International Journal of Earth Sciences

, Volume 104, Issue 1, pp 221–239 | Cite as

Stress, rheological structure and earthquakes in the POLAR profile in the northern Fennoscandian Shield

Original Paper
  • 199 Downloads

Abstract

We model stress fields and potential areas of deformation, use differences to analyse the possible variations in the modelling results and investigate the relations between the earthquakes and our modelling results in the POLAR profile in the northern Fennoscandian Shield. Calculated stress fields show rather uniform distribution, with significant deviations concentrated in rheologically weaker regions, mainly in the middle crust. Significant areas of deformation are also connected to these weaker regions, in the crust and also in the mantle. These regions control whether decoupled or coupled mechanical conditions exist. Further analysis shows that major differences between the stress fields calculated with dry and wet rheologies are found in the lower part of the middle crust extending from the Lapland Granulite Belt area towards the northeast. Similarly, differences between the models due to the varying heat production and the depth of the thermal lithosphere–asthenosphere boundary concentrate in rheologically weak crustal regions and in the mantle. These differences display importance of the rheological composition and thermal structure in rheological modelling. Our rheological model for reverse stress regime with typically used values of 0.35 for pore fluid factor and 0.75 for friction coefficient seems to result in too strong crust in order to explain satisfactorily the earthquakes focal depths in the POLAR profile. Most of the earthquakes can be explained by reverse stress regime if high pore pressure conditions exist. However, for the deepest events, it seems that also changes both in stress regime and in friction coefficients are needed. Rheologically, weak middle crust in the central and north-eastern parts of the POLAR could explain the absence of deep earthquakes in these parts of the profile.

Keywords

Fennoscandian Shield Lithosphere Rheological strength Stress modelling Earthquakes 

Notes

Acknowledgments

The authors thank G. Ranalli and an anonymous reviewer for their useful comments to improve the manuscript. All finite element calculations were done with the software package ANSYS™. Ansys is a trademark of Swanson Analysis System Inc.

