International Journal of Earth Sciences

, Volume 103, Issue 7, pp 1917–1927 | Cite as

Element signatures of subduction-zone fluids. An experimental study of the element partitioning (Dfluid/rock) of natural partly altered igneous rocks from the ODP drilling site 1,256

  • Andreas Mutter
  • Astrid Holzheid
  • Andreas Klügel
  • Max Wilke
  • Jasper Berndt
  • Dieter Garbe-Schönberg
Original Paper

Abstract

The trace element signatures of fluids were investigated by leaching experiments on natural samples of partly altered mafic igneous rocks recovered from the drilling site 1,256 of ODP Leg 206 on the Cocos plate (Central America). Experiments with ultrapure water were performed at 400 °C/0.4 GPa and 500 °C/0.7 GPa. Both fluids and residual solids were examined to obtain the partition coefficients (Dfluid/rock) of various trace elements. Element partition coefficients (Dfluid/rock) obtained at 500 °C/0.7 GPa are significantly lower compared to results obtained at 400 °C/0.4 GPa, which is in contrast to observations at higher pressures (2.2–6 GPa) and temperatures between 700 and 1,400 °C (Kessel et al. in Earth Planet Sci Lett 237: 873–892, 2005a; Spandler et al. in Chem Geol 239: 228–249, 2007). This finding may indicate a considerable pressure effect on the leaching processes and strongly divergent fluid–rock interactions in the upper part of a subduction zone at 0.4–0.7 GPa compared to deeper subduction areas with higher pressures. Furthermore, this may be interpreted as one of the earliest fractionation processes during the subduction of crustal material.

Keywords

Subduction zones Trace elements Partition coefficients Leaching experiments Cocos plate 

Notes

Acknowledgments

This publication is contribution No. 257 of the Sonderforschungsbereich 574 “Volatiles and Fluids in Subduction Zones” at the University of Kiel, supported by the Deutsche Forschungsgemeinschaft. We sincerely thank for assistance at the electron microprobe B. Mader (Kiel) and A. Fehler for his support in preparing the samples. Comments by the topic editor, Erwin Suess, and two anonymous referees are appreciated.

