International Journal of Earth Sciences

, Volume 104, Issue 2, pp 475–493 | Cite as

Coeval Lower Miocene subsidence of the Eisenstadt Basin and relative updoming of its Austroalpine frame: implications from high-resolution geophysics at the Oslip section (Northern Burgenland, Austria)

  • Hermann Häusler
  • Jürgen Scheibz
  • Werner Chwatal
  • Franz Kohlbeck
Original Paper

Abstract

A fault system southeast of Eisenstadt was investigated with high-resolution geophysics using electric resistivity tomography, seismics and gravimetry. The St. Margarethen Fault separates the Neogene succession of the Eisenstadt Basin from the north south-trending Rust Range, which belongs to the Austroalpine frame. The interpretation of profiles down to a depth of 350 m derived from reflection and refraction seismics combined with the density model along the Oslip road section clearly reveals a listric fault, which dips westward towards the Eisenstadt Basin. Bed thickness of growth-strata regularly increases from west to east, and normal fault drags visible in the seismic profile west of the St. Margarethen Fault allow for interpreting this structure as a hanging-wall syncline. Thickness distribution of Neogene deposits reveals that the Eisenstadt Basin can be interpreted as a half-graben bounded by the listric St. Margarethen normal fault, which developed at the western flank of Rust Range. The subsidence of the Eisenstadt Basin during Lower to Middle Sarmatian times was accompanied by concurrent updoming of the Rust Range of at least 70 m. For the mechanism of the updoming of the Rust Range footwall uplift during hanging wall subsidence is inferred.

Keywords

Geophysics Listric St. Margarethen Fault Neogene Eisenstadt Basin Rust Range Coeval subsidence and updoming 

References

  1. Ahl A, Bieber G, Motschka K, Römer A, Slapanski P, Supper R (2012) Aerogeophysikalische Vermessung im Bereich Leithagebirge (Bgld.). Ber Geol Bundesanst, WienGoogle Scholar
  2. Barker RD (1979) Signal contribution sections and their use in resistivity studies. Geophys J R Astron Soc 59:123–129CrossRefGoogle Scholar
  3. Brix F, Pascher GA (1994) Geologische Karte der Republik Österreich 1:50.000, Blatt 77 Eisenstadt. Geologische Bundesanstalt, WienGoogle Scholar
  4. Decker K (1996) Miocene tectonics at the Alpine–Carpathian junction and the evolution of the Vienna Basin. Mitt Ges Geol Bergbaustud Österr 41:33–44Google Scholar
  5. Decker K, Peresson H (1996) Rollover and hanging-wall collapse during Sarmatian/Pannonian synsedimentary extension in the Eisenstadt Basin. Mitt Ges Geol Bergbaustud Österr 41:45–52Google Scholar
  6. Decker K, Peresson H, Hinsch R (2005) Active tectonics and Quaternary basin formation along the Vienna Basin transform fault. Quat Sci Rev 24:307–322CrossRefGoogle Scholar
  7. DeGroot-Hedlin C, Constable S (1990) Occam’s inversion to generate smooth, two dimensional models from magnetotelluric data. Geophysics 55:1613–1624CrossRefGoogle Scholar
  8. Exner U, Grasemann B (2010) Deformation bands in gravels: displacement gradients and heterogenous strain. J Lond Geol Soc 167:905–1013CrossRefGoogle Scholar
  9. Exner U, Rath A (2012) Deformationsbänder im Leithakalk. Wiss Arb Burgenland 142:51–54Google Scholar
  10. Exner U, Rath A, Grasemann B, Draganits E (2008) Soft-sediment deformation and deformation of porous sand: structural highlights in the southern Vienna and Eisenstadt Basin. J Alp Geol 49:129–136Google Scholar
  11. Feichtinger F, Spörker H (1996) ÖMV–OMV: Die Geschichte eines österreichischen Unternehmens. Ferdinand Berger & Söhne, HornGoogle Scholar
  12. Fuchs W (1960) Geologischer Bau und Geschichte des Ruster Berglandes. Dissertation, Universität WienGoogle Scholar
  13. Fuchs W (1965) Geologie des Ruster Berglandes (Burgenland). Jb Geol Bundesanst 108:155–194Google Scholar
  14. Grasemann B, Martel S, Wiesmayr G (2004) Unconstrained listric faults. Ber Inst Erdwiss Karl-Franzens-Univ Graz 9:151–153Google Scholar
  15. Grasemann B, Martel S, Passchier C (2005) Reverse and normal drag along a fault. J Struct Geol 27:999–1010Google Scholar
  16. Harzhauser M, Piller WE (2005) Neogen des Wiener Beckens. 75. Jahrestagung der Paläontologischen Gesellschaft, GrazGoogle Scholar
  17. Harzhauser M, Tempfer PM (2004) Late Pannonian wetland ecology of the Vienna Basin based on mollusces and lower vertebrate assemblages (Late Miocene, MN 9, Austria). Cour Forsch Senckenberg 246:55–68Google Scholar
  18. Harzhauser M, Kowalke T, Mandic O (2002) Late Miocene (Pannonian) gastropods of Lake Pannon with special emphasis on early ontogenetic development. Ann Naturhist Mus Wien 103A:75–141Google Scholar
  19. Harzhauser M, Daxner-Höck G, Piller WE (2004) An integrated stratigraphy of the Pannonian (Late Miocene) in the Vienna Basin. Aust J Earth Sci 95(96):6–19Google Scholar
  20. Häusler H (2007) Geologische Karte der Republik Österreich 1:50.000, Erläuterungen zu den Blättern 79 Neusiedl am See, 80 Ungarisch-Altenburg und 109 Pamhagen. Geologische Bundesanstalt, WienGoogle Scholar
  21. Häusler H (2010) Geologische Karte der Republik Österreich 1:50.000, Erläuterungen zur Geologischen Karte 78 Rust. Geologische Bundesanstalt, WienGoogle Scholar
  22. Häusler H (2012a) Contribution to the discussion of folded Pannonian strata in the Southern Vienna Basin. Geophys Res Abstr 14:EGU2012-5201Google Scholar
  23. Häusler H (2012b) Folded Pannonian beds along the Austroalpine frame of the southern Vienna Basin. Pangeo Austria Abstr 55–56Google Scholar
  24. Häusler H, Leber D, Peresson H, Hamilton W (2002) A new exploration approach in a mature basin—integration of 3-D seismic, remote sensing, and microtectonics, southern Vienna Basin, Austria. In: Schuhmacher H, LeSchak LA (eds) Surface exploration case histories. Application of geochemistry, magnetics and remote sensing. American Association of Petroleum Geologists Studies in Geology 48, SEG Geophysical References Series 11, Tulsa, Oklahoma, pp 433–451Google Scholar
  25. Häusler H, Scheibz J, Kohlbeck F, Kostial D, Chwatal W (2007) Complementary geophysical investigations revealing camouflaged tectonic structures in the Northern Burgenland (Austria). Geopys Res Abstr 9:EGU2007-03754Google Scholar
  26. Häusler H, Mörtl G, Wagner S, Körner W, Rank D, Papesch W, Payer T, Scheibz J, Tschach M (2008a) The complex aquifer system of Schützen am Gebirge (Northern Burgenland, Austria). J Alp Geol 49:39Google Scholar
  27. Häusler H, Scheibz J, Payer T, Körner W, Rank D, Papesch W, Faber R, Weixelberger G (2008b) Is fault geometry or Miocene facies controlling the aquifer geometry? Results from the Lackenbach case study (Northern Burgenland, Austria). J Alp Geol 49:38–39Google Scholar
  28. Herrmann P, Pascher GA, Pistotnik J (1993) Geologische Karte der Republik Österreich 1:50.000, 78 Rust. Geologische Bundesanstalt, WienGoogle Scholar
  29. Hölzel M, Wagreich M, Faber R, Strauss P (2008) Regional subsidence analysis in the Vienna Basin (Austria). Aust J Earth Sci 101:89–98Google Scholar
  30. Hölzel M, Decker K, Zámolyi A, Strauss P, Wagreich M (2010) Lower Miocene structural evolution of the central Vienna Basin (Austria). Mar Petrol Geol 27:666–681CrossRefGoogle Scholar
  31. Kardeis G (2009) Evaluierung geoelektrischer Tiefensondierungen im Neogen und Pleistozän des nördlichen Burgenlandes. Universität Wien, DiplomarbeitGoogle Scholar
  32. Kieslinger A (1955) Rezente Bewegungen am Ostrande des Wiener Beckens. Geol Rdsch 43:178–181CrossRefGoogle Scholar
  33. Kieslinger A (1960) Die Spaltenhöhlen von St. Margarethen im Burgenland. Wiss Arb Burgenland 25:7–9Google Scholar
  34. Kohlbeck F (1995) Bericht über geophysikalische Untersuchungen zur Erkundung mineralhältiger Wässer im Gemeindegebiet von Mörbisch. Technische Universität, WienGoogle Scholar
  35. Kölbl L (1952) Bericht über die geologische Kartierung im Jahre 1952, Gebiet: Nordwestrand des Leithagebirges zwischen Hof und Kaisersteinbruch; Südostabfall des Leithagebirges von Breitenbrunn bis Neusiedl und Teile der Parndorfer Platte. Arch Geologische Bundesanstalt, WienGoogle Scholar
  36. Kollmann W (2005) Wasserwirtschaftliche Untersuchungen im Grenzraum zu Ungarn, Bereich St. Margarethen–Siegendorf–Mörbisch/Sopron. Geologische Bundesanstalt, WienGoogle Scholar
  37. Kröll A, Wessely G (1993) Strukturkarte - Basis der tertiären Beckenfüllung 1:200.000. Erläuterung zu den Karten über den Untergrund des Wiener Beckens und der angrenzenden Gebiete. Geologische Bundesanstalt, WienGoogle Scholar
  38. Küpper H (ed) (1957) Erläuterungen zur geologischen Karte Mattersburg – Deutschkreuz 1:50.000. Geologische Bundesanstalt, WienGoogle Scholar
  39. Loke MH (2004) Tutorial: 2-D and 3-D electrical imaging surveys (pdf). http://www.ualberta.ca. Retrieved 27 Oct 2014
  40. Peresson H, Decker K (1996) From extension to compression: Late Miocene stress inversion in the Alpine–Carpathian–Pannonian transition area. Mitt Ges Geol Bergbaustud Österr 41:75–86Google Scholar
  41. Peresson H, Decker K (1997) Far field effects of Late Miocene subduction in the Eastern Carpathians: E–W compression and inversion of structures in the Alpine–Carpathian–Pannonian region. Tectonics 16:38–56CrossRefGoogle Scholar
  42. Piller WE, Harzhauser M (2005) The myth of the Brakish Sarmatian sea. Terra Nova 17:450–455CrossRefGoogle Scholar
  43. Pretsch H (2009) Deformation an sarmatischen Sedimenten (St. Margarethen/Burgenland). Diplomarbeit, Universität WienGoogle Scholar
  44. Rath A, Exner U, Tschegg C, Grasemann B, Laner R, Draganits E (2011) Diagenetic control of deformation mechanisms in deformation bands in a carbonate grainstone. Am Assoc Pet Geol B95:1369–1381Google Scholar
  45. Sacchi M, Horváth F (2002) Towards a new time scale for the Upper Miocene continental series of the Pannonian basin (Central Paratethys). EGU Stephan Mueller Spec Publ Ser 3:79–94CrossRefGoogle Scholar
  46. Salcher BC (2008) Sedimentology and modelling of the Mitterndorf Basin. Dissertation, Universität WienGoogle Scholar
  47. Salcher BC, Meurers B, Smit J, Decker K, Hölzel M, Wagreich M (2012) Strike–slip tectonics and Quaternary basin formation along the Vienna Basin fault system inferred from Bouguer gravity derivates. Tectonics 31:TC3004CrossRefGoogle Scholar
  48. Sauer R, Seifert P, Wessely G (1992a) Part I: outline of sedimentation, tectonic framework and hydrocarbon occurrence in eastern Lower Austria. Mitt Österr Geol Ges 85:5–96Google Scholar
  49. Sauer R, Seifert P, Wessely G (1992b) Part II: excursions. Mitt Österr Geol Ges 85:97–239Google Scholar
  50. Sauerzopf F (1962) Die Brunnenwässer der Freistadt Rust am See. Wiss Arb Burgenland 29:124–131Google Scholar
  51. Scheibz J (2006) Geologisch-geophysikalische Untergrunduntersuchungen im Gebiet Schützen am Gebirge (Nordburgenland). Diplomarbeit, Universität WienGoogle Scholar
  52. Scheibz J (2010) Geologisch-geophysikalische Untersuchung postmiozäner Strukturen zwischen Leithagebirge und Ruster Höhenzug (Nördliches Burgenland). Dissertation, Universität WienGoogle Scholar
  53. Scheibz J, Häusler H, Kardeis G, Heischmann J, Kopecny A (2008a) The Schützen “hot spot”: 3D-modelling of a shallow aquifer (Northern Burgenland, Austria). J Alp Geol 49:93Google Scholar
  54. Scheibz J, Häusler H, Kohlbeck F, Chwatal W, Kostial D (2008b) Geologic interpretation of shallow and deep geophysical soundings in the section Leithagebirge – Ruster Höhenzug (Northern Burgenland, Austria). J Alp Geol 49:93–94Google Scholar
  55. Scheibz J, Häusler H, Kardeis G, Kohlbeck F, Chwatal W, Figdor H, König C (2009) Geologic interpretation of geophysical investigations in the Oslip section, Rust Range, Northern Burgenland, Austria. Geophys Res Abstr 11:EGU2009-10559Google Scholar
  56. Schmid H (1968) Zur Hydrogeologie der Kaliquellen des Neusiedlerseegebietes unter besonderer Berücksichtigung der Verhältnisse um Rust. Wiss Arb Burgenland 40:17–21Google Scholar
  57. Schuster R (2010) Unterostalpin. In: Häusler H (ed) Geologische Karte der Republik Österreich 1:50.000, Erläuterungen zur Geologischen Karte 78 Rust. Geologische Bundesanstalt, WienGoogle Scholar
  58. Schuster GT, Quintus-Bosz A (1993) Wavepath eikonal traveltime inversion: theory. Geophysics 58:1314–1323CrossRefGoogle Scholar
  59. Shelton JW (1984) Listric normal faults: an illustrated summary. Am Assoc Pet Geol B68:801–815Google Scholar
  60. Smith RC, Sjogren DB (2006) An evaluation of electric resistivity imaging (ERI) in Quaternary sediments, southern Alberta, Canada. Geosphere 2:287–298CrossRefGoogle Scholar
  61. Spahić D, Exner U, Behm M, Grasemann B, Haring A, Pretsch H (2011) Listric versus planar normal fault geometry: an example from the Eisenstadt-Sopron Basin (E Austria). Int J Earth Sci 100:1685–1695CrossRefGoogle Scholar
  62. Spiegel RJ, Sturdivant VR et al (1980) Modeling resistivity anomalies from localized voids under irregular terrain. Geophysics 45:1164–1183CrossRefGoogle Scholar
  63. Strauss P, Harzhauser M, Hinsch R, Wagreich M (2006) Sequence stratigraphy in a classic pull-apart basin (Neogene, Vienna Basin). A 3D based integrated approach. Geol Carpathica 57:185–197Google Scholar
  64. Székely B, Zámolyi A, Draganits E, Briese C (2009) Geomorphic expression of neotectonic activity in a low relief area in an Airborne Laser Scanning DTM: a case study of the Little Hungarian Plain (Pannonian Basin). Tectonophysics 474:353–366CrossRefGoogle Scholar
  65. Tollmann A (1977) Geologie von Österreich, 1, Zentralalpen. Deuticke, WienGoogle Scholar
  66. Tollmann A (1985) Geologie von Österreich, 2, Außerzentralalpiner Anteil. Deuticke, WienGoogle Scholar
  67. Wessely G (1961) Geologie der Hainburger Berge. Jahrb Geol Bundesanstalt 104:273–349Google Scholar
  68. Wessely G (2006) Niederösterreich. Geologische Bundesanstalt, WienGoogle Scholar
  69. Wiedl G, Harzhauser M, Piller WE (2012) Facies and synsedimentary tectonics on a Badenian carbonate platform in the southern Vienna Basin (Austria, Central Paratethys). Facies 58:523–548CrossRefGoogle Scholar
  70. Zhu T et al (2009) The application of electrical resistivity tomography to detecting a buried fault: a case study. J Environ Eng Geophys 14:145–151CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hermann Häusler
    • 1
  • Jürgen Scheibz
    • 1
  • Werner Chwatal
    • 2
  • Franz Kohlbeck
    • 2
  1. 1.Department of Environmental GeosciencesUniversity of ViennaViennaAustria
  2. 2.Department of Geodesy and GeoinformationVienna University of TechnologyViennaAustria

Personalised recommendations