International Journal of Earth Sciences

, Volume 103, Issue 8, pp 2351–2357 | Cite as

The age of Earth’s largest volcano: Tamu Massif on Shatsky Rise (northwest Pacific Ocean)

  • Jörg Geldmacher
  • Paul van den Bogaard
  • Ken Heydolph
  • Kaj Hoernle
Short note


This study presents laser step-heating 40Ar/39Ar age determinations of basaltic lava samples from Tamu Massif, the oldest and largest edifice of the submarine Shatsky Rise in the northwest Pacific and Earth’s proposed largest volcano. The rocks were recovered during Integrated Ocean Drilling Program Expedition 324, which cored 160 m into the igneous basement near the summit of Tamu Massif. The analyzed lavas cover all three major stratigraphic groups penetrated at this site and confirm a Late Jurassic/Early Cretaceous age for the onset of Shatsky Rise volcanism. Lavas analyzed from the lower and middle section of the hole yield plateau ages between 144.4 ± 1.0 and 143.1 ± 3.3 Ma with overlapping analytical errors (2σ), whereas a sample from the uppermost lava group produced a significantly younger age of 133.9 ± 2.3 Ma suggesting a late or rejuvenated phase of volcanism. The new geochronological data infer minimum (average) melt production rates of 0.63–0.84 km3/a over a time interval of 3–4 million years consistent with the presence of a mantle plume.


Shatsky Rise Tamu Massif IODP Expedition 324 Oceanic plateau 



This research used samples and data provided by the Integrated Ocean Drilling Program. J. Sticklus at GEOMAR is thanked for technical assistance with the 40Ar/39Ar measurements. K. Hoernle and K. Heydolph acknowledge funding by the German Research Council (DFG grant HO1833/21-1). The authors thank John O’Connor and Benjamin E. Cohen for their constructive reviews and W.-C. Dullo for excellent editorial handling.

Supplementary material

531_2014_1078_MOESM1_ESM.xls (70 kb)
Online Resource 1 (XLS 70 kb)


  1. Baksi AK (2007a) A quantitative tool for detecting alteration in undisturbed rocks and minerals—I: water, chemical weathering, and atmospheric argon. In: Foulger GR, Jurdy DM (ed) Plates, plumes and planetary processes, Spec Pap Geol Soc Am 430: 285–303Google Scholar
  2. Baksi AK (2007b) A quantitative tool for detecting alteration in undisturbed rocks and minerals—II: application to argon ages related to hotspots. In: Foulger GR, Jurdy DM (ed) Plates, plumes and planetary processes, Spec Pap Geol Soc Am 430: 305–333Google Scholar
  3. Bambach RK (2006) Phanerozoic biodiversity: mass extinctions. An Rev Earth Planet Sci 34:127–155CrossRefGoogle Scholar
  4. Bondre NR, Duraiswami RA, Dole G (2004) A brief comparison of lava flows from the Deccan Volcanic Province and the Columbia-Oregon Plateau Flood Basalts: Implications for models of flood basalt emplacement. Proc Indian Acad Sci 113(4):809–817Google Scholar
  5. Coffin MF, Eldholm O (1994) Large igneous provinces: crustal structure, dimensions, and external consequences. Rev Geophys 32:1–36CrossRefGoogle Scholar
  6. Coffin MF, Pringle MS, Duncan RA, Gladczenko TP, Storey M, Müller RD, Gahagan LA (2002) Kerguelen hotspot magma output since 130 Ma. J Petrol 43(7):1121–1139CrossRefGoogle Scholar
  7. Expedition 324 Scientists (2010) Site U1347. In: Sager WW, Sano T, Geldmacher J et al. Proc IODP 324, Tokyo. doi: 10.2204/iodp.proc.324.104.2010
  8. Gradstein FM, Ogg JG, Smith AG (2005) A geological time scale 2004. Cambridge University Press, Cambridge, p 589CrossRefGoogle Scholar
  9. Hallam A, Wignall PB (1997) Mass extinctions and their aftermath. Oxford University Press, Oxford, p 328Google Scholar
  10. Hanyu T, Shimizu K, Sano T (in press) Noble gas evidence for the presence of recycled material in magma sources of the Shatsky Rise. Geol Soc Am Spec PaperGoogle Scholar
  11. Heaton DE, Koppers AAP (2014) Constraining the rapid construction of Tamu Massif at an ~145 Myr old triple junction, Shatsky Rise. Goldschmidt Conference, Sacramento, 2014, abstract 948Google Scholar
  12. Heydolph K, Murphy D, Geldmacher J, Romanova I, Green A, Hoernle K, Weiss D, Mahoney JJ (2014) The Origin of Shatsky Rise (NW Pacific): insights from Sr, Nd, Pb and Hf isotopes. Lithos 200–201:49–63Google Scholar
  13. Hoernle K, Hauff F, van den Bogaard P (2004) 70 m.y. history (139-69) for the Caribbean large igneous province. Geology 32:697–700CrossRefGoogle Scholar
  14. Hoernle K, Hauff F, van den Bogaard P, Werner R, Mortimer N, Geldmacher J, Garbe-Schönberg D, Davy B (2010) Age and geochemistry of volcanic rocks from the Hikurangi and Manihiki oceanic plateaus. Geochim Cosmochim Acta 74:7196–7219CrossRefGoogle Scholar
  15. Husen A, Almeev RR, Holtz F, Koepke J, Sano T, Mengel K (2013) Geothermobarometry of basaltic glasses from the Tamu Massif, Shatsky Rise Oceanic Plateau. Geochem Geophys Geosys 14(10):3908–3928. doi:  10.1002/ggge.20231
  16. Ivanov AV, He H, Yan L, Ryabov VV, Shevko AY, Palesskii SV, Nikolaeva IV (2013) Sibirian traps large igneous province: evidence for two flood basalt pulses around the Permo-Triassic boundary and in the Middle Triassic, and contemporaneous granite magmatism. Earth Sci Rev 122:58–76CrossRefGoogle Scholar
  17. Kerr A (2005) Large igneous provinces: origin and environmental consequences: oceanic LIPS: The kiss of death. Elements 1(5):289–292CrossRefGoogle Scholar
  18. Kitagawa H, Kobayashi K, Makishima A, Nakamura E (2008) Multiple pulses of the mantle plume: evidence from Tertiary Icelandic lavas. J Petrol 49:1365–1396CrossRefGoogle Scholar
  19. Koppers AAP (2010) Massive basalt flows on the southern flank of Tamu Massif, Shatsky Rise: A reappraisal of ODP Site 1213 basement units. In: Sager WW, Sano T, Geldmacher J et al. Proc IODP 324, Tokyo. doi: 10.2204/iodp.proc.324.2010
  20. Korenaga J, Sager WW (2012) Seismic tomography of Shatsky Rise by adaptive importance sampling. J Geophys Int. doi: 10.1029/2012JB009248 Google Scholar
  21. Lanphere MA, Dalrymple GB (2000) First-principles calibration of 38Ar tracers: implications for the ages of 40Ar/39Ar fluence monitors. US Geol Survey Profess P 1621:10Google Scholar
  22. Ludwig KR (2003) Isoplot 3.00. In: Berkeley Geochronology Center Special Publication 4, p 70Google Scholar
  23. Mahoney JJ, Duncan RA, Tejada MLG, Sager WW, Bralower TJ (2005) Jurassic-Cretaceous boundary age and mid-ocean-ridge-type mantle source for Shatsky Rise. Geology 33(3):185–188CrossRefGoogle Scholar
  24. McDougall I, Schmincke H-U (1976) Geochronology of Gran Canaria, Canary Islands: age of shield building volcanism and other magmatic phases. Bull Volcanol 40:1–21CrossRefGoogle Scholar
  25. Nakanishi M, Sager WW, Klaus A (1999) Magnetic lineations within Shatsky Rise, northwest Pacific Ocean: implications for hot spot-triple junction interaction and oceanic plateau formation. J Geophys Res 104:7539–7556CrossRefGoogle Scholar
  26. Nier AO (1950) A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Phys Rev 77:789–793CrossRefGoogle Scholar
  27. O’Connor JM, Stoffers P, Wijbrans JR, Shannon PM, Morrissey T (2000) Evidence from episodic seamount volcanism for pulsing of the Iceland plume in the past 70 Myr. Nature 408:954–958CrossRefGoogle Scholar
  28. Sager WW (2005) What built Shatsky Rise, a mantle plume or ridge processes? In: Foulger GR, Natland JH, Presnall DC, Anderson DL (eds) Plates, plumes, and paradigms. Spec Pap Geol Soc Am 388, pp 721–733Google Scholar
  29. Sager WW, Pueringer M, Carvallo C, Ooga M, Housen B, Tominaga M (in press) Paelomagnetism of igneous rocks from Shatsky Rise and implications for oceanic plateau volcanism. In: Neal C, Sano T, Erba E, Sager WW (eds), The origin, evolution, and environmental evolution of oceanic large igneous provinces. Geol Soc Am Spec PublicationGoogle Scholar
  30. Sager WW, Kim J, Klaus A, Nakanishi M, Khankishieva LM (1999) Bathymetry of Shatsky Rise, northwest Pacific Ocean: implications for ocean plateau development at a triple junction. J Geophys Res 104:7557–7576CrossRefGoogle Scholar
  31. Sager WW, Sano T, Geldmacher J, et al. (2010) Proc IODP 324: Tokyo. doi: 10.2204/iodp.proc.324.2010
  32. Sager WW, Zhang J, Korenaga J, Sano T, Koppers AAP, Widdowson M, Mahoney JJ (2013) An immense shield volcano within the Shatsky Rise oceanic plateau, northwest Pacific Ocean. Nat Geosci. doi: 10.1038/NGEO1934 Google Scholar
  33. Sano T, Shimizu K, Ishikawa A, Senda R, Chang Q, Kimura J-I, Widdowson M, Sager WW (2012) Variety and origin of magmas on Shatsky Rise, northwest Pacific Ocean. Geochem Geophys Geosys 13. doi: 10.1029/2012GC004235
  34. Self S, Jay AE, Widdowson M, Keszthelyi LP (2008) Correlation of the Deccan and Rajahmundry Trap lavas: are these the longest and largest lava flows on Earth? J Volcanol Geotherm Res 172(1–2):3–19CrossRefGoogle Scholar
  35. Shipboard Scientific Party (2002) Site 1213. In: Bralower TJ, Premoli Silva I, Malone MJ et al. Proc ODP Initial Reports 198, College Station, TXGoogle Scholar
  36. Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362CrossRefGoogle Scholar
  37. Tominaga M, Evans HF, Iturrino GJ (2012) “Equator Crossing” of Shatsky Rise?: new insights on Shatsky Rise tectonic motion from the downhole magnetic architecture of the uppermost lava sequences at Tamu Massif. Geophys Res Lett 39:L21301Google Scholar
  38. White RS (1993) Melt production rates in mantle plumes. Phil Trans R Soc Lond 342(1663):137–153CrossRefGoogle Scholar
  39. White RV, Saunders AD (2005) Volcanism, impact and mass extinctions: incredible or credible coincidences? Lithos 79:299–316CrossRefGoogle Scholar
  40. Wignal P (2005) The link between large Igneous Province eruptions and mass extinctions. Elements 1:293–297CrossRefGoogle Scholar
  41. Wijbrans J, Németh K, Martin U, Balogh K (2007) 40Ar/39Ar geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary. J Volcanol Geotherm Res 164:193–204CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jörg Geldmacher
    • 1
  • Paul van den Bogaard
    • 1
  • Ken Heydolph
    • 1
  • Kaj Hoernle
    • 1
  1. 1.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany

Personalised recommendations