International Journal of Earth Sciences

, Volume 104, Issue 8, pp 1957–1979 | Cite as

Geochemical and petrological constraints on mantle composition of the Ohře(Eger) rift, Bohemian Massif: peridotite xenoliths from the České Středohoří Volcanic complex and northern Bohemia

  • Lukáš Ackerman
  • Gordon MedarisJr.
  • Petr Špaček
  • Jaromír Ulrych
Original Paper


The Ohře(Eger) rift in the Bohemian Massif, which represents part of the Cenozoic Central European Volcanic Province, contains abundant mantle xenoliths of spinel peridotite. Petrography, geothermometry, mineral compositions and whole-rock and clinopyroxene trace element compositions of xenolith suites from four localities in the central part České Středohoří Volcanic complex (CSVC) and one locality in the eastern continuation (northern Bohemia) of the rift system display important differences that reveal small-scale compositional heterogeneity of the mantle. The xenoliths from the CSVC are mostly harzburgite that experienced high degrees of partial melting from ~17 to 21 %. However, xenoliths from one locality, Medvědický vrch, are predominantly fertile lherzolite. Subsequent pervasive metasomatism produced enrichments in light rare earth elements, large-ion lithophile elements, and U and Th, except for xenoliths from Medvědický vrch, which show marked depletions in all these elements. Such composition most likely reflects refertilization of the source rock by depleted melts. The trace element characteristics of the CSVC xenoliths indicate metasomatism of a depleted protolith by silicate melt at high melt/rock ratios. In contrast, harzburgite xenoliths from northern Bohemia experienced metasomatism at low melt/rock ratios by more evolved, alkaline and carbonate-rich melts.


Mantle Xenolith Bohemian Massif Ohře(Eger) rift Metasomatism 



This work was supported by the Czech Science Foundation (Projects 205/09/1170 and P210/12/1990). The research was also supported by the Scientific Programme CEZ: RVO67985831 of the Institute of Geology, Acad. Sci. CR. We are grateful to Jana Ďurišová for help with LA-ICP-MS analyses and Šárka Matoušková for whole-rock solution ICP-MS analyses.


  1. Ackerman L, Mahlen N, Jelínek E, Medaris LG, Ulrych J, Strnad L, Mihaljevič M (2007) Geochemistry and evolution of subcontinental lithospheric mantle in Central Europe: evidence from peridotite xenoliths of the Kozákov volcano, Czech Republic. J Petrol 48:2235–2260CrossRefGoogle Scholar
  2. Ackerman L, Špaček P, Medaris G, Hegner E, Svojtka M, Ulrych J (2012) Geochemistry and petrology of pyroxenite xenoliths from Cenozoic alkaline basalts, Bohemian Massif. J Geosci 58:199–219Google Scholar
  3. Ackerman L, Špaček P, Magna T, Ulrych J, Svojtka M, Hegner E, Balogh K (2013) Alkaline and carbonate-rich melt metasomatism and melting of subcontinental lithospheric mantle: evidence from mantle xenoliths, NE Bavaria, Bohemian Massif. J Petrol 54:2597–2633CrossRefGoogle Scholar
  4. Arai S (1994) Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chem Geol 113:191–204CrossRefGoogle Scholar
  5. Babuška V, Plomerová J (1992) The lithosphere in central Europe-seismological and petrological aspects. Tectonophysics 207:141–163CrossRefGoogle Scholar
  6. Babuška V, Plomerová J (2006) European mantle lithosphere assembled from rigid microplates with inherited seismic anisotropy. Phys Earth Planet Inter 158:264–280CrossRefGoogle Scholar
  7. Ballhaus C, Berry RF, Green DH (1991) High pressure experimental calibration of olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib Mineral Petrol 107:27–40CrossRefGoogle Scholar
  8. Barnes SJ, Roeder PL (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol 42:2279–2302CrossRefGoogle Scholar
  9. Bedini RM, Bodinier J-L (1999) Distribution of incompatible trace elements between the constituents of spinel peridotite xenoliths: iCP-MS data from the East African Rift. Geochim Cosmochim Acta 63:3883–3900CrossRefGoogle Scholar
  10. Bedini RM, Bodinie JL, Dautria JM, Morten L (1997) Evolution of LILE-enriched small melt fractions in the lithospheric mantle: a case study from the East African Rift. Earth Planet Sci Lett 153:67–83CrossRefGoogle Scholar
  11. Bertrand P, Mercier J-CC (1985) The mutual solubility of coexisting ortho- and clinopyroxene: toward an absolute geothermometer for the natural system? Earth Planet Sci Lett 76:109–122CrossRefGoogle Scholar
  12. Blusztajn J, Hart SR (1989) Sr, Nd, and Pb isotopic character of Tertiary basalts from southwest Poland. Geochim Cosmochim Acta 53:2689–2696CrossRefGoogle Scholar
  13. Blusztajn J, Shimizu N (1994) The trace-element variations in clinopyroxenes from spinel peridotite xenoliths from southwest Poland. Chem Geol 111:227–243CrossRefGoogle Scholar
  14. Brandová J, Holub FV (2003) Petrologie plášťových xenolitů z alkalických neovulkanitů severních Čech. Zprávy o Geol Výzkumech v roce 2002:162–163Google Scholar
  15. Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites: iI. New thermobarometers and practical assessment of existing thermobarometry. J Petrol 31:1352–1378Google Scholar
  16. Büchner J, Tietz O, Viereck-Goette L, Abratis M, Stanek K, Suhr P, Pfänder JA (2013) The Lusatian volcanic field—link between the Ohře Rift and the Eastern European Volcanoes. In: Büchner J, Rapprich V, Tietz O (eds) Abstracts and excursion guides from the conference basalt 2013. Czech Geological Survey and Senckenberg Museum of natural history Görlitz, Prague-Görlitz, pp 72–73Google Scholar
  17. Cajz V, Vokurka K, Balogh K, Lang M, Ulrych J (1999) The České Středohoří Mts.: volcanostratigraphy and geochemistry. Geolines 9:21–28Google Scholar
  18. Cajz V, Rapprich V, Erban V, Pecskay Z, Radoň M (2009) Late Miocene volcanic activity in the Ceske stredohori Mountains (Ohre/Eger Graben, northern Bohemia). Geol Carp 60:519–533Google Scholar
  19. Christensen N, Medaris LG, Wang HF, Jelínek E (2001) Depth variation of seismic anisotropy and petrology in central European lithosphere: a tectonothermal synthesis from spinel lherzolite. J Geophys Res 106:645–664CrossRefGoogle Scholar
  20. Coltorti M, Bonadiman C, Hinton RW, Siena F, Upton BGJ (1999) Carbonatite metasomatism of the oceanic upper mantle: evidence from clinopyroxenes and glasses in ultramafic xenoliths of grande Comore, Indian Ocean. J Petrol 40:133–165CrossRefGoogle Scholar
  21. Downes H (2001) Formation and modification of the shallow sub-continental lithospheric mantle: a review of geochemical evidence from ultramafic xenolith suites and tectonically emplaced ultramafic massifs of Western and Central Europe. J Petrol 42:233–250CrossRefGoogle Scholar
  22. Eggins S, Rudnick R, McDonough W (1998) The composition of peridotites and their minerals: a laser-ablation ICP–MS study. Earth Planet Sci Lett 154:53–71CrossRefGoogle Scholar
  23. Franke W (1989) Variscan plate tectonics in Central Europe—current ideas and open questions. Tectonophysics 169:221–228CrossRefGoogle Scholar
  24. Franke W (2000) The mid-European segment of the Variscides: tectono-stratigraphic units, terranes boundaries and plate tectonic evolution. J Geol Soc 179:35–61Google Scholar
  25. Frýda J, Vokurka K (1995) Evidence for carbonatite metasomatism in the upper mantle beneath the Bohemian Massif. J Czech Geol Soc 43:9–10Google Scholar