References

  1. Ahjos T, Uski M (1992) Earthquakes in northern Europe in 1375–1989. Tectonophys 207:1–123CrossRefGoogle Scholar
  2. Ahonen L, Kietäväinen R, Kortelainen N, Kukkonen IT, Pullinen A, Toppi T, Bomberg M, Itävaara M, Nousiainen A, Nyyssönen M, Öster M (2011) Hydrogeological characteristics of the Outokumpu Deep Drill Hole. In: Kukkonen IT (ed) Outokumpu deep drilling project 2003–2010. Geol Surv of Finland, Special Paper 51, pp 151–168Google Scholar
  3. Artemieva IM (2003) Lithospheric structure, composition, and thermal regime of the East European Craton: implications for the subsidence of the Russian platform. Earth Planet Sci Lett 213:431–446CrossRefGoogle Scholar
  4. Arvidsson R (1996) Fennoscandian earthquakes: whole crust rupturing related to postglacial rebound. Science 274:744–746CrossRefGoogle Scholar
  5. Blanpied M, Lockner D, Byerlee J (1991) Fault stability inferred from granite sliding experiments at hydrothermal conditions. Geophys Res Lett 18:609–612CrossRefGoogle Scholar
  6. Bungum H, Olesen O, Pascal C, Gibbons S, Lindholm C, Vestøl O (2010) To what extent is the present seismicity of Norway driven by post-glacial rebound? J Geol Soc Lond 167:373–384. doi: 10.1144/0016-76492009-009 CrossRefGoogle Scholar
  7. Burov EB (2010) The equivalent elastic thickness (Te), seismicity and the long-term rheology of continental lithosphere: time to burn-out “crème brûlée”? Insights from large-scale geodynamic modeling. Tectonophys 484:4–26. doi: 10.1016/j.tecto.2009.06.013 CrossRefGoogle Scholar
  8. Burov EB (2011) Rheology and strength of the lithosphere. Mar Pet Geol 28:1402–1443. doi: 10.1016/j.marpetgeo.2011.05.008 CrossRefGoogle Scholar
  9. Burov EB, Diament M (1995) The effective elastic thickness (Te) of continental lithosphere: what does it really mean? J Geophys Res 100:3905–3927CrossRefGoogle Scholar
  10. Byrkjeland U, Bungum H, Eldholm O (2000) Seismotectonics of the Norwegian continental margin. J Geophys Res 105:6221–6236CrossRefGoogle Scholar
  11. Carmichael RS (1989) Practical handbook of physical properties of rocks and minerals. CRC Press, Boca RatonGoogle Scholar
  12. Carter NL, Tsenn MC (1987) Flow properties of continental lithosphere. Tectonophys 136:27–63CrossRefGoogle Scholar
  13. Chen R (1991) On horizontal crustal deformation in Finland. Rep Finn Geod Inst 91:1Google Scholar
  14. Chen W, Molnar P (1983) Focal depths of intracontinental and intraplate earthquakes and their implications for the thermal and mechanical properties of the lithosphere. J Geophys Res 88:4183–4214CrossRefGoogle Scholar
  15. Dragoni M, Pasquale V, Verdoya M, Chiozzi P (1993) Rheological consequences of the lithospheric thermal structure in the Fennoscandian Shield. Glob Plan Change 8:113–126CrossRefGoogle Scholar
  16. Elo S, Lanne E, Ruotoistenmäki T, Sindre A (1989) Interpretation of gravity anomalies along the POLAR profile in the northern Baltic Shield. In: Freeman R, von Knorring M, Korhonen H, Lund C, Mueller S (eds) The European Geotraverse, part 5: the polar profile. Tectonophys 162:135–150Google Scholar
  17. Fernandez M, Ranalli G (1997) The role of rheology in extensional basin formation modelling. Tectonophys 282:129–145CrossRefGoogle Scholar
  18. Gaál G, Berthelsen A, Gorbatschev R, Kesola R, Lehtonen MI, Marker M, Raase P (1989) Structure and composition of the Precambrian crust along the POLAR profile in the northern Baltic shield. In: Freeman R, von Knorring M, Korhonen H, Lund C, Mueller S (eds) The European Geotraverse, part 5: the polar profile. Tectonophys 162:1–25Google Scholar
  19. Goetze C, Evans B (1979) Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics. Geophys J R Astr Soc 59:463–478CrossRefGoogle Scholar
  20. Heidbach O, Tingay M, Barth A, Reinecker J, Kurfeß D, Müller B (2008) The world stress map database release. doi: 10.1594/GFZ.WSM.Rel2008
  21. Holbrook WS, Mooney WD, Christensen NI (1992) The seismic velocity structure of the deep continental crust. In: Fountain DM, Arculus R, Kay RW (eds) Continental lower crust. Elsevier, Amsterdam, pp 1–43Google Scholar
  22. Institute of Seismology (2013) Catalog of earthquakes in Northern Europe 1375-. (Read 1.4. 2013). http://www.helsinki.fi/geo/seismo/english/bulletins/index.html
  23. Janik T, Kozlovskaya E, Heikkinen P, Yliniemi J, Silvennoinen H (2009) Evidence for preservation of crustal root beneath the Proterozoic Lapland-Kola orogen (northern Fennoscandian Shield) derived from P and S wave velocity models of POLAR and HUKKA wide-angle reflection and refraction profiles and FIRE4 reflection transect. J Geophys Res 114:B06308. doi: 10.1029/2008JB005689 Google Scholar
  24. Kaikkonen P, Moisio K, Heeremans M (2000) Thermomechanical lithospheric structure of the central Fennoscandian Shield. Phys Earth Planet Inter 119:209–235CrossRefGoogle Scholar
  25. Kakkuri J (1997) Postglacial deformation of the Fennoscandian crust. In: Pesonen LJ (ed) The Lithosphere in Finland—a geophysical perspective. Geophysica 33:99-109Google Scholar
  26. Korsman K, Koistinen T, Kohonen J, Wennerström M, Ekdahl E, Honkamo M, Idman H, Pekkala Y (eds) (1997) 1:1000000 Bedrock map of Finland. Geol Survey of Finland, EspooGoogle Scholar
  27. Kukkonen IT (1993) Heat flow map of northern and central parts of the Fennoscandian Shield based on geochemical surveys of heat producing elements. Tectonophys 225:3–13CrossRefGoogle Scholar
  28. Kukkonen IT (1995) Thermal aspects of groundwater circulation in bedrock and its effect on crustal geothermal modelling in Finland, the central Fennoscandian Shield. Tectonophys 244:119–136CrossRefGoogle Scholar
  29. Kukkonen IT (1998) Temperature and heat flow density in a thick cratonic lithosphere: the SVEKA transect, central Fennoscandian Shield. J Geodyn 26:111–136CrossRefGoogle Scholar
  30. Kukkonen IT, Jõeleht A (1996) Geothermal modelling of the lithosphere in the central Baltic Shield and its southern slope. Tectonophys 255:25–45CrossRefGoogle Scholar
  31. Kukkonen IT, Lahtinen R (2006) Finnish reflection experiment FIRE 2001–2005. Geol Surv Finland, Special Paper, 43, EspooGoogle Scholar
  32. Kukkonen IT, Peltoniemi S (1998) Relationships between thermal and other petrophysical properties of rocks in Finland. Phys Chem Earth 23:341–349CrossRefGoogle Scholar
  33. Lambeck K, Purcell A (2003) Glacial rebound and crustal stress in Finland. Posiva Report 2003–10, Posiva Oy, Eurajoki, FinlandGoogle Scholar
  34. Lamontagne M, Ranalli G (1996) Thermal and rheological constraints on the earthquake depth distribution in the Charlevoix, Canada, intraplate seismic zone. Tectonophys 257:55–69CrossRefGoogle Scholar
  35. Lockner D, Hickman S, Kuksenko V, Ponomarev A, Sidorin A, Byerlee J, Khakaev B (1991) Laboratory-determined permeability of cores from the Kola Superdeep Well, USSR. Geophys Res Lett 18(5):881–884CrossRefGoogle Scholar
  36. Luosto U, Flueh E, Lund C-E, Working Group (1989) The crustal structure along the Polar profile from seismic refraction investigations. In: Freeman R, von Knorring M, Korhonen H, Lund C, Mueller S (eds) The European Geotraverse, part 5: the polar profile. Tectonophys 162:51–85Google Scholar
  37. Moisio K, Kaikkonen P (2013) Thermal and rheological structures along the seismic POLAR profile in the northern Fennoscandian Shield. Terra Nova 25:2–12. doi: 10.1111/j.1365-3121.2012.01084.x CrossRefGoogle Scholar
  38. Morrow C, Lockner D, Hickman S, Rusanov M, Röckel T (1994) Effects of lithology and depth on the permeability of core samples from the Kola and KTB drill holes. J Geophys Res 99:7263–7274CrossRefGoogle Scholar
  39. Morrow CA, Moore DE, Lockner DA (2000) The effect of mineral bond strength and adsorbed water on fault gouge frictional strength. Geophys Res Lett 27:815–818CrossRefGoogle Scholar
  40. Mottaghy D, Schellschmidt R, Popov YA, Clauser C, Kukkonen IT, Nover G, Milanovsky S, Romushkevich RA (2005) New heat flow data from the immediate vicinity of the Kola super-deep borehole: vertical variation in heat flow super-deep borehole: vertical variation in heat flow. Tectonophys 401:119–142CrossRefGoogle Scholar
  41. Muir Wood R (2000) Deglaciation seismotectonics: a principal influence on intraplate seismogenesis at high latitudes. Quat Sci Rev 19:1399–1411CrossRefGoogle Scholar
  42. Nyblade AA, Pollack HN (1993) A global analysis of heat flow from Precambrian terrains: implications for the thermal structure of Archaean and Proterozoic lithosphere. J Geophys Res 98:12207–12218CrossRefGoogle Scholar
  43. Pasquale V, Verdoya M, Chiozzi P (1991) Lithospheric thermal structure in the Baltic shield. Geophys J Int 106:611–620CrossRefGoogle Scholar
  44. Pasquale V, Verdoya M, Chiozzi P (2001) Heat flux and the seismicity in the Fennoscandian Shield. Phys Earth Planet Inter 126:147–162CrossRefGoogle Scholar
  45. Patison NL, Korja A, Lahtinen R, Ojala VJ, The FIRE Working Group (2006) Fire seismic reflection profiles 4, 4A and 4B: Insights into the crustal structure of northern Finland from Ranua to Näätämö. In: Kukkonen I, Lahtinen R (eds) Finnish reflection experiment FIRE 2001–2005, Geol Surv Finland, Special Paper 43:161–222Google Scholar
  46. Pinet C, Jaupart C (1987) The vertical distribution of radiogenic heat production in the Precambrian crust of Norway and Sweden: geothermal implications. Geophys Res Lett 14:260–263CrossRefGoogle Scholar
  47. Pollack HN, Hurter SJ, Johnson JR (1993) Heat flow from the Earth’s interior: analysis of the global data set. Rev Geophys 31:267–280CrossRefGoogle Scholar
  48. Poutanen M, Dransch D, Gregersen S, Haubrock S, Ivins ER, Klemann V, Kozlovskaya E, Kukkonen I, Lund B, Lunkka J-P, Milne G, Müller J, Pascal C, Pettersen BR, Scherneck H-G, Steffen H, Vermeersen B, Wolf D (2010) DynaQlim—upper mantle dynamics and quaternary climate in cratonic areas. In: Cloetingh S, Negendank J (eds) New frontiers in integrated solid earth sciences. International Year of Planet Earth, 349–372. doi: 10.1007/978-90-481-2737-5_10
  49. Ranalli G (1995) Rheology of the Earth (2nd edn). Chapman and HallGoogle Scholar
  50. Ranalli G (2000) Rheology of the crust and its role in tectonic reactivation. J Geodyn 30:3–15CrossRefGoogle Scholar
  51. Rasilainen K, Lahtinen R, Bornhorst TJ (2007) The rock geochemical database of Finland, Manual. Geol Surv of Finland, Report of Investigation, 164Google Scholar
  52. Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309CrossRefGoogle Scholar
  53. Scholz CH (2002) The mechanics of earthquakes and faulting. Cambridge university press, CambridgeCrossRefGoogle Scholar
  54. Shimada M (1993) Lithosphere strength inferred from fracture strength of rocks at high confining pressures and temperatures. Tectonophys 217:55–64CrossRefGoogle Scholar
  55. Tesauro M, Kaban MK, Cloetingh SAPL (2010) Thermal and rheological model of the European lithosphere. In: Cloetingh S, Negendank J (eds) New frontiers in integrated solid Earth sciences:71–101. doi: 10.1007/978-90-481-2737-5_3
  56. Townend J, Zoback MD (2000) How faulting keeps the crust strong. Geology 28:399–402CrossRefGoogle Scholar
  57. Uski M, Hyvönen T, Korja A, Airo M-L (2003) Focal mechanisms of three earthquakes in Finland and their relation to surface faults. Tectonophys 363:141–157CrossRefGoogle Scholar
  58. Vestøl O (2006) Determination of postglacial land uplift in Fennoscandia from leveling, tide-gauges and continuous GPS stations using least squares collocation. J Geod 80:248–258. doi: 10.1007/s00190-006-0063-7 CrossRefGoogle Scholar
  59. Walter C, Flüh ER (1993) The POLAR Profile revisited: combined P- and S-wave interpretation. Precambrian Res 64:153–168CrossRefGoogle Scholar
  60. Wilks JC, Carter NL (1990) Rheology of some continental lower crustal rocks. Tectonophys 182:57–77CrossRefGoogle Scholar
  61. Zang AH, Stephansson OJ (2010) Stress field of the Earth’s crust. Springer, BerlinCrossRefGoogle Scholar
  62. Zharikov AV, Vitovtova VM, Shmonov VM, Grafchikov AA (2003) Permeability of the rocks from the Kola superdeep borehole at high temperature and pressure: implication to fluid dynamics in the continental crust. Tectonophys 370:177–191CrossRefGoogle Scholar
  63. Zoback ML, Zoback MD (2007) Lithosphere stress and deformation. In: Watts A, Schubert G (eds) Earthquake seismology: treatise on geophysics, vol 6. Elsevier, Amsterdam, pp 253–274CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Geophysics, Department of PhysicsUniversity of OuluOuluFinland

Personalised recommendations