International Journal of Earth Sciences

, Volume 103, Issue 4, pp 1023–1036 | Cite as

Origin and age of ultramafic rocks and gabbros in the southern Puna of Argentina: an alleged Ordovician suture revisited

  • Udo Zimmermann
  • Heinrich Bahlburg
  • Klaus Mezger
  • Jasper Berndt
  • Suzanne Mahlburg Kay
Original Paper

Abstract

Ultramafic rocks and gabbros are exposed in the southern Puna (NW Argentina) in tectonic association with continental arc-related Ordovician (volcano) sedimentary successions and granitoids. The origin of this mafic rock suite has been debated for three decades as either representing an Ordovician terrane suture, primitive Ordovician arc-related rocks or relics of the pre-Ordovician basement in tectonic contact with the Ordovician retro-arc basin successions. We present the first U–Pb ages of primary and inherited zircon from gabbros of this mafic–ultramafic assemblage. LA-ICP-MS analyses on cores and rims of these zircon grains yielded a concordia age of 543.4 ± 7.2 Ma for the gabbroic rocks. Other analysed zircons have Mesoproterozoic, and Early Ediacaran core and rim ages indicating that the magmas also assimilated Meso- and Neoproterozoic crustal material prior to final crystallization. The mafic rocks witnessed higher metamorphic grade than associated Ordovician rocks, which are unmetamorphosed or only affected by anchimetamorphism. The gabbros are mostly tholeiitic and enriched in Zr, Th, as well as other incompatible elements and have εNdt=540Ma ranging from 1.3 to 7.4 with most of the values between 5 and 7. 147Sm/144Nd ratios show evidence of weak crustal contamination. The mafic rocks do not reveal any affinity to mid-ocean ridge basalts in their geochemistry but point instead to an emplacement in an active plate margin arc environment. Chromites from ultramafic rocks show typical Ti, Al, Cr#, Fe3+ abundances found in magmatic arc rocks. The formation of the gabbros and the associated ultramafic rocks in the southern Argentine Puna is related to the evolution of the margin of the Pampia terrane, including the Puncoviscana basin, during the Late Neoproterozoic and earliest Cambrian. In contrast to previous interpretations, the rocks predate the Ordovician evolution of the Central proto-Andean active margin. Consequently, interpretations assuming these rocks to represent an oceanic terrane suture of Ordovician age have to be dismissed as much as all palaeotectonic models that define Ordovician terranes in the Central Andes based on assumption that the ultramafic rocks and gabbros exposed in the southern Puna mark plate boundaries.

Keywords

Argentina Western Gondwana margin Puna–Famatina magmatic arc Ultramafic and mafic rocks Pampia Terrane 

Supplementary material

531_2014_1020_MOESM1_ESM.jpg (2 mb)
Fig. 1 data repository: a) Detailed map of the exposures in the southern Sierra de Calalaste. b) Detailed map of the exposures south of Salar de Pocitos (JPEG 2021 kb)
531_2014_1020_MOESM2_ESM.xls (118 kb)
Table 1 supplementary material: Geochemical data for all samples in this study. wt% = weight per cent; ppm = parts per million; LOI = loss on ignition; TC = sample associated with the Tolar Chico Formation; TOL = samples associated with the Tolillar Formation; SC = Sierra de Calalaste; AF = Quebrada Volcán (Antofalla). Light grey fields indicate cumulates. <xx = below the detection limit. Values for crustal thickness after Mantle and Collins (2008) (XLS 117 kb)

