/2012GC004060
  63. Gîrbacea R, Frisch W, Linzer HG (1998) Post-orogenic uplift induced extension: a kinematic model for the Pliocene to recent tectonic evolution of the Eastern Carpathians (Romania). Geol Carpath 49:315–327Google Scholar
  64. Goes S, Spakman W, Bijwaard H (1999) A lower mantle source for central European volcanism. Science 286:1928–1931CrossRefGoogle Scholar
  65. Granet M, Wilson M, Achauer U (1995) Imaging a mantle plume beneath the French Massif Central. Earth Planet Sci Lett 136:281–296CrossRefGoogle Scholar
  66. Haase KM, Renno AD (2008) Variation of magma generation and mantle sources during continental rifting observed in Cenozoic lavas from the Eger Rift, Central Europe. Chem Geol 257:195–205CrossRefGoogle Scholar
  67. Haase KM, Goldschmidt B, Garbe-Schönberg CD (2004) Petrogenesis of Tertiary continental intraplate lavas from the Westerwald region, Germany. J Petrol 45:883–905CrossRefGoogle Scholar
  68. Halliday AN, Lee DC, Tommasini S, Davies GR, Paslick CR, Fitton JG, James DE (1995) Incompatible trace element in OIB and MORB source enrichment in the sub-oceanic mantle. Earth Planet Sci Lett 133:379–395CrossRefGoogle Scholar
  69. Harangi S (2001a) Neogene to Quaternary volcanism of the Carpathian–Pannonian region: a review. Acta Geol Hung 44:223–258Google Scholar
  70. Harangi S (2001b) Neogene magmatism in the Alpine–Pannonian Transition zone: a model for melt generation in a complex geodynamic setting. Acta Vulcanol 13:1–11Google Scholar
  71. Harangi S (2009) Volcanism of the Carpathian–Pannonian region, Europe: the role of subduction, extension and mantle plumes., Accessed 18 March 2014
  72. Harangi S, Lenkey L (2007) Genesis of the Neogene to Quaternary volcanism in the Carpathian–Pannonian region: role of subduction, extension, and mantle plume. Geol Soc Am Spec Pap 418:67–92Google Scholar
  73. Harangi S, Downes H, Thirlwall M, Gméling K (2007) Geochemistry, petrogenesis and geodynamic relationships of Miocene calc-alkaline volcanic rocks is the Western Carpathian arc, eastern central Europe. J Petrol 48:2261–2287CrossRefGoogle Scholar
  74. Harangi S, Vaselli O, Tonarini S, Szabó C, Harangi R, Coradossi N (1995) Petrogenesis of Neogene extension-related alkaline volcanic rocks of the Little Hungarian Plain volcanic field (Western Hungary). Acta Vulcanol 7:173–187Google Scholar
  75. Harangi S, Downes H, Seghedi I (2006) Tertiary–Quaternary subduction processes and related magmatism in the Alpine–Mediterranean region. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geol Soc Lond Mem 32:167–190Google Scholar
  76. Harangi S, Sági T, Seghedi I, Ntaflos T (2013) A combined whole-rock and mineral-scale investigation to reveal the origin of the basaltic magmas of the Perşani monogenetic volcanic field, Romania, eastern–central Europe. Lithos 180–181:43–57CrossRefGoogle Scholar
  77. Hart SR (1988) Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth Planet Sci Lett 90:273–296CrossRefGoogle Scholar
  78. Herzberg C (2011) Identification of source lithology in the Hawaiian and Canary Islands: implications for origins. J Petrol 52:113–146CrossRefGoogle Scholar
  79. Herzberg C, Asimow PD (2008) Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. Geochem Geophys Geosyst 9:Q09001. doi: 10.1029/2008GC002057 CrossRefGoogle Scholar
  80. Hetényi G, Stuart G, Houseman G, Horvath F, Hegedüs E, Brückl E (2009) Anomalously deep mantle transition zone below Central Europe: evidence of lithospheric instability. Geophys Res Lett 36. doi: 10.1029/2009GL040171
