International Journal of Earth Sciences

, Volume 103, Issue 7, pp 1845–1872 | Cite as

Cold-seep-driven carbonate deposits at the Central American forearc: contrasting evolution and timing in escarpment and mound settings

  • V. LiebetrauEmail author
  • N. Augustin
  • S. Kutterolf
  • M. Schmidt
  • A. Eisenhauer
  • D. Garbe-Schönberg
  • W. Weinrebe
Original Paper


Continuous surface cores of cold-seep carbonates were recovered offshore Pacific Nicaragua and Costa Rica from 800 to 1,500-m water depths (Meteor 66/3) in order to decipher their evolution and methane enriched fluid emanation in contrasting geological settings. Cores from the mounds Iguana, Perezoso, Baula V and from the Jaco Scarp escarpment were used for a multi-method approach. For both settings aragonite was revealed as dominant authigenic carbonate phase in vein fillings and matrix cementation, followed by Mg-calcite as second most abundant. This common precipitation process of CaCO3 polymorphs could be ascribed as indirectly driven by chemical changes of the advecting pore water due to anaerobic oxidation of methane. A more direct influence of seep-related microbial activity on the authigenic mineral assemblage in both settings is probably reflected by the observed minor amounts of dolomite and a dolomite-like CaMg carbonate (MgCO3 ~ 42 %). δ13C data of Jaco Scarp samples are significantly lower (−43 to −56 ‰ PDB) than for mound samples (−22 to −36 ‰ PDB), indicating differences in fluid composition and origin. Noteworthy, δ18O values of Scarp samples correlate most closely with the ocean signature at their time of formation. Documenting the archive potential, a high resolution case study of a mound core implies at least 40 changes in fluid supply within a time interval of approximately 14 ky. As most striking difference, the age data indicate a late-stage downward-progressing cementation front for all three mound cap structures (approx. 2–5 cm/ky), but a significantly faster upward carbonate buildup in the bulging sediments on top of the scarp environment (approx. 120 cm/ky). The latter data set leads to the hypothesis of chemoherm carbonate emplacement in accord with reported sedimentation rates until decompression of the advective fluid system, probably caused by the Jaco Scarp landslide and dating this to approximately 13,000 years ago.


Authigenic carbonates Marine geochemical archives Light stable isotopes U–Th geochronology Microbial induced mineral formation Slope bathymetry 



This publication is contribution no. 205 of the Sonderforschungsbereich 574 “Volatiles and Fluids in Subduction Zones” at Kiel University, which was supported as part of the SFB574 by grants from the German Science Foundation (DFG). We thank all members of the shipboard parties during cruise M66/3, the captain, crew and shipboard scientific party of the Meteor cruise M66/3, and the BGS Rockdrill I team. The authors gratefully acknowledge Michael Joachimski (Geozentrum Erlangen) for oxygen and carbon isotope analyses; Reinhard Kleeberg (TU Bergakademie Freiberg) for XRD analyses; Ulrike Westernströer and Benedikt Lerch (Institute of Geosciences, Kiel) for their help and assistance with the XRF core scanner. At Geomar Jan Fietzke is especially acknowledged for providing the Axiom MC-ICP-MS facility on high performance level; Jutta Heinze for XRD support; Mario Thöner for assistance with microprobe measurements; Andrea Gärtner for assistance with fluorescence microscopy; and Patrick Reichert for sample preparation support. We thank David Völker and two anonymous reviewers for improving the manuscript by constructive comments and helpful suggestions.


  1. Aloisi G, Pierre C, Rouchy JM, Foucher JP, Woodside J (2000) Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilization. Earth Planet Sci Lett 184(1):321–338CrossRefGoogle Scholar
  2. Aloisi G, Bouloubassi I, Heijs SK, Pancost RD, Pierre C, Sinninghe Damsté JS, Gottschal JC, Forney LJ, Rouchy JM (2002) CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps. Earth Planet Sci Lett 203(1):195–203CrossRefGoogle Scholar
  3. Anthony JW, Bideaux RA, Bladh KW, Nichols MC (2003) Borates, carbonates sulfate. Handbook of mineralogy 5. Mineral Data Publishing, TucsonGoogle Scholar
  4. Bach W, Garrido C, Paulick H, Harvey J, Rosner M (2004) Seawater-peridotite interactions: first insights from ODP Leg 209, MAR 15 N. Geochem Geophys Geosyst 5(9). doi: 10.1029/2004GC000744
  5. Baker PA, Kastner M (1981) Constraints on the formation of sedimentary dolomite. Science 213(4504):214–216CrossRefGoogle Scholar
  6. Bayon G, Henderson GM, Bohn M (2009) U–Th stratigraphy of a cold seep carbonate crust. Chem Geol 260:47–56CrossRefGoogle Scholar
  7. Beck WS, Liem KF, Simpson AR (1991) Life: an introduction to biology, 3rd edn. HarperCollins Publishers, New YorkGoogle Scholar
  8. Blanchon P, Eisenhauer A, Fietzke J, Liebetrau V (2009) Rapid sea-level rise and reef back-stepping at the close of the last interglacial highstand. Nature 458:881–884CrossRefGoogle Scholar
  9. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieskes A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626CrossRefGoogle Scholar
  10. Bohrmann G, Heeschen K, Jung C, Weinrebe W, Baranov B, Cailleau B, Heath R, Hühnerbach V, Hort M, Mason D (2002) Widespread fluid expulsion along the seafloor of the Costa Rica convergent margin. Terra Nova 14(2):69–79CrossRefGoogle Scholar
  11. Brückmann W, Rhein M, Rehder G, Bialas J, Kopf A (Eds) (2009) SUBFLUX, Cruise No. 66, August 12–December 22, 2005. METEOR-Berichte, 09-2. Universität Hamburg.
  12. Cheng H, Edwards RL, Hoff J, Gallup CD, Richards DA, Asmerom Y (2000) The half-lives of uranium-234 and thorium-230. Chem Geol 169:17–33CrossRefGoogle Scholar
  13. Delanghe D, Bard E, Hamelin B (2002) New TIMS constraints on the uranium-238 and uranium-234 in seawaters from the main ocean basins and the Mediterranean Sea. Mar Chem 80:79–93CrossRefGoogle Scholar
  14. Dickens GR (2003) Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth Planet Sci Lett 213:169–183CrossRefGoogle Scholar
  15. Fietzke J, Liebetrau V, Eisenhauer A, Dullo W-Ch (2005) Determination of uranium isotope ratios by multi-static MIC-ICP-MS: method and implementation for precise U- and Th-series isotope measurements. J Anal Atom Spectrom 20:395–401CrossRefGoogle Scholar
  16. Folk RL (2005) Nanobacteria and the formation of framboidal pyrite: textural evidence. J Earth Syst Sci 114(3):369–374CrossRefGoogle Scholar
  17. Ge L, Jiang S-Y, Swennen R, Yang T, Yang J-H, Wu N-Y, Liu J, Chen D-H (2010) Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: evidence from trace and rare earth element geochemistry. Mar Geol 277(1–4):21–30CrossRefGoogle Scholar
  18. Gitay H, Suárez A, Watson RT, Dokken DJ (2002) Climate change and biodiversity. Inter-governmental Panel on Climate Change, IPCC, Geneva, pp 1–85Google Scholar
  19. Goldsmith JR, Graf DL, Heard HC (1961) Lattice constants of the calcium-magnesium carbonates. Am Mineral 46:453–459Google Scholar
  20. González-Muñoz MT, De Linares C, Martínez-Ruiz F, Morcillo F, Martín-Ramos D, Arias JM (2008) Ca-Mg kutnahorite and struvite production by Idiomarina strains at modern seawater salinities. Chemosphere 72(3):465–472CrossRefGoogle Scholar
  21. Greinert J, Bohrmann G, Elvert M (2002) Stromatolitic fabric of authigenic carbonate crusts: result of anaerobic methane oxidation at cold seeps in 4850 m water depth. Int J Earth Sci 91(4):698–711CrossRefGoogle Scholar
  22. Hammerich T, Garbe-Schönberg D, Liebetrau V (2007) An integrated study of the first drill cores of Central American fore-arc seep carbonates. Terra Nostra 1–2:104Google Scholar
  23. Han X, Suess E, Sahling H, Wallmann K (2004) Fluid venting activity on the Costa Rica margin: new results from authigenic carbonates. Int J Earth Sci 93:596–611Google Scholar
  24. Han X, Suess E, Huang Y, Wu N, Bohrmann G, Su X, Eisenhauer A, Rehder G, Fang Y (2008) Jiulong methane reef: microbial mediation of seep carbonates in the South China Sea. Mar Geol 249(3–4):243–256CrossRefGoogle Scholar
  25. Han X, Suess E, Liebetrau V, Eisenhauer A, Huang YY (2014) Past methane release events and environmental conditions at the upper continental slope of the South China Sea: constraints from seep carbonates. Int J Earth Sci (Geol Rundsch). doi: 10.1007/s00531-014-1018-5
  26. Hensen C, Wallmann K (2005) Methane formation at Costa Rica continental margin—constraints for gas hydrate inventories and cross-décollement fluid flow. Earth Planet Sci Lett 236:41–60CrossRefGoogle Scholar
  27. Hensen C, Wallmann K, Schmidt M, Ranero CR, Suess E (2004) Fluid expulsion related to mud extrusion off Costa Rica; a window to the subducting slab. Geology 32:201–204. doi: 10.1130/G20119.1 CrossRefGoogle Scholar
  28. Judd AG, Hovland M, Dimitrov LI, Gil SG, Jukes V (2002) The geological methane budget at continental margins and its influence on climate change. Geofluids 2:109–126CrossRefGoogle Scholar
  29. Krause S, Liebetrau V, Gorb S, Sánchez-Román M, McKenzie JA, Treude T (2012) Microbial nucleation of Mg-rich dolomite in exopolymeric substances under anoxic modern seawater salinity: new insight into an old enigma. Geology 40:587–590. doi: 10.1130/G32923 CrossRefGoogle Scholar
  30. Krause S, Steeb P, Hensen C, Liebetrau V, Dale AW, Nuzzo M, Treude T (2014) Microbial activity and carbonate isotope signatures as a tool for identification of spatial differences in methane advection: a case study at the Pacific Costa Rican margin. Biogeosciences 11:507–523. doi: 10.5194/bg-11-507-2014 CrossRefGoogle Scholar
  31. Kutterolf S, Liebetrau V, Mörz T, Freundt A, Hammerich T, Garbe-Schönberg D (2008a) Lifetime and cyclicity of fluid venting at forearc mound structures determined by tephrostratigraphy and radiometric dating of authigenic carbonates. Geology 36(9):707–710CrossRefGoogle Scholar
  32. Kutterolf S, Freundt A, Schacht U, Bürk D, Harders R, Mörz T, Peréz W (2008b) Pacific offshore record of plinian arc volcanism in Central America: 3. Application to forearc geology. Geochem Geophys Geosyst 9: Q02S03. doi: 10.1029/2007GC001826
  33. Liebetrau V, Eisenhauer A, Linke P (2010) Cold seep carbonates and associated coldwater corals at the Hikurangi Margin, New Zealand: new insights into fluid pathways, growth structures and geochronology. Mar Geol 272:307–318. doi: 10.1016/j.margeo.2010.01.003 CrossRefGoogle Scholar
  34. Lisiecki LE, Raymo ME (2005) A Pliocene- Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:PA1003. doi: 10.1029/2004PA001071
  35. Mau S, Rehder G, Sahling H, Linke P, Schleicher T, Stange K, Suess E (2013) Seepage of methane at Jaco Scarp, a landslide caused by seamount subduction offshore Costa Rica. Int J Earth Sci. doi: 10.1007/s00531-012-0822-z
  36. Mavromatis V, Botz R, Schmidt M, Liebetrau V, Hensen C (2012) Formation of carbonate concretions in surface sediments of two mud mounds offshore Costa Rica: a stable isotope study. Int J Earth Sci. doi: 10.1007/s00531-012-0843-7
  37. Milkov AV (2000) Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar Geol 167:29–42CrossRefGoogle Scholar
  38. Milkov AV, Sassen R, Apanasovich TV, Dadashev FG (2003) Global gas flux from mud volcanoes: a significant source of fossil methane in the atmosphere and the ocean. Geophys Res Lett 30:1037CrossRefGoogle Scholar
  39. Moerz T, Kopf A, Brueckmann W, Sahling H, Fekete N, Hühnerbach V, Masson D, Hepp DA, Suess E (2005) Styles and productivity of diapirism along the Middle America margin, part I: Margin evolution, segmentation, dewatering and mud diapirism. In: Martinelli G, Panahi B (eds) Mud volcanoes, geodynamics and seismicity. NATO Science Series. Springer, Dordrecht, pp 35–48CrossRefGoogle Scholar
  40. Peacor DR, Essene EJ, Gaines AM (1987) Petrologic and crystal-chemical implications of cation order-disorder in kutnahorite [CaMn(CO3)2]. Am Mineral 72:319–328Google Scholar
  41. Ranero CR, Morgan JP, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425:367–373CrossRefGoogle Scholar
  42. Ranero CR, Grevemeyer I, Sahling H, Barckhausen U, Hensen C, Wallmann K, Weinrebe W, Vannucchi P, von Huene R, McIntosh K (2008) Hydrogeological system of erosional convergent margins and its influence on tectonics and interplate seismogenesis. Geochem Geophys Geosyst 9(3): Q03S04Google Scholar
  43. Richter TO, van der Gaast S, Koster B, Vaars A, Gieles R, de Stigter HC, De Haas H, van Weering TCE (2006) The Avaatech XRF Core Scanner: technical description and applications to NE Atlantic sediments. In: Rothwell RG (ed) New techniques in sediment core analysis. Special Publications. Geological Society, London, pp 39–50Google Scholar
  44. Sahling H, Masson DG, Ranero CR, Hühnerbach V, Weinrebe W, Klaucke I, Bürk D, Brückmann W, Suess E (2008) Fluid seepage at the continental margin offshore Costa Rica and southern Nicaragua. Geochem Geophys Geosyst 9. doi: 10.1029/2008GC001978
  45. Saito S, Goldberg D (2001) Compaction and dewatering processes of the oceanic sediments in the Costa Rica and Barbados subduction zones: estimates from in situ physical property measurements. Earth Planet Sci Lett 191(3–4):283–293CrossRefGoogle Scholar
  46. Schmidt M, Hensen C, Moerz T, Mueller C, Grevemeyer I, Wallmann K, Mau S, Kaul N (2005) Methane hydrate accumulation in “Mound 11” mud volcano, Costa Rica forearc. Mar Geol 216:83–100. doi: 10.1016/j.margeo.2005.01.001 CrossRefGoogle Scholar
  47. Sibuet M, Olu K (1998) Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep Sea Res Part II 45(1–3):517–567CrossRefGoogle Scholar
  48. Suess E (2010) Marine cold seeps. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology, vol 1, 16 Part 3Springer, Heidelberg, pp 187–203Google Scholar
  49. Suess E (2014) Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions. Int J Earth Sci (Geol Rundsch), this volume. doi: 10.1007/s00531-014-1010-0
  50. Syracuse EM, Abers GA (2006) Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem Geophys Geosyst 7(5):Q05017CrossRefGoogle Scholar
  51. Teichert BMA, Eisenhauer A, Bohrmann G, Haase-Schramm A, Bock B, Linke P (2003) U/Th systematics and ages of authigenic carbonates from Hydrate Ridge, Cascadia margin: Recorders of fluid flow variations. Geochim Cosmochim Acta 67:3845–3857CrossRefGoogle Scholar
  52. Tjallingii R, Röhl U, Kölling M, Bickert T (2007) Influence of the water content on X-ray fluorescence core-scanning measurements in soft marine sediments. Geochem Geophys Geosyst 8(2):Q02004CrossRefGoogle Scholar
  53. van Dongen BE, Roberts AP, Schouten S, Jiang WT, Florindo F, Pancost RD (2007) Formation of iron sulfide nodules during anaerobic oxidation of methane. Geochim Cosmochim Acta 71:5155–5167CrossRefGoogle Scholar
  54. Vannucchi P, Scholl DW, Meschede M, McDougall-Reid K (2001) Tectonic erosion and consequent collapse of the Pacific margin of Costa Rica: combined implications from ODP Leg 170, seismic offshore data, and regional geology of the Nicoya Peninsula. Tectonics 20(5):649–668CrossRefGoogle Scholar
  55. Vasconcelos C, McKenzie JA, Bernasconi S, Grujic D, Tien AJ (1995) Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature 377:220–222CrossRefGoogle Scholar
  56. von Huene R, Ranero CR (2001) Subduction erosion and basal friction along the sediment-starved convergent margin off Antofagasta, Chile. J Geophys Res 108(B2):2079. doi: 10.1029/2001JB001569 CrossRefGoogle Scholar
  57. Warthmann R, van Lith Y, Vasconcelos C, McKenzie J, Karpoff AM (2000) Bacterially induced dolomite precipitation in anoxic culture experiments. Geology 28(12):1091CrossRefGoogle Scholar
  58. Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59(7):1217–1232CrossRefGoogle Scholar
  59. Weltje GJ, Tjallingii R (2008) Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: theory and application. Earth Planet Sci Lett 274(3–4):423–438CrossRefGoogle Scholar
  60. Xu H (2010) Synergistic roles of microorganisms in mineral precipitates associated with deep sea methane seeps. In: Barton LL, Mandl M, Loy A (eds) Geomicrobiology: molecular and environmental perspective. Springer, The Netherlands, pp 325–346Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • V. Liebetrau
    • 1
    Email author
  • N. Augustin
    • 1
  • S. Kutterolf
    • 1
  • M. Schmidt
    • 1
  • A. Eisenhauer
    • 1
  • D. Garbe-Schönberg
    • 2
  • W. Weinrebe
    • 1
  1. 1.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  2. 2.Institute of GeosciencesUniversity of KielKielGermany

Personalised recommendations