  26. Geissler WH, Kämpf H, Seifert W, Dulski P (2007) Petrological and seismic studies of the lithosphere in the earthquake swarm region Vogtland/NW Bohemia, central Europe. J Volcanol Geotherm Res 159:33–69CrossRefGoogle Scholar
  27. Govindaraju K (1989) Compilation of working values and sample description for 273 geostandards. Geostand Newslett J Geostand Geoanal 13:1–113CrossRefGoogle Scholar
  28. Green DH, Wallace ME (1988) Mantle metasomatism by ephemeral carbonatite melts. Nature 336:459–462CrossRefGoogle Scholar
  29. Gregoire M, Moine BN, O’Reilly SY, Cottin JY, Giret A (2000) Trace element residence and partitioning in mantle xenoliths metasomatized by highly alkaline, silicate- and carbonate-rich melts (Kerguelen Islands, Indian Ocean). J Petrol 41:477–509CrossRefGoogle Scholar
  30. Haase KM, Renno AD (2008) Variation of magma generation and mantle sources during continental rifting observed in Cenozoic lavas from the Eger Rift, Central Europe. Chem Geol 257:192–202CrossRefGoogle Scholar
  31. Hellebrand E, Snow JE, Dick HJ, Hofmann AW (2001) Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410:677–681CrossRefGoogle Scholar
  32. Hellebrand E, Snow JE, Mostefaoui S, Hoppe P (2005) Trace element distribution between orthopyroxene and clinopyroxene in peridotites from the Gakkel Ridge: a SIMS and NanoSIMS study. Contrib Mineral Petrol 150:486–504CrossRefGoogle Scholar
  33. Herzberg C (2004) Geodynamic information in peridotite petrology. J Petrol 45:2507–2530CrossRefGoogle Scholar
  34. Holub FV, Rapprich V, Erban V, Pécskay Z, Mlčoch B, Míková J (2012) Petrology and geochemistry of the Tertiary alkaline intrusive rocks at Doupov, Doupovské hory Volcanic Complex (NW Bohemian Massif). J Geosci 55:251–278CrossRefGoogle Scholar
  35. Ionov DA, Dupuy C, O’Reilly SY, Kopylova MG, Genshaft YS (1993) Carbonated peridotite xenoliths from Spitsbergen: implications for trace element signature of mantle carbonate metasomatism. Earth Planet Sci Lett 119:283–297CrossRefGoogle Scholar
  36. Ionov DA, Bodinier J, Mukasa SB, Zanetti A (2002) Mechanisms and sources of mantle metasomatism: major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modelling. J Petrol 43:2219–2259CrossRefGoogle Scholar
  37. Janoušek V, Farrow CM, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). J Petrol 47:1255–1259CrossRefGoogle Scholar
  38. Jochum KP, Nohl U (2008) Reference materials in geochemistry and environmental research and the GeoReM database. Chem Geol 253:50–53CrossRefGoogle Scholar
  39. Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA, Günther D, Enzweiler J (2011) Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostand Geoanal Res 35:397–429CrossRefGoogle Scholar
  40. Johnson KTM, Dick HJB, Shimizu N (1990) Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J Geophys Res 95:2661–2678CrossRefGoogle Scholar
  41. Kelemen PB, Joyce DB, Webster JD, Holloway JR (1990) Reaction between ultramafic rock and fractionating basaltic magma: II. experimental investigation of reaction between olivine tholeiite and harzburgite at 1150–1050 C and 5 kb. J Petrol 31:99–134CrossRefGoogle Scholar
  42. Kelemen PB, Shimizu N, Salters VJM (1995) Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375:747–753CrossRefGoogle Scholar
  43. Konečný P, Ulrych J, Schovánek P, Huraiová M, Řanda Z (2006) Upper mantle xenoliths from the Pliocene Kozákov volcano (NE Bohemia): P-T-f O2 and geochemical constraints. Geol Carp 57:379–396Google Scholar
  44. Kopecký L (1978) Neoidic taphrogenic evolution of young alkaline volcanism of the Bohemian Massif. Sborník Geol Věd, Řada Geol 30:91–107Google Scholar
  45. Le Roux V, Bodinier JL, Tommasi A, Alard O, Dautria JM, Vauchez A, Riches AJV (2007) The Lherz spinel lherzolite: refertilized rather than pristine mantle. Earth Planet Sci Lett 259:599–612CrossRefGoogle Scholar
  46. Lenoir X, Garrido CJ, Bodinier JL, Dautria JM (2000) Contrasting lithospheric mantle domains beneath the Massif Central (France) revealed by geochemistry of peridotite xenoliths. Earth Planet Sci Lett 181:359–375CrossRefGoogle Scholar
  47. Lustrino M, Wilson M (2007) The circum-Mediterranean anorogenic Cenozoic igneous province. Earth Sci Rev 81:1–65CrossRefGoogle Scholar
  48. Matte P (2001) The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nov 13:122–128CrossRefGoogle Scholar
  49. Matte P, Maluski H, Rajlich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: result of large-scale Variscan shearing. Tectonophysics 177:151–170CrossRefGoogle Scholar
  50. Matusiak-Małek M, Puziewicz J, Ntaflos T, Grégoire M, Downes H (2010) Metasomatic effects in the lithospheric mantle beneath the NE Bohemian Massif: a case study of Lutynia (SW Poland) peridotite xenoliths. Lithos 117:49–60CrossRefGoogle Scholar
  51. McDonough WF, Sun S (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  52. McDonough WF, Stosch H, Ware NG (1992) Distribution of titanium and the rare earth elements between peridotitic minerals. Contrib Mineral Petrol 110:321–328CrossRefGoogle Scholar
  53. Medaris LG, Fournelle JH, Wang HF, Jelínek E (1997) Thermobarometry and reconstructed chemical compositions of spinel-pyroxene symplectites: evidence for pre-existing garnet in lherzolite xenoliths from Czech Neogene lavas. Russ Geol Geophys 38:277–286Google Scholar
  54. Mercier J-CC, Nicolas A (1975) Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths from basalts. J Petrol 16:454–487CrossRefGoogle Scholar
  55. Navon O, Stolper E (1987) Geochemical consequences of melt percolation - the upper mantle as a chromatographic column. J Geol 95:285–307CrossRefGoogle Scholar
  56. Niu Y (1997) Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites. J Petrol 38:1047–1074CrossRefGoogle Scholar
  57. Niu Y (2004) Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath Mid-Ocean ridges. J Petrol 45:2423–2458CrossRefGoogle Scholar
  58. Nixon PH (1987) Mantle xenoliths. Wiley, ChichesterGoogle Scholar
  59. Norman MD (1998) Melting and metasomatism in the continental lithosphere: laser ablation ICPMS analysis of minerals in spinel lherzolites from eastern Australia. Contrib Mineral Petrol 130:240–255CrossRefGoogle Scholar
  60. Pearson DG, Canil D, Shirey SB (2003) Mantle samples included in volcanic rocks: xenoliths and diamonds. In: Carlson RW (ed) Treatise geochemistry, vol 2—Mantle Core. Elsevier Pergamon, Amsterdam, pp 171–275Google Scholar
  61. Prodehl C, Mueller S, Haak V (1995) The European cenozoic rift system. In: Olsen KH (ed) Continental Rifts: Evolution, Structure, Tectonics. Elsevier, pp 133–212Google Scholar
  62. Puziewicz J, Koepke J, Gregoire M, Ntaflos T, Matusiak-Malek M (2011) Lithospheric mantle modification during Cenozoic rifting in Central Europe: evidence from the Ksieginki nephelinite (SW Poland) xenolith suite. J Petrol 52:2107–2145CrossRefGoogle Scholar
  63. Rudnick RL, McDonough WF, Chappell BW (1993) Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth Planet Sci Lett 114:463–475CrossRefGoogle Scholar
  64. Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux JM, Edel JB, Štípská P, Ulrich S (2009) An Andean type Palaeozoic convergence in the Bohemian Massif. Comptes Rendus Geosci 341:266–286CrossRefGoogle Scholar
  65. Špaček P, Ackerman L, Habler G, Abart R, Ulrych J (2013) Garnet breakdown, symplectite formation and melting in basanite-hosted peridotite xenoliths from Zinst (Bavaria, Bohemian Massif). J Petrol 54:1691–1723CrossRefGoogle Scholar
  66. Tabor FA, Tabor BE, Downes H (2010) Quantitative characterization of textures in mantle spinel peridotite xenoliths. In: Coltorti M, Downes H, Gregoire M, O`Reilly S (eds) Petroleum evaluation Europe lithospheric mantle. Geological Society of London, London, pp 195–211Google Scholar
  67. Takazawa E, Frey FA, Shimizu N, Obata M, Bodinier JL (1992) Geochemical evidence for melt migration and reaction in the upper mantle. Nature 359:55–58CrossRefGoogle Scholar
  68. Taylor WR (1998) An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite. Neues J Mineral Abh 172:381–408Google Scholar
  69. Ulrych J, Adamovič J (2004) Ultra)mafické plášťové xenolity v kenozoických alkalických vulkanitech Českého Masivu (Česká Republika. Miner Slovaca 36:205–215Google Scholar
  70. Ulrych J, Pivec E, Povondra P, Rutsek J (2000) Upper-mantle xenoliths in mellitic rocks of the Osecna Complex, North Bohemia. J Czech Geol Soc 45:79–83Google Scholar
  71. Ulrych J, Svobodová J, Balogh K (2002) The source of Cenozoic volcanism in the České Středohoří Mts., Bohemian Massif. Neues Jahrb Mineral Abh 177:133–162CrossRefGoogle Scholar
  72. Ulrych J, Lloyd FE, Balogh K (2003) Age relations and geochemical constraints of Cenozoic alkaline volcanic series in W Bohemia: a review. Geolines 15:168–180Google Scholar
  73. Ulrych J, Dostal J, Adamovič J, Jelínek E, Špaček P, Hegner E, Balogh K (2011) Recurrent Cenozoic volcanic activity in the Bohemian Massif (Czech Republic). Lithos 123:133–144CrossRefGoogle Scholar
  74. Van Achterbergh E, Ryan CG, Jackson SE, Griffin WL (2001) Data reduction software for LA-ICP-MS. In: Sylvester PJ (ed) Laser-ablation-ICPMS earth Science Principle Application. Mineralogical Association of Canada, Québec, pp 239–243Google Scholar
  75. Van der Wal D, Bodinier JL (1996) Origin of the recrystallisation front in the Ronda peridotite by km-scale pervasive porous melt flow. Contrib Mineral Petrol 122:387–405CrossRefGoogle Scholar
  76. Walter MJ (2004) Melt extraction and compositional variability in mantle lithosphere. In: Carlson RW (ed) Treatise Geochemistry, Vol. 2—Mantle Core. Elsevier Pergamon, Oxford, pp 363–394Google Scholar
  77. Wilson M, Downes H (1991) Tertiary Quaternary extension-related alkaline magmatism in Western and Central Europe. J Petrol 32:811–849CrossRefGoogle Scholar
  78. Witt-Eickschen G (1993) Upper mantle xenoliths from alkali basalts of the Vogelsberg, Germany—implication for mantle upwelling and metasomatism. Eur J Mineral 5:361–376CrossRefGoogle Scholar
  79. Witt-Eickschen G, Seck HA (1991) Solubility of Ca and Al in orthopyroxene from spinel peridotite: an improved version of an empirical geothermometer. Contrib Mineral Petrol 106:431–439. doi: 10.1007/BF00321986 CrossRefGoogle Scholar
  80. Yaxley GM, Crawford AJ, Green DH (1991) Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth Planet Sci Lett 107:305–317CrossRefGoogle Scholar
  81. Ziegler P (1994) Cenozoic rift system of Western and Central Europe—an overview. Geol en Mijnb 73:99–127Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Lukáš Ackerman
    • 1
    • 2
  • Gordon MedarisJr.
    • 3
  • Petr Špaček
    • 4
  • Jaromír Ulrych
    • 1
  1. 1.Institute of Geology v.v.i.Academy of Sciences of the Czech RepublicPrague 6Czech Republic
  2. 2.Czech Geological SurveyPrague 5Czech Republic
  3. 3.Department of GeoscienceUniversity of Wisconsin-MadisonMadisonUSA
  4. 4.Institute of Physics of the EarthMasaryk UniversityBrnoCzech Republic

Personalised recommendations