  81. Hill R, Roeder P (1974) The crystallization of spinel from basaltic liquid as a function of oxygen fugacity. J Geol 82:709–729CrossRefGoogle Scholar
  82. Hirose K, Kawamoto T (1995) Hydrous partial melting of lherzolite at 1 GPa: the effect of H2O on the genesis of basaltic magmas. Earth Planet Sci Lett 133:463–473CrossRefGoogle Scholar
  83. Hirose K, Kushiro I (1993) Partial melting of dry peridotites at high pressures: determination of composition of melts segregated from peridotite using aggregate of diamonds. Earth Planet Sci Lett 114:477–489CrossRefGoogle Scholar
  84. Hirschmann MM (2000) Mantle solidus: experimental constraints and the effects of peridotite composition. Geochem Geophys Geosyst 1:1042. doi: 10.1029/2000GC000070 CrossRefGoogle Scholar
  85. Hirschmann MM (2006) Water, melting, and the deep Earth H2O cycle. Annu Rev Earth Planet Sci 34:629–653CrossRefGoogle Scholar
  86. Hirschmann MM, Tenner T, Aubaud C, Withers AC (2009) Dehydration melting of nominally anhydrous mantle: the primacy of partitioning. Phys Earth Planet Inter 176:54–68CrossRefGoogle Scholar
  87. Hoernle K, Zhang YS, Graham D (1995) Seismic and geochemical evidence for large-scale mantle upwelling beneath the eastern Atlantic and western and central Europe. Nature 374:34–39CrossRefGoogle Scholar
  88. Horváth F (1993) Towards a mechanical model for the formation of the Pannonian basin. Tectonophysics 226:333–357CrossRefGoogle Scholar
  89. Horváth F, Cloetingh S (1996) Stress-induced late-stage subsidence anomalies in the Pannonian basin. Tectonophysics 266:287–300CrossRefGoogle Scholar
  90. Horváth F, Faccenna C (2011) Central Mediterranean mantle flow system and the formation of the Pannonian basin. Geophys Res Abstr 13:EGU2011-8894-2Google Scholar
  91. Horváth F, Dövényi P, Szalay Á, Royden LH (1988) Subsidence, thermal and maturation history of the Great Hungarian Plain. In: Royden LH, Horváth F (eds) The Pannonian basin: a case study in basin evolution. AAPG Mem 45:355–372Google Scholar
  92. Horváth F, Bada G, Szafián P, Tari G, Ádám A, Cloetingh S (2006) Formation and deformation of the Pannonian basin. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geol Soc Lond Mem 32:191–207Google Scholar
  93. Huismans RS, Podladchikov YY, Cloething S (2001) Dynamic modeling of the transition from passive to active rifting, application to the Pannonian basin. Tectonics 20:1021–1039CrossRefGoogle Scholar
  94. Humphreys ER, Niu Y (2009) On the composition of ocean island basalts (OIB): the effects of lithospheric thickness variation and mantle metasomatism. Lithos 112:118–136CrossRefGoogle Scholar
  95. Hurai V, Danišík M, Huraiová M, Paquette JL, Ádám A (2013) Combined U/Pb and (U-Th)/He geochronometry of basalt maars in Western Carpathians: implications for age of intraplate volcanism and origin of zircon metasomatism. Contrib Minerol Petrol 166:1235–1251CrossRefGoogle Scholar
  96. Jankovics MÉ, Harangi S, Kiss B, Ntaflos T (2012) Open-system evolution of the Füzes-tó alkaline basaltic magma, western Pannonian basin: constraints from mineral textures and compositions. Lithos 140–141:25–37CrossRefGoogle Scholar
  97. Jankovics MÉ, Dobosi G, Embey-Isztin A, Kiss B, Sági T, Harangi S, Ntaflos T (2013) Origin and ascent history of unusually crystal-rich alkaline basaltic magmas from the western Pannonian basin. Bull Volcanol 75:1–23CrossRefGoogle Scholar
  98. Jung C, Jung S, Hoffer E, Berndt J (2006) Petrogenesis of Tertiary mafic alkaline magmas in the Hocheifel, Germany. J Petrol 47:1637–1671CrossRefGoogle Scholar
  99. Jung S, Pfänder JA, Brügmann G, Stracke A (2005) Sources of primitive alkaline rocks from the Central European Volcanic Province (Rhön, Germany) inferred from Hf, Os and Pb isotopes. Contrib Miner Petrol 150:546–559CrossRefGoogle Scholar
  100. Jung S, Vieten K, Romer RL, Mezger K, Hoernes S, Satir M (2012) Petrogenesis of Tertiary alkaline magmas in the Siebengebirge, Germany. J Petrol 53:2381–2409CrossRefGoogle Scholar
  101. Kamenetsky VS, Crawford AJ, Meffre S (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J Petrol 42:655–671CrossRefGoogle Scholar
  102. Karato S (2011) Water distribution across the mantle transition zone and its implications for the global material circulation. Earth Planet Sci Lett 301:413–423CrossRefGoogle Scholar
  103. Kawabata H, Hanyu T, Chang Q, Kimura JI, Nichols ARL, Tatsumi Y (2011) The petrology and geochemistry of St. Helena alkali basalts: evaluation of the oceanic crust-recycling model for HIMU OIB. J Petrol 52:791–838CrossRefGoogle Scholar
  104. Kereszturi G, Németh K, Csillag G, Balogh K, Kovács J (2011) The role of external environmental factors in changing eruption styles of monogenetic volcanoes in a Mio/Pleistocene continental volcanic field in western Hungary. J Volcanol Geotherm Res 201:227–240CrossRefGoogle Scholar
  105. Kereszturi G, Németh K, Lexa J, Konecny V, Pécskay Z (2013) Eruptive volume estimate of the Nógrád-Gömör/Novohrad-Gemer volcanic field (Slovakia–Hungary). In: Buecher J, Rapprich V, Tietz O (eds) Abstract volume and excursion guides—basalt 2013:168–169Google Scholar
  106. Klemme S, O’Neill HSC (2000) The near-solidus transition from garnet lherzolite to spinel lherzolite. Contrib Miner Petrol 138:237–248CrossRefGoogle Scholar
  107. Klemme S (2004) The influence of Cr on the garnet–spinel transition in the Earth’s mantle: experiments in the system MgO–Cr2O3–SiO2 and thermodynamic modelling. Lithos 77:639–646CrossRefGoogle Scholar
  108. Kogiso T, Hirschmann MM, Frost DJ (2003) High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts. Earth Planet Sci Lett 216:603–617CrossRefGoogle Scholar
  109. Kogiso T, Hirschmann MM (2006) Partial melting experiments of bimineralic eclogite and the role of recycled mafic oceanic crust in the genesis of ocean island basalts. Earth Planet Sci Lett 249:188–199CrossRefGoogle Scholar
  110. Konečný V, Lexa J, Balogh K, Konečný P (1995) Alkali basalt volcanism in Southern Slovakia: volcanic forms and time evolution. Acta Volcanol 7:167–171Google Scholar
  111. Konečný V, Lexa J, Balogh K (1999) Neogene–Quaternary alkali basalt volcanism in Central and Southern Slovakia (Western Carpathians). Geolines 9:67–75Google Scholar
  112. Konečný V, Kováč M, Lexa J, Šefara J (2002) Neogene evolution of the Carpatho–Pannonian region: an interplay of subduction and back-arc diapiric uprise in the mantle. EGU Stephan Mueller Spec Publ Ser 1:105–123CrossRefGoogle Scholar
  113. Kostopoulos DK, James SD (1992) Parameterization of the melting regime of the shallow upper mantle and the effects of variable lithospheric stretching on mantle modal stratification and trace element concentrations in magmas. J Petrol 33:665–691CrossRefGoogle Scholar
  114. Kovács I, Falus G, Stuart G, Hidas K, Szabó C, Flower MFJ, Hegedűs E, Posgay K, Zilahi-Sebess L (2012) Seismic anisotropy and deformation patterns in upper mantle xenoliths from the central Carpathian–Pannonian region: asthenospheric flow as a driving force for Cenozoic extension and extrusion? Tectonophysics 514–517:168–179CrossRefGoogle Scholar
  115. Langmuir CH, Forsyth DW (2007) Mantle melting beneath mid-ocean ridges. Oceanography 20:78–89CrossRefGoogle Scholar
  116. Langmuir CH, Klein E, Plank T (1992) Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges. AGU Monogr 71:183–280Google Scholar
  117. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali silica diagram. J Petrol 27(745):750Google Scholar
  118. Lebedev S, Meier T, van der Hilst RD (2006) Asthenospheric flow and origin of volcanism in the Baikal Rift area. Earth Planet Sci Lett 249:415–424CrossRefGoogle Scholar
  119. Lee CT, Luffi P, Plank T, Dalton H, Leeman WP (2009) Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth Planet Sci Lett 279:20–33CrossRefGoogle Scholar
  120. Leloup PH, Lacassin R, Tapponnier P, Schärer U, Dalai Z, Xiaohan L, Liangshang Z, Shaocheng J, Trinh PT (1995) The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics 251:3–84CrossRefGoogle Scholar
  121. Lenkey L, Dövényi P, Horváth F, Cloetingh S (2002) Geothermics of the Pannonian basin and its bearing on the neotectonics. Eur Geophys Union Stephan Mueller Spec Publ Ser 3:29–40CrossRefGoogle Scholar
  122. Lexa J, Seghedi I, Németh K, Szakács A, Koneĉny V, Pécskay Z, Fülöp A, Kovacs M (2010) Neogene–Quaternary volcanic forms in the Carpathian–Pannonian region: a review. Cent Eur J Geosci 2:207–270Google Scholar
  123. Lorinczi P, Houseman GA (2009) Lithospheric gravitational instability beneath the Southeast Carpathians. Tectonophysics 474:322–336CrossRefGoogle Scholar
  124. Luhr JF, Carmichael ISE (1985) Jorullo volcano, Michoacán, Mexico (1759–1774): the earlier stages of fractionation in calk-alkaline magmas. Contrib Miner Petrol 90:142–161CrossRefGoogle Scholar
  125. Lustrino M, Wilson M (2007) The circum-Mediterranean anorogenic Cenozoic igneous province. Earth Sci Rev 81:1–65CrossRefGoogle Scholar
  126. Ma GSK, Malpas J, Xenophontos C, Chan GHN (2011) Petrogenesis of latest Miocene–Quaternary continental intraplate volcanism along the northern Dead Sea Fault System (Al Ghab-Homs volcanic field), western Syria: evidence for lithosphere–asthenosphere interaction. J Petrol 52:401–430CrossRefGoogle Scholar
  127. Martin U, Németh K (2004) Mio/Pliocene phreatomagmatic volcanism in the western Pannonian basin. Geological Institute of Hungary, BudapestGoogle Scholar
  128. Martin M, Wenzel F, CALIXTO Working Group (2006) High-resolution teleseismic body wave tomography beneath SE Romania: II. Imaging of a slab detachment scenario. Geophys J Int 164:579–595CrossRefGoogle Scholar
  129. Mayer B, Jung S, Romer RL, Stracke A, Haase KM, Garbe-Schönberg CD (2013) Petrogenesis of Tertiary hornblende-bearing lavas in the Rhön, Germany. J Petrol 54:2095–2123CrossRefGoogle Scholar
  130. Mayer B, Jung S, Romer R, Pfänder JA, Klügel A, Pack A, Gröner E (2014) Amphibole in alkaline basalts from intraplate settings: implications for the petrogenesis of alkaline lavas from the metasomatised lithospheric mantle. Contrib Mineral Petrol 167. doi: 10.1007/s00410-014-0989-3
  131. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  132. McGee LE, Millet MA, Smith IEM, Németh K, Lindsay JM (2012) The inception and progression of melting in a monogenetic eruption: Motukorea Volcano, the Auckland Volcanic Field, New Zealand. Lithos 155:360–374CrossRefGoogle Scholar
  133. McGee LE, Smith IEM, Millet MA, Handley HK, Lindsay JM (2013) Asthenospheric control of melting processes in a monogenetic basaltic system: a case study of the Auckland Volcanic Field, New Zealand. J Petrol 54:2125–2153CrossRefGoogle Scholar
  134. McKenzie D (1989) Some remarks on the movement of small melt fractions in the mantle. Earth Planet Sci Lett 95:53–72CrossRefGoogle Scholar
  135. Niu Y (2005) Generation and evolution of basaltic magmas: some basic concepts and a hypothesis for the origin of the Mesozoic–Cenozoic volcanism in eastern China. Geol J China Univ 11:9–46Google Scholar
  136. Niu Y (2008) The origin of alkaline lavas. Science 320:883–884CrossRefGoogle Scholar
  137. Niu Y, Wilson M, Humphreys ER, O’Hara MJ (2011) The origin of intra-plate ocean island basalts (OIB): the lid effect and its geodynamic implications. J Petrol 52:1443–1468CrossRefGoogle Scholar
  138. Ormerod DS, Rogers NW, Hawkesworth CJ (1991) Melting in the lithospheric mantle: inverse modelling of alkali-olivine basalts from the Big Pine Volcanic Field, California. Contrib Miner Petrol 108:305–317CrossRefGoogle Scholar
  139. Panaiotu CG, Jicha BR, Singer BS, Tugui A, Seghedi I, Panaiotu AG, Necula C (2013) 40Ar/39Ar chronology and paleomagnetism of Quaternary basaltic lavas from the Perşani Mountains (East Carpathians). Phys Earth Planet Inter 221:1–24CrossRefGoogle Scholar
  140. Panaiotu CG, Pécskay Z, Hambach U, Seghedi I, Panaiotu CE, Tetsumaru I, Orleanu M, Szakács A (2004) Short-lived Quaternary volcanism in the Persani Mountains (Romania) revealed by combined K–Ar and paleomagnetic data. Geol Carpath 55:333–339Google Scholar
  141. Pécskay Z, Lexa J, Szakács A, Seghedi I, Balogh K, Konečný V, Zelenka T, Kovacs M, Póka T, Fülöp A, Márton E, Panaiotu C, Cvetković V (2006) Geochronology of Neogene–Quaternary magmatism in the Carpathian arc and Intra-Carpathian area: a review. Geol Carpath 57:511–530Google Scholar
  142. Pertermann M, Hirschmann MM (2003) Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. J Geophys Res: Solid Earth 108(B2):2125. doi: 10.1029/2000JB000118 CrossRefGoogle Scholar
  143. Pilet S, Hernandez J, Sylvester P, Poujol M (2005) The metasomatic alternative for ocean island basalt chemical heterogeneity. Earth Planet Sci Lett 236:148–166CrossRefGoogle Scholar
  144. Pilet S, Baker MB, Stolper EM (2008) Metasomatized lithosphere and the origin of alkaline lavas. Science 320:916–919CrossRefGoogle Scholar
  145. Piromallo C, Morelli A (2003) P wave tomography of the mantle under the Alpine-Mediterranean area. J Geophys Res 108. doi: 10.1029/2002JB001757
  146. Piromallo C, Vincent AP, Yuen DA, Morelli A (2001) Dynamics of the transition zone under Europe inferred from wavelet cross-spectra of seismic tomography. Phys Earth Planet Infer 125:125–139CrossRefGoogle Scholar
  147. Popa M, Radulian M, Szakács A, Seghedi I, Zaharia B (2012) New seismic and tomography data in the southern part of the Harghita Mountains (Romania, Southeastern Carpathians): connection with recent volcanic activity. Pure appl Geophys 169:1557–1573CrossRefGoogle Scholar
  148. Putirka K (1999) Melting depths and mantle heterogeneity beneath Hawaii and the East Pacific Rise: constraints from Na/Ti and rare earth element ratios. J Geophys Res 104:2817–2829CrossRefGoogle Scholar
  149. Robinson JA, Wood BJ (1998) The depth of the spinel to garnet transition at the peridotite solidus. Earth Planet Sci Lett 164:277–284CrossRefGoogle Scholar
  150. Roeder PL, Reynolds I (1991) Crystallization of chromite and chromium solubility in basaltic melts. J Petrol 32:909–934CrossRefGoogle Scholar
  151. Roeder PL, Thornber C, Poustovetov A, Grant A (2003) Morphology and composition of spinel in Pu’u ‘O’o lava (1996–1998), Kilauea volcano, Hawaii. J Volcanol Geotherm Res 123:245–265CrossRefGoogle Scholar
  152. Roeder P, Gofton E, Thornber C (2006) Cotectic proportions of olivine and spinel in olivine–tholeiitic basalt and evaluation of pre-eruptive processes. J Petrol 47:883–900CrossRefGoogle Scholar
  153. Royden LH, Horváth F, Burchfiel BC (1982) Transform faulting, extension and subduction in the Carpathian–Pannonian region. Geol Soc Am Bull 93:717–725CrossRefGoogle Scholar
  154. Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309CrossRefGoogle Scholar
  155. Sági T, Harangi S (2013) Origin of the magmas in the Late Miocene to Quaternary Nógrád-Selmec monogenetic alkali basalt volcanic field, southern–central Slovakia. In: Büchner J, Rapprich V, Tietz O (eds) Basalt 2013 conference abstract and excursion guides. Görlitz, Germany, pp 17–18Google Scholar
  156. Sakuyama T, Ozawa K, Sumino H, Nagao K (2009) Progressive melt extraction from upwelling mantle constrained by the Kita–Matsuura Basalts in NW Kyushu, SW Japan. J Petrol 50:725–779CrossRefGoogle Scholar
  157. Salters VJM, Hart SR (1989) The hafnium paradox and the role of garnet in the source of mid-ocean-ridge basalts. 342:420–422Google Scholar
  158. Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5:Q05B07. doi: 10.1029/2003GC000597 CrossRefGoogle Scholar
  159. Scarrow JH, Cox KG (1995) Basalts generated by decompressive adiabatic melting of a mantle plume: a case study from the Isle of Skye, NW Scotland. J Petrol 36:3–22CrossRefGoogle Scholar
  160. Sclater J, Royden L, Horváth F, Burchfiel B, Semken S, Stegena L (1980) The formation of the intra-Carpathian basins as determined from subsidence data. Earth Planet Sci Lett 51:139–162CrossRefGoogle Scholar
  161. Seghedi I, Szakács A (1994) The upper Pliocene–Pleistocene effusive and explosive basaltic volcanism from the Perşani Mountains. Rom J Petrol 76:101–107Google Scholar
  162. Seghedi I, Downes H (2011) Geochemistry and tectonic development of Cenozoic magmatism in the Carpathian–Pannonian region. Gondwana Res 20:655–672CrossRefGoogle Scholar
  163. Seghedi I, Balintoni I, Szakács A (1998) Interplay of tectonics and neogene post-collisional magmatism in the intracarpathian region. Lithos 45:483–497CrossRefGoogle Scholar
  164. Seghedi I, Downes H, Szakacs A, Mason PRD, Thirlwall MF, Rosu E, Pecskay Z, Marton E, Panaiotu C (2004a) Neogene–Quaternary magmatism and geodynamics in the Carpathian–Pannonian region: a synthesis. Lithos 72:117–146CrossRefGoogle Scholar
  165. Seghedi I, Downes H, Vaselli O, Szakács A, Balogh K, Pécskay Z (2004b) Post-collisional Tertiary–Quaternary mafic alkalic magmatism in the Carpathian–Pannonian region: a review. Tectonophysics 393:43–62CrossRefGoogle Scholar
  166. Seghedi I, Downes H, Harangi S, Mason PRD, Pecskay Z (2005) Geochemical response of magmas to Neogene–Quaternary continental collision in the Carpathian–Pannonian region: a review. Tectonophysics 410:485–499CrossRefGoogle Scholar
  167. Seghedi I, Maţenco L, Downes H, Mason PRD, Szakács A, Pécskay Z (2011) Tectonic significance of changes in post-subduction Pliocene–Quaternary magmatism in the south east part of the Carpathian–Pannonian region. Tectonophysics 502:146–157CrossRefGoogle Scholar
  168. Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243CrossRefGoogle Scholar
  169. Shaw DM (2000) Continuous (dynamic) melting theory revisited. Can Mineral 38:1041–1063CrossRefGoogle Scholar
  170. Sigurdsson H, Schilling JG (1976) Spinels in mid-atlantic ridge basalts: chemistry and occurrence. Earth Planet Sci Lett 29:7–20CrossRefGoogle Scholar
  171. Šimon L, Halouzka R (1996) Pútikov vrsok volcano: the youngest volcano in the Western Carpathians. Slovak Geol Mag 2:103–123Google Scholar
  172. Šimon L, Maglay J (2005) Dating of sediments underlying the Putikov vŕšok volcano lava flow by the OSL method. Miner Slovaca 37:279–281Google Scholar
  173. Smith IEM, Blake S, Wilson CJN, Houghton BF (2008) Deep-seated fractionation during the rise of a small-volume basalt magma batch: Crater Hill, Auckland, New Zealand. Contrib Miner Petrol 155:511–527CrossRefGoogle Scholar
  174. Sobolev AV, Shimizu N (1992) Ultradepleted melts and the permeability of the oceanic mantle. Dokl Ross Akad Nauk 326:354–360Google Scholar
  175. Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature 434:590–597CrossRefGoogle Scholar
  176. Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung SL, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM, Teklay M (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316:412–417CrossRefGoogle Scholar
  177. Späth A, Le Roex AP, Opiyo-Akech N (2001) Plume–lithosphere interaction and the origin of continental rift-related alkaline volcanism—the Chyulu Hills Volcanic Province, Southern Kenya. J Petrol 42:765–787CrossRefGoogle Scholar
  178. Sperner B, Lorenz F, Bonjer K, Hettel S, Muller B, Wenzel F (2001) Slab break-off: abrupt cut or gradual detachment? New insights from the Vrancea Region (SE Carpathians, Romania). Terra Nova 13:172–179CrossRefGoogle Scholar
  179. Sperner B, Ioane D, Lillie RJ (2004) Slab behaviour and its surface expression: new insights from gravity modelling in the SE-Carpathians. Tectonophysics 382:51–84CrossRefGoogle Scholar
  180. Stegena L, Géczy B, Horváth F (1975) Late Cenozoic evolution of the Pannonian basin. Tectonophysics 26:71–90CrossRefGoogle Scholar
  181. Stracke A, Hofmann AW, Hart SR (2005) FOZO, HIMU and the rest of the mantle zoo. Geochem Geophys Geosyst 6. doi: 10.1029/2004GC000824
  182. Strong M, Wolff J (2003) Compositional variations within scoria cones. Geology 31:143–146CrossRefGoogle Scholar
  183. Sun S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle compositions and processes. Geol Soc Spec Pub 42:313–345CrossRefGoogle Scholar
  184. Szabó C, Harangi S, Csontos L (1992) Review of neogene and quaternary volcanism of the Carpathian–Pannonian region. Tectonophysics 208:243–256CrossRefGoogle Scholar
  185. Szabó C, Falus G, Zajacz Z, Kovács I, Bali E (2004) Composition and evolution of lithosphere beneath the Carpathian–Pannonian region: a review. Tectonophysics 393:119–137CrossRefGoogle Scholar
  186. Takahashi E, Kushiro I (1983) Melting of a dry peridotite at high pressures and basalt magma genesis. Am Mineral 68:859–879Google Scholar
  187. Tari G, Dövényi P, Horváth F, Dunkl I, Lenkey L, Stefanescu M, Szafián P, Tóth T (1999). Lithospheric structure of the Pannonian basin derived from seismic, gravity and geothermal data. In: Durand B, Jolivet L, Horváth F, Séranne M (eds) The Mediterranean basins: Tertiary extension within the Alpine orogen. Geol Soc Lond Spec Publ 156:215–250Google Scholar
  188. Timm C, Hoernle K, van den Bogaard P, Bindeman I, Weaver S (2009) Geochemical evolution of intraplate volcanism at Banks Peninsula, New Zealand: interaction between asthenospheric and lithospheric melts. J Petrol 50:989–1023CrossRefGoogle Scholar
  189. Timm C, Hoernle K, Werner R, Hauff F, van den Bogaard P, White J, Mortimer N, Garbe-Schönberg D (2010) Temporal and geochemical evolution of the Cenozoic intraplate volcanism of Zealandia. Earth Sci Rev 98:38–64CrossRefGoogle Scholar
  190. Tschegg C, Ntaflos T, Kiraly F, Harangi S (2010) High temperature corrosion of olivine phenocrysts in Pliocene basalts from Banat, Romania. Aust J Earth-Sci 103:101–110Google Scholar
  191. Valentine GA, Perry FV (2007) Tectonically controlled, time-predictable basaltic volcanism from a lithospheric mantle source (central Basin and Range Province, USA). Earth Planet Sci Lett 261:201–216CrossRefGoogle Scholar
  192. Vauchez A, Tommasi A, Mainprice D (2012) Faults (shear zones) in the Earth’s mantle. Tectonophysics 558–559:1–27CrossRefGoogle Scholar
  193. Wallace M, Green DH (1991) The effect of bulk rock composition on the stability of amphibole in the upper mantle: implications for solidus positions and mantle metasomatism. Mineral Petrol 44:1–19CrossRefGoogle Scholar
  194. Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60CrossRefGoogle Scholar
  195. Wang K, Plank T, Walker JD, Smith EI (2002) A mantle melting profile across the Basin and Range, SW USA. J Geophys Res: Solid Earth 107(1):ECV 5-1–ECV 5-21Google Scholar
  196. Wijbrans J, Németh K, Martin U, Balogh K (2007) 40Ar/39Ar geochronology of Neogene phreatomagmatic volcanism in the western Pannonian basin, Hungary. J Volcanol Geotherm Res 164:193–204CrossRefGoogle Scholar
  197. Wilson M, Bianchini G (1999) Tertiary–Quaternary magmatism within the Mediterranean and surrounding regions. In: Durand B, Jolivet L, Horváth F, Séranne M (eds) The Mediterranean basins: Tertiary extension within the Alpine orogen. Geol Soc Lond Spec Publ 156:141–168Google Scholar
  198. Wilson M, Downes H (1991) Tertiary–Quaternary extension-related alkaline magmatism in Western and Central Europe. J Petrol 32:811–849CrossRefGoogle Scholar
  199. Wilson M, Downes H (2006) Tertiary–Quaternary intra-plate magmatism in Europe and its relationship to mantle dynamics. In: Stephenson R, Gee D (eds) European lithosphere dynamics. Geol Soc Lond Mem 32:147–166Google Scholar
  200. Wilson M, Patterson R. (2001) Intraplate magmatism related to short-wavelength convective instabilities in the upper mantle: evidence from the Tertiary–Quaternary volcanic province of western and central Europe. In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time. Geol Soc Am. Spec Pap 352:37–58Google Scholar
  201. Woodland AB, Jugo PJ (2007) A complex magmatic system beneath the Devés volcanic field, Massif Central, France: evidence from clinopyroxene megacrysts. Contrib Miner Petrol 153:719–731CrossRefGoogle Scholar
  202. Wortel MJR, Spakman W (2000) Subduction and slab detachment in the Mediterranean–Carpathian region. Science 290:1910–1917CrossRefGoogle Scholar
  203. Zou H (1998) Trace element fractionation during modal and nonmodal dynamic melting and open-system melting; a mathematical treatment. Geochim Cosmochim Acta 62:1937–1945CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Szabolcs Harangi
    • 1
    • 2
    Email author
  • M. Éva Jankovics
    • 1
    • 3
  • Tamás Sági
    • 1
    • 2
  • Balázs Kiss
    • 1
    • 3
  • Réka Lukács
    • 1
    • 3
  • Ildikó Soós
    • 1
  1. 1.MTA-ELTE Volcanology Research GroupBudapestHungary
  2. 2.Department of Petrology and GeochemistryEötvös UniversityBudapestHungary
  3. 3.Vulcano Research Group, Department of Mineralogy, Geochemistry and PetrologyUniversity of SzegedSzegedHungary

Personalised recommendations