Advertisement

International Journal of Earth Sciences

, Volume 103, Issue 7, pp 2129–2153 | Cite as

Constraining input and output fluxes of the southern-central Chile subduction zone: water, chlorine and sulfur

  • David VölkerEmail author
  • Heidi Wehrmann
  • Steffen Kutterolf
  • Karthik Iyer
  • Wolfgang Rabbel
  • Jacob Geersen
  • Kaj Hoernle
Original Paper

Abstract

In this paper, we constrain the input and output fluxes of H2O, Cl and S into the southern-central Chilean subduction zone (31°S–46°S). We determine the input flux by calculating the amounts of water, chlorine and sulfur that are carried into the subduction zone in subducted sediments, igneous crust and hydrated lithospheric mantle. The applied models take into account that latitudinal variations in the subducting Nazca plate impact the crustal porosity and the degree of upper mantle serpentinization and thus water storage in the crust and mantle. In another step, we constrain the output fluxes of the subduction zone both to the subcontinental lithospheric mantle and to the atmosphere–geosphere–ocean by the combined use of gas flux determinations at the volcanic arc, volume calculations of volcanic rocks and the combination of mineralogical and geothermal models of the subduction zone. The calculations indicate that about 68 Tg/m/Ma of water enters the subduction zone, as averaged over its total length of 1,480 km. The volcanic output on the other hand accounts for 2 Tg/m/Ma or 3 % of that input. We presume that a large fraction of the volatiles that are captured within the subducting sediments (which accounts for roughly one-third of the input) are cycled back into the ocean through the forearc. This assumption is however questioned by the present lack of evidence for major venting systems of the submarine forearc. The largest part of the water that is carried into the subduction zone in the crust and hydrated mantle (accounting for two-thirds of the input) appears to be transported beyond the volcanic arc.

Keywords

Subduction input Forearc dewatering Arc magmatism Volcanic volatile output rates Subduction fluids Southern volcanic zone of Chile 

Notes

Acknowledgments

We sincerely thank reviewers Richard D. Jarrard and Charles Stern, as well as the editor Ralf Halama for their comments that were very helpful for improving this manuscript. This publication is contribution no. 263 of the Sonderforschungsbereich 574 “Volatiles and Fluids in Subduction Zones” at Kiel University.

References

  1. Angermann D, Klotz J, Reigber C (1999) Space-geodetic estimation of the Nazca-South America Euler vector. Earth Planet Sci Lett 171:329–334CrossRefGoogle Scholar
  2. Bangs NL, Cande SC (1997) Episodic development of a convergent margin inferred from structures and processes along the southern Chilean margin. Tectonics 16:489–503CrossRefGoogle Scholar
  3. Barnes PM, Lamarche G