References

  1. Aalto KR (1982) The Franciscan complex of northernmost California: sedimentation and tectonics. In: Leggett JK (ed) Trench-Forearc geology. Geol Soc Lond Spec Publ 10:419–432Google Scholar
  2. Allmendinger RW, Jordan TE, Palma M, Ramos VA (1982) Perfil estructural en la Puna Catamaqueña (25°–27°S), Argentina. V Congr Latinoam Geol Actas I:499–518Google Scholar
  3. Arai S (1992) Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Miner Mag 56:173–184CrossRefGoogle Scholar
  4. Argañaraz R, Viramonte J, Salazar L (1973) Sobre el hallazgo de serpentinitas en la Puna Argentina. V Congr Geol Argent Actas I:23–32Google Scholar
  5. Augustsson C, Rüsing T, Adams CJ, Zimmermann U, Chmiel H, Kocabayoğlu M, Büld M, Zimmermann U, Berndt J, Kooijman E (2011) Detrital quartz and zircon combined: the production of mature sand with short transportation paths along the Cambrian West Gondwana margin, NW Argentina. J Sed Res 81:284–298CrossRefGoogle Scholar
  6. Bahlburg H (1990) The Ordovician basin in the Puna of NW Argentina and N Chile: geodynamic evolution from back-arc to foreland basin. Geotekton Forsch 75:1–107Google Scholar
  7. Bahlburg H (1998) The geochemistry and provenance of Ordovician turbidites in the Argentine Puna. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean Margin of Gondwana. Geol Soc Lond Spec Publ 142:127–142Google Scholar
  8. Bahlburg H, Hervé F (1997) Geodynamic evolution and tectonostratigraphic terranes of northwestern Argentina and northern Chile. Geol Soc Am Bull 109:869–884CrossRefGoogle Scholar
  9. Bahlburg H, Vervoort JD, Du Frane SA, Bock B, Augustsso C (2009) Timing of crust formation and recycling in accretionary orogens: the detrital zircon U–Pb and Hf, and the whole-rock Nd isotope evidence of Devonian to Permian turbidite deposits of the Gondwana margin in northern Chile. Earth Sci Rev 97:215–241CrossRefGoogle Scholar
  10. Blasco G, Villar L, Zappettini EO (1996) El complejo ofiolítico desmembrado de la Puna argentina, Provincias de Jujuy, Salta y Catamarca. XIII Congr Geol Argent y III Congr Expl Hidrocarb Actas III: 653–667 Google Scholar
  11. Bock B, Bahlburg H, Wörner G, Zimmermann U (2000) Tracing crustal evolution in the southern central Andes from the Late Precambrian to Permian with Geochemical and Nd and Pb isotope data. J Geol 108:515–535CrossRefGoogle Scholar
  12. Coira B (1974) Levantamiento de la hoja 9°-b, Salar de Antofalla, provincia de Catamarca. Serv Geol Nac (unpublished report) Google Scholar
  13. Coira BL, Kay SM, Peréz B, Woll B, Hanning M, Flores P (1999) Magmatic sources and tectonic setting of Gondwana margin Ordovician magmas, northern Puna of Argentina and Chile. In: Ramos VA, Keppie JD (eds) Laurentia-Gondwana connection before Pangea. Geol Soc Am Spec Paper 336:145–170Google Scholar
  14. Coira B, Kirschbaum A, Hongn F, Pérez B, Menegatti N (2009a) Basic magmatism in northeastern Puna, Argentina: chemical composition and tectonic setting in the Ordovician back-arc. J S Am Earth Sci 27:374–382CrossRefGoogle Scholar
  15. Coira B, Koukharsky M, Ribeiro Guevara S, Cisterna CE (2009b) Puna (Argentina) and northern Chile Ordovician Basic magmatism: a contribution to the tectonic setting. J S Am Earth Sci 27:24–35CrossRefGoogle Scholar
  16. Conti CM, Rapalini AE, Coira B, Koukharsky M (1996) Palaeomagnetic evidence of an early Palaeozoic rotated terrane in Northwest Argentina; a clue for Gondwana-Laurentia interaction? Geology 24:953–956CrossRefGoogle Scholar
  17. Dalziel IWD, Forsythe RD (1985) Andean evolution and the terrane concept. In: Howell DG (ed) Tectonostratigraphic terranes of the Circum-Pacific Region. Circum-Pacific-Council Energ Miner Resourc Earth Sci Ser 1:565–581Google Scholar
  18. DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallisation. Earth Plan Sci Lett 53:189–202CrossRefGoogle Scholar
  19. Dilek Y, Newcomb S (eds) (2003) Ophiolite concept and the evolution of geological thought. Geol Soc Am Spec Paper 373:1–504Google Scholar
  20. Egenhoff SO (2007) Life and death of a Cambrian-Ordovician basin: an Andean three act play featuring Gondwana and the Arequipa-Antofalla terrane. Geol Soc Am Spec Paper 423:511–524Google Scholar
  21. Egenhoff SO, Lucassen F (2003) Chemical and isotopic composition constrain the source of lower to upper Ordovician sediments from the Andes of south Bolivia. J Geol 111:487–497CrossRefGoogle Scholar
  22. Forsythe RD, Davidson J, Mpodozis C, Jesinkey C (1993) Lower Palaeozoic relative motion of the Arequipa block and Gondwana: palaeomagnetic evidence from Sierra de Almeida of northern Chile. Tectonics 12:219–236CrossRefGoogle Scholar
  23. Hall J (1865) Figures and descriptions of Canadian organic remains; Decade II, graptolites of the Quebec group. Geol Surv Can 1–151Google Scholar
  24. Hofmann AW, Jochum KP, Seufert M, White WM (1986) Nb and Pb in oceanic basalts; new constraints on mantle evolution. Earth Plan Sci Lett 79:33–45CrossRefGoogle Scholar
  25. Howell DG, Jones DL, Schermer ER (1985) Tectonostratigraphic terranes of the Circum-Pacific Region. In: Howell DG (ed) Tectonostratigraphic terranes of the Circum-Pacific Region. Circum-Pacific-Council Energ Miner Resourc Earth Sci Ser 1:3–30Google Scholar
  26. Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548CrossRefGoogle Scholar
  27. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 211:47–69CrossRefGoogle Scholar
  28. Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurements of half-lives and specific activities of 235U and 238U. Phys Rev C 4:1889–1906CrossRefGoogle Scholar
  29. Kamenetsky VS, Crawford AJ, Meffre S (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J Petrol 42:655–671CrossRefGoogle Scholar
  30. Kay SM, Maksaev V, Mpodozis C, Moscoso R, Nasi C (1987) Probing the evolving Andean lithosphere: middle to late tertiary magmatic rocks in Chile over the modern zone of subhorizontal subduction (29°–31.5°S). J Geophys Res 92:6173–6189CrossRefGoogle Scholar
  31. Keppie JD (1989) Northern Appalachian terranes and their accretionary history. Geol Soc Am Spec Paper 230:159–192CrossRefGoogle Scholar
  32. Kleine T, Mezger K, Münker K, Zimmermann U, Bahlburg H (2004) Crustal evolution along the Early Ordovician proto-Andean margin of Gondwana: trace element and isotope evidence from the Complejo Ígneo Pocitos (NW Argentina). J Geol 112:503–520CrossRefGoogle Scholar
  33. Kooijman E, Berndt J, Mezger K (2012) U–Pb dating of zircon by laser ablation ICP-MS: recent improvements and new insights. Eur J Min 24:5–21CrossRefGoogle Scholar
  34. Lentz DR (1998) Petrogenetic evolution of felsic volcanic sequences associated with Phanerozoic volcanic-hosted massive sulfide systems: the role of extensional geodynamics. Ore Geol Rev 12:289–327CrossRefGoogle Scholar
  35. Lindholm K (1991) Ordovician graptolites from the early Hunneberg of southern Scandinavia. Palaeontology 34:283–327Google Scholar
  36. Lucassen F, Becchio R, Wilke HG, Franz G, Thirwall MF, Viramonte J, Wemmer K (2000) Proterozoic–Palaeozoic development of the basement of Central Andes (18–26°)—a mobile belt of the South American craton. J S Am Earth Sci 13:697–715CrossRefGoogle Scholar
  37. Lucassen F, Franz G, Romer RL, Schultz F, Dulski P, Wemmer K (2007) Pre-Cenozoic intra-plate magmatism along the Central Andes (17–34°S): composition of the mantle at an active margin. Lithos 99:312–338CrossRefGoogle Scholar
  38. Mannheim R, Miller H (1996) Las rocas volcánicas y subvolcánicas eopaleozoicas del Sistema de Famatina. Münch Geol Hefte A 19:159–186Google Scholar
  39. Mantle GW, Collins WJ (2008) Quantifying crustal thickness variations in evolving orogens: correlation between arc basalt composition and Moho depth. Geology 36:87–90CrossRefGoogle Scholar
  40. Martos DE (1982) Estadística y correlación geoquímica en la región de Antofalla, Província de Catamarca. V Congr Latinoamér Geol Actas IV:147–157Google Scholar
  41. Mon R, Hongn F (1991) The structure of the Precambrian and lower Palaeozoic basement of the Central Andes between 22° and 32° Lat. Geol Rundsch 80:745–758CrossRefGoogle Scholar
  42. Naidoo T, Zimmermann U, Vervoort J (2012) Detrital zircon provenance of late ordovician to early silurian successions in Northwest Argentina. Vinterkonferansen 2011, Norsk Geologisk Forening NGF Abstracts and Proceedings 1:68–69Google Scholar
  43. Nakamura N (1974) Determination of REE, Ba, Fe, Mg, Na, and K in carbonaceous and ordinary chondrites. Geochim Cosmoch Acta 38:57–775Google Scholar
  44. Palma MA, Brisson I, Vujovich G (1990) Geológia del bloque de la Quebrada Honda, Puna Cartamarqueña. Rev Assoc Geol Arg 45:145–158Google Scholar
  45. Pankhurst RJ, Rapela CW, Saavedra J, Baldo E, Dahlquist J, Pascua I, Fanning CM (1998) The Famatinian magmatic arc in the central Sierras Pampeanas: an Early to Mid Ordovician continental arc on the Gondwana margin. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean Margin of Gondwana. Geol Soc Lond Spec Publ 142:181–217Google Scholar
  46. Pearce JA (1983) Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva, Nantwich, pp 230–249Google Scholar
  47. Piercey SJ, Murphy DC, Mortensen JK, Creaser RA (2004) Mid-Palaeozoic initiation of the northern Cordilleran marginal backarc basin: geologic, geochemical, and neodymium isotope evidence from the oldest mafic magmatic rocks in the Yukon-Tanana terrane, Finlayson Lake district, southeast Yukon, Canada. Geol Soc Am Bull 116:1087–1106CrossRefGoogle Scholar
  48. Poma S, Quenardelle S, Litvak V, Maisonnave EB, Koukharsky M (2004) The Sierra de Macon, Plutonic expression of the Ordovician magmatic arc, Salta Province Argentina. J S Am Earth Sci 16:587–597CrossRefGoogle Scholar
  49. Quenardelle S, Poma S (2008) Quebrada Tramontana (Sierra De Calalaste): evidencias de metamorfismo térmico en caja de rocas ultramáficas. XVII Congr Geol Argent Actas II:675–676Google Scholar
  50. Ramos VA (1988) Late Proterozoic-Early Palaeozoico of South America—a collisional history. Episodes 11:168–174Google Scholar
  51. Ramos VA (1996) Evolución de la plataforma continental. In: Ramos VA, Turic MA (Eds) Geología y recursos naturales de la plataforma continental Argentina. XIII Congr Geol Argent y III Congr Explor Hidrocarb Relatorio 385–404Google Scholar
  52. Ramos VA (1999) Las provincias geológicas del territorio Argentino. In: Caminos R (ed) Geología Argentina. SEGEMAR 29:41–95Google Scholar
  53. Ramos VA (2008) The basement of the Central Andes: the Arequipa and related terranes. Ann Rev Earth Plan Sci 36:289–324CrossRefGoogle Scholar
  54. Ramos VA, Vujovich G, Martion R, Otamendi J (2010) Pampia: a large cratonic block missing in the Rodinia supercontinent. J Geodyn 50:243–255CrossRefGoogle Scholar
  55. Rapalini AE (2005) The accretionary history of southern South America from the latest Proterozoic to the late Palaeozoic: some Palaeomagnetic constraints. In: Vaughan APM, Leat PT, Pankhurst RJ (eds) Terrane processes at the Margins of Gondwana. Geol Soc Lond Spec Publ 246:305–328Google Scholar
  56. Rapela CW, Coira B, Toselli A, Saavedra J (1992) El magmatismo del Paleózoico en el Sudoeste de Gondwana. In: Gutiérrez Marco JG, Saavedra J, Rábano I (eds) Palaeozóico Inferior de Ibero-América. IUGS Series 21–68Google Scholar
  57. Rapela CW, Pankhurst RJ, Casquet C, Baldo E, Saavedra J, Galindo C, Fanning CM (1998) The Pampean Orogeny of the southern proto-Andes: Cambrian continental collision in the Sierras de Cordoba. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean Margin of Gondwana. Geol Soc Lond Spec Publ 142:181–217Google Scholar
  58. Robertson AHF, Xenophontos C (1997) Cyprus. In: Eldridge Moores M, Fairbridge RW (eds) Encyclopedia of European and Asian regional geology, pp 160–171Google Scholar
  59. Schwartz JJ, Gromet LP, Miró R (2008) Timing and duration of the calcalcaline arc of the Pampean Orogeny: implications for the Late Neoproterozoic to Cambrian evolution of Western Gondwana. J Geol 116:39–61CrossRefGoogle Scholar
  60. Seggiaro R, Becchio R (1999) Inversión Tectónica en la Sierra Quebrada Honda. Puna Austral. Catamarca-Argentina. IX Congr. Geol. Chile Actas I:25–26Google Scholar
  61. Seggiaro R, Hongn F, Folguera A, Clavero J (2002) Mapa geológico de la Hoja 2769 II. Paso de San Francisco, Escala 1:250.000. SEGEMARGoogle Scholar
  62. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221CrossRefGoogle Scholar
  63. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins. Geol Soc Lond Spec Publ 42:313–345Google Scholar
  64. Wang CY, Zhang Q, Qian Q, Zhou MF (2004) Geochemistry of the Early Palaeozoic Baiyin volcanic rocks (NW China): implications for the tectonic evolution of the North Qilian orogenic belt. J of Geol. 113:83–94CrossRefGoogle Scholar
  65. Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, Vonquadt A, Roddick JC, Speigel W (1995) 3 Natural Zircon standards for U-Th-Pb, Lu-Hf, trace-element and REE analyses. Geostand Newslett 19:1–23CrossRefGoogle Scholar
  66. Wood BJ, Virgo D (1989) Upper mantle oxidation state: ferric iron contents of lherzolite spinels by 57Fe Mössbauer spectroscopy and resultant oxygen fugacities. Geochim Cosmoch Acta 53:1277–1291CrossRefGoogle Scholar
  67. Wright JE, Shervais JW (Eds) (2008) Ophiolites, Batholiths, and regional geology: a session in Honor of Cliff Hopson. Geol Soc Am Spec Paper 438:1–572Google Scholar
  68. Zappettini EO, Blasco G, Villar LM (1994) Geología del extremo sur del Salar de Pocitos, Provincia de Salta, República Argentina. VII Congr Geol Chil Actas I:220–224Google Scholar
  69. Zimmermann U (1999) Sedimentpetrographische, geochemische und isotopengeochemische Methoden zur Bestimmung der Beziehung von Provenienz und Ablagerungsraum an aktiven Kontinentalrändern: Das ordovizische Back-Arc-Becken in der Süd-Puna, Hochland im Nordwesten Argentiniens. PhD-Thesis, University of Heidelberg, GermanyGoogle Scholar
  70. Zimmermann U (2005) Provenance studies of very low- to low-grade metasedimentary rocks of the Puncoviscana Formation in Northwest Argentina. In: Vaughan APM, Leat PT, Pankhurst RJ (eds) Terrane processes at the margins of Gondwana. Geol Soc Lond Spec Publ 246:381–416Google Scholar
  71. Zimmermann U, Bahlburg H (2003) Provenance analysis and tectonic setting of the Ordovician deposits in the southern Puna basin, NW Argentina. Sedimentology 50:1079–1104CrossRefGoogle Scholar
  72. Zimmermann U, Bahlburg H (2005) The crustal evolution of the Central Andes during the Neoproterozoic to the Silurian. Geochim Cosmoch Acta 69-10S:A877Google Scholar
  73. Zimmermann U, van Staden A (2002a) Neoproterozoic to pre-Ordovician very-low to low-grade metasedimentary rocks from Sijan (Sierra de Ambato) and Campo Volcán (Puna) in northwestern Argentina. XIV Congr Geol Argent Actas I:229–234Google Scholar
  74. Zimmermann U, van Staden A (2002b) The stratigraphy of Lower Palaeozoic rocks from the southern Sierra de Calalaste (Northwest Argentina). 16th Int Sed Congr Actas II:421–422Google Scholar
  75. Zimmermann U, Moya MC, Bahlburg H (1998) New evidence for the stratigraphic subdivision of Ordovician sedimentary successions in the Southern Puna (NW Argentina) based on graptolites. Terra Nostra 98:179–180Google Scholar
  76. Zimmermann U, Luna Tula G, Marchioli A, Narváez G, Olima H, Ramírez A (2002) Análisis de la procedencia de la Formación Falda Ciénaga (Ordovícico Medio, Puna Argentina) por petrografía sedimentaria, elementos trazas e isotopía de Nd. Assoc Argent Sed Rev 9:1–24Google Scholar
  77. Zimmermann U, Niemeyer H, Meffre S (2010) Revealing the continental margin of Gondwana: the Ordovician arc of the Cordón de Lila (northern Chile). Int J Earth Sci 99-S1:S39–S56Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Udo Zimmermann
    • 1
  • Heinrich Bahlburg
    • 2
  • Klaus Mezger
    • 3
  • Jasper Berndt
    • 4
  • Suzanne Mahlburg Kay
    • 5
  1. 1.Department of Petroleum Engineering National IOR CenterUniversity of StavangerStavangerNorway
  2. 2.Institut für Geologie und PaläontologieWestfälische Wilhelms-UniversitätMünsterGermany
  3. 3.Institute of Geological SciencesUniversity of BernBernSwitzerland
  4. 4.Institut für MineralogieWestfälische Wilhelms-UniversitätMünsterGermany
  5. 5.Department of Geological SciencesCornell UniversityIthacaUSA

Personalised recommendations