References

  1. Adam J, Green TH, Sie SH, Ryan CG (1997) Trace element partitioning between aqueous fluids, silicate melts and minerals. Eur J Mineral 9:569–584CrossRefGoogle Scholar
  2. Borchert M, Wilke M, Schmidt Ch, Rickers K (2010) Rb and Sr partitioning between haplogranitic melts and aqueous solutions. Geochimica et Cosmochimica Acta 74(3):1057–1076CrossRefGoogle Scholar
  3. Carr MJ, Feigenson MD, Bennett EA (1990) Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central American arc. Contrib Mineral Petrol 105:369–380CrossRefGoogle Scholar
  4. Fedorowich JS, Richards JP, Jain JC, Kerrich R, Fan J (1993) A rapid method for REE and trace-element analysis using laser sampling ICP-MS on direct fusion whole-rock glasses. Chem Geol 106:229–249CrossRefGoogle Scholar
  5. Forneris JF, Holloway John R (2003) Phase equilibria in subducting basaltic crust: implications for H2O release from the slab. Earth Planet Sci Lett 214:187–201CrossRefGoogle Scholar
  6. Hacker BR, Abers GA, Peacock SM (2003) Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. J Geophys Res 108(1):2029–2039. doi:10.1029/2001JB001127 CrossRefGoogle Scholar
  7. Herms P, John T, Bakker RJ, Schenk V (2012) Evidence for channelized external fluid flow and element transfer in subducting slabs (Raspas Complex, Ecuador). Chem Geol 310–311:79–96CrossRefGoogle Scholar
  8. Herrstrom EA, Reagan MK, Morris JD (1995) Variations in lava composition associated with flow of asthenosphere beneath southern Central America. Geochem Geophys Geosyst 23:617–620Google Scholar
  9. Hoernle K, Abt DA, Fischer KM, Nichols H, Hauff F, Abers GA, van den Bogaard P, Heydolph K, Alvarado G, Protti M, Strauch W (2008) Arc-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua. Nature 451:1094–1097. doi:10.1038/nature06550 CrossRefGoogle Scholar
  10. Kessel R, Ulmer P, Pettke T, Schmidt MW, Thompson AB (2005a) The water–basalt system at 4 to 6 GPa: phase relations and second critical endpoint in a K-free eclogite at 700 to 1,400 °C. Earth Planet Sci Lett 237:873–892CrossRefGoogle Scholar
  11. Kessel R, Schmidt MW, Ulmer P, Pettke T (2005b) Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437(29):724–727CrossRefGoogle Scholar
  12. Leeman WP, Carr MJ, Morris JD (1994) Boron geochemistry of the Central American Volcanic Arc: constraints on the genesis of subduction-related magmas. Geochim Cosmochim Acta 58:149–168CrossRefGoogle Scholar
  13. Manning CE (2004a) The chemistry of subduction-zone fluids. Earth Planet Sci Lett 223:1–16CrossRefGoogle Scholar
  14. Manning CE (2004b) Polymeric silicate complexing in aqueous fluids at high pressure and temperature, and its implications for water-rock interaction. In: Wanty RB, Seal RR II (eds) Water-rock interaction. Balkema, New York, pp 45–49Google Scholar
  15. Marschall HR, Schumacher JC (2012) Arc magmas sourced from mélange diapirs in subduction zones. Nature Geosci 5:862–867. doi:10.1038/NGEO1634 CrossRefGoogle Scholar
  16. Miller SA, van der Zee W, Olgaard DL, Connolly JAD (2003) A fluid-pressure feedback model of dehydration reactions: experiments, modelling, and application to subduction zones. Tectonophysics 370:241–251CrossRefGoogle Scholar
  17. Peacock SM (2003) In: Eiler, J.M. (Ed.), Inside the subduction factory. Thermal structure and metamorphic evolution of subducting slabs Geophysical Monograph Ser. American Geophysical Union, Washington, DC, pp. 7–22Google Scholar
  18. Peacock SM, van Keken PE, Holloway SD, Hacker BR, Abers G, Fergasom RL (2005) Thermal structure of the Costa Rica—Nicaragua subduction zonePhys. Earth planet Int 149:187–200CrossRefGoogle Scholar
  19. Poli S, Schmidt MW (1995) H20 transport and release in subduction zones: experimental constraints on basaltic and andesitic systems. J Geophys Res 100(11):22299–22314CrossRefGoogle Scholar
  20. Poli S, Schmidt MW (2002) Petrology of subducted slabs. Annu Rev Earth Planet Sci 30:207–235. doi:10.1146/annurev.earth.30.091201.140550 CrossRefGoogle Scholar
  21. Sadofsky S, Hoernle K, Duggen S, Hauff F, Werner R, Garbe-Schönberg D (2009) Geochemical variations in the Cocos Plate subducting beneath Central America: implications for the composition of arc volcanism and the extent of the Gala´pagos Hotspot influence on the Cocos oceanic crust. Int J Earth Sci (Geol. Rundsch.) 98:901–913. doi:10.1007/s00531-007-0289-5 CrossRefGoogle Scholar
  22. Scambelluri M, Philippot P (2001) Deep fluids in subduction zones. Lithos 55:213–227CrossRefGoogle Scholar
  23. Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163:361–379CrossRefGoogle Scholar
  24. Spandler C, Mavrogenes J, Hermann J (2007) Experimental constraints on element mobility from subducted sediments using high-P synthetic fluid/melt inclusions. Chem Geol 239:228–249CrossRefGoogle Scholar
  25. Teagle DAH, Alt JC, Umino S, Miyashita S, Banerjee NR, Wilson DS and the Expedition 309/312 Scientists (2006) Proceedings of the Integrated Ocean Drilling Program, Volume 309/312Google Scholar
  26. Van Keken PE, Kiefer B, Peacock SM (2002) High-resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochem Geophys Geosyst 3:1056. doi:10.1029/2001GC000256 Google Scholar
  27. Wilke M, Schmidt Ch, Dubrail J, Karen Appel K, Borchert M, Kvashnina K, Manning CE (2012) Zircon solubility and zirconium complexation in H2O + Na2O + SiO2 + Al2O3 fluids at high pressure and temperature. Earth Planet Sci Lett 349–350:15–25CrossRefGoogle Scholar
  28. Wilson DS, Teagle DAH, Acton GD (2003) An in Situ section of upper oceanic crust formed by superfast seafloor spreading; covering Leg 206 of the cruises of the drilling vessel joides resolution; Balboa, Panama, to Balboa, Panama, Site 1256, 6 November 2002–4 January 2003, vol. Ocean drilling programGoogle Scholar
  29. Wilson DS, Teagle DAH, Alt JC, Banerjee NR, Umino S, Miyashita S, Acton GD, Anma R, Barr SR, Belghoul A, Carlut J, Christie DM, Coggon RM, Cooper KM, Cordier C, Crispini L, Rodriguez Durand S, Einaudi F, Galli L, Gao Y, Geldmacher J, Gilbert LA, Hayman NW, Herrero-Bervera E, Hirano N, Holter S, Ingle S, Jiang S, Kalberkamp U, Kerneklian M, Koepke J, Laverne C, Lledo Vasquez HL, Maclennan J, Morgan S, Neo N, Nichols HJ, Park S-H, Reichow MK, Sakuyama T, Sano T, Sandwell R, Scheibner B, Smith-Duque CE, Swift SA, Tartarotti P, Tikku AA, Tominaga M, Veloso EA, Yamasaki T, Yamazaki S, Ziegler C (2006) Drilling to gabbro in intact ocean crust. Science 312:1016–1020CrossRefGoogle Scholar
  30. Zack T, John T (2007) An evaluation of reactive fluid flow and trace element mobility in subducting slabs Chemical. Geology 239:199–216Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Andreas Mutter
    • 1
    • 5
  • Astrid Holzheid
    • 1
  • Andreas Klügel
    • 2
  • Max Wilke
    • 3
  • Jasper Berndt
    • 4
  • Dieter Garbe-Schönberg
    • 1
  1. 1.Institut für GeowissenschaftenChristian-Albrechts University of KielKielGermany
  2. 2.Institut für GeowissenschaftenUniversity of BremenBremenGermany
  3. 3.GFZ German Research Centre for GeosciencesPotsdamGermany
  4. 4.Institut für MineralogieWestfälische Wilhelms University of MünsterMünsterGermany
  5. 5.Department of Earth SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations