International Journal of Earth Sciences

, Volume 104, Issue 2, pp 323–333 | Cite as

Geometry of laccolith margins: 2D and 3D models of the Late Paleozoic Halle Volcanic Complex (Germany)

  • T. SchmiedelEmail author
  • C. Breitkreuz
  • I. Görz
  • B.-C. Ehling
Original Paper


Well data and core samples from the Late Paleozoic Halle Volcanic Complex (HVC) have been used to describe the geometry of the rhyolitic porphyritic laccoliths and their margins. The HVC formed between 301 and 292 Ma in the intramontane Saale basin, and it comprises mainly rhyolitic subvolcanic bodies (~300 km3) as well as minor lava flows and volcaniclastic deposits. The major HVC laccolith units display aspect ratios ranging between 0.04 and 0.07, and they are separated by tilted and deformed Carboniferous–Permian host sediments. For the margin of the Landsberg laccolith, a major coarsely porphyritic unit of the HVC, an exceptional data set of 63 wells concentrated in an area of 10 km2 reaching to depth of 710 m exists. It was used to explore the 3D geometry and textures, and to deduce an intrusion model. For a 3D visualization of the Landsberg laccolith margin, Geological Object Computer Aided Design; Paradigm® software (GOCAD) was used. Curve objects have been derived from the intrusion–host contacts. Automated GOCAD® methods for 3D modelling failed. As a result, manual refinement was essential. A major finding of the 3D modelling is the presence of prolate sediment rafts, up to 1,400 m in length and up to 500 m in thickness, surrounded by Landsberg rhyolite. The sedimentary rafts dip away from the laccolith centre. The engulfing laccolith sheets reach thickness of 100–300 m. For other HVC laccolith units (Löbejün, Petersberg, Brachstedt), well data reveal vertical rhyolite/sediment contacts or magma lobes fingering into the host sediments. HVC laccolith contact textures include small-scale shearing of the intruding magma and of the host sediment. In addition, internal shear zones have been detected inside the rhyolite bodies. The present study suggests that the emplacement of successive magma sheets was an important process during laccolith growth in the HVC.


GOCAD© Well data Magma sheet emplacement Porphyritic rhyolite 



We thank the WISMUT GmbH for permitting access to and sampling of wells. We are also grateful to Jan Bergemann who helped creating the movie (ESM Appendix).

Supplementary material

Supplementary material 1 (AVI 18265 kb)

531_2014_1085_MOESM2_ESM.pdf (738 kb)
Supplementary material 2 (PDF 738 kb)
531_2014_1085_MOESM3_ESM.pdf (444 kb)
Supplementary material 3 (PDF 443 kb)
531_2014_1085_MOESM4_ESM.pdf (382 kb)
Supplementary material 4 (PDF 382 kb)


  1. Awdankiewicz M, Breitkreuz C, Ehling B-C (2004) Emplacement textures in Late Palaeozoic andesite sills of the Flechtingen–Roßlau Block, north of Magdeburg (Germany). Geol Soc Spec Publ 234:5–12CrossRefGoogle Scholar
  2. Breitkreuz C, Mock A (2004) Are laccolith complexes characteristic of transtensional basin systems? Examples from Permocarboniferous Central Europe. Geol Soc Spec Publ 234:13–32CrossRefGoogle Scholar
  3. Breitkreuz C, Ehling B-C, Sergeev S (2009) Chronological evolution of an intrusive/extrusive system: the Late Paleozoic Halle Volcanic Complex in the north–eastern Saale Basin (Germany). Zeitschr dt Gesell Geowiss 160:173–190Google Scholar
  4. Breitkreuz C, Ehling B-C, Pastrick N (accepted) The subvolcanic units of the Late Paleozoic Halle Volcanic Complex, Germany: geometry, internal textures and emplacement mode. In: Breitkreuz C, Rocchi S (eds) Physical geology of high-level magmatic systems. Advances in volcanology 2. Springer, BerlinGoogle Scholar
  5. Bunger AP, Cruden AR (2011) Modeling the growth of laccoliths and large mafic sills: role of magma body forces. J Geophys Res 116:B02203Google Scholar
  6. Corry CE (1988) Laccoliths; mechanics of emplacement and growth. Spec Pap Geol Soc Am 220:1–110Google Scholar
  7. Cross CW (1894) The laccolithic mountain groups of Colorado, Utah and Arizona. In: US geological survey, 14th annual report, vol 2, pp 157–241Google Scholar
  8. Cruden AR, McCaffrey KJW (2001) Growth of plutons by floor subsidence: implications for rates of emplacement, intrusion spacing and melt-extraction mechanisms. Phys Chem Earth (A) 26:303–315CrossRefGoogle Scholar
  9. de Saint Blanquat M, Habert G, Horsman E, Morgan SS, Tikoff B, Launeau P, Gleizes G (2006) Mechanisms and duration of nontectonically assisted magma emplacement in the upper crust: The Black Mesa pluton, Henry Mountains, Utah. Tectonophysics 428:1–31CrossRefGoogle Scholar
  10. Ehling B-C, Gebhardt U (2012) Rotliegend im Saale-Becken. Schriftenr Deutsch Gesell Geowiss H 61:504–516Google Scholar
  11. Gebhardt U, Lützner H (2012) Innervariscische Rotliegendbecken und Norddeutsches Becken—Fragen ihrer stratigraphischen Verknüpfung. Schriftenr Deutsch Ges Geowiss H 61:715–730Google Scholar
  12. Gilbert GK (1877) Geology of the Henry Mountains, Utah. US geographical and geological survey of the rocky mountain region, Government Printing Office, Washington, DC, pp 1–196Google Scholar
  13. Horsman E, Morgan SS, de Saint Blanquat M, Habert G, Nugent A, Hunter RA, Tikoff B (2009) Emplacement and assembly of shallow intrusions from multiple magma pulses, Henry Mountains, Utah. Earth Environ Sci Trans R Soc Edinb 100:117–132Google Scholar
  14. Hoth K, Rusbült J, Zagora K, Beer H, Hartmann O (1993) Die tiefen Bohrungen im Zentralabschnitt der Mitteleuropäischen Senke—Dokumentation für den Zeitabschnitt 1962–1990. Schriftenr Geowiss 2:7–145Google Scholar
  15. Hutton DHW (2009) Insights into magmatism in volcanic margins: bridge structures and new mechanism of basic sill emplacement—Theron Mountains, Antarctica. Geol Soc Lond Pet Geosci 15:269–278CrossRefGoogle Scholar
  16. Kampe A, Luge J, Schwab M (1965) Die Lagerungsverhältnisse in der nördlichen Umrandung des Löbejüner Porphyrs bei Halle (Saale). Geologie 14:26–46Google Scholar
  17. Knoth W, Kriebel U, Radzinski K-H, Thomae M (1998) Die geologischen Verhältnisse von Halle und Umgebung. Hall Jb Geowiss Beiheft 4:7–34Google Scholar
  18. Kokelaar BP (1982) Fluidization of wet sediments during the emplacement and cooling of various igneous bodies. Geol Soc Lond 139:21–33CrossRefGoogle Scholar
  19. Lorenz V, Haneke J (2004) Relationship between diatremes, dykes, sills, laccoliths, intrusive extrusive domes, lava flows, and tephra deposits with unconsolidated water-saturated sediments in the late Variscan intermontane Saar-Nahe Basin, SW Germany. Geol Soc Lond Spec Publ 234:75–124CrossRefGoogle Scholar
  20. Mallet JL (1989) Discrete smooth interpolation in geometric modeling. ACM Trans Graph 8(2):121–144CrossRefGoogle Scholar
  21. Mock A, Breitkreuz C (2006) Parameters controlling emplacement of shallow-level silicic intrusions—an exploratory study in a Late Paleozoic laccolith complex. Vis Geosci 11:47–48Google Scholar
  22. Mock A, Jerram DA, Breitkreuz C (2003) Using quantitative textural analysis to understand the emplacement of shallow-level rhyolitic laccoliths—a case study from the Halle Volcanic Complex, Germany. J Petrol 44:833–849Google Scholar
  23. Mock A, Ehling B-C, Breitkreuz C (2005) Anatomy of a laccolith complex—geometry and texture of porphyritic rhyolites in the Permocarboniferous Halle Volcanic Complex (Germany). N Jb Geol Paläont Abh 237:211–271Google Scholar
  24. Morgan SS, Stanik A, Horsman E, Tikoff B, de Saint Blanquat M, Habert G (2008) Emplacement of multiple magma sheets and wall rock deformation: trachyte Mesa intrusion, Henry Mountains, Utah. J Struct Geol 30:491–512CrossRefGoogle Scholar
  25. Pollard DD, Johnson AM (1973) Mechanics of growth of some laccolithic intrusions in the Henry mountains, Utah, II: bending and failure of overburden layers and sill formation. Tectonophysics 18(3–4):311–354CrossRefGoogle Scholar
  26. Pollard DD, Muller OH, Dockstader DR (1975) The form and growth of fingered sheet intrusions. Bull Geol Soc Am 86:351–363CrossRefGoogle Scholar
  27. Rocchi S, Westerman DS, Dini A, Farina F (2010) Intrusive sheets and sheeted intrusions at Elba Island (Italy). Geosphere 6:225–236CrossRefGoogle Scholar
  28. Romer R, Förster H-J, Breitkreuz C (2001) Intracontinental extensional magmatism with a subduction fingerprint: the late Carboniferous Halle Volcanic Complex (Germany). Contrib Min Petrol 141:201–221CrossRefGoogle Scholar
  29. Schulz N (2010) Dreidimensionale geologische Modellierung eines spätpaläozoischen inter-mediären subvulkanischen Komplexes nördlich von Halle (Saale). Unpubl. diplom. thesis, TU Bergakademie Freiberg, GermanyGoogle Scholar
  30. Schwab M (1959) Zur Deutung des Quarzporphyrs vom Kahlbusch bei Dohna (Sachsen) als Quellkuppe. Geol Rundsch 48:43–54CrossRefGoogle Scholar
  31. Siegert C (1967) Die zeitliche und räumliche Entwicklung des intermediären Vulkanismus im Halleschen Permokarbonkomplex. Geologie 16:889–900Google Scholar
  32. Thomson K, Schofield N (2008) Lithological and structural controls on the emplacement and morphology of sills in sedimentary basins. Geol Soc Lond Spec Publ 302:31–44CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • T. Schmiedel
    • 1
    Email author
  • C. Breitkreuz
    • 1
  • I. Görz
    • 2
  • B.-C. Ehling
    • 3
  1. 1.Geology DepartmentTU Bergakademie FreibergFreibergGermany
  2. 2.Geophysics and Geoinformatics DepartmentTU Bergakademie FreibergFreibergGermany
  3. 3.Sachsen-Anhalt State Survey for Geology and MiningHalleGermany

Personalised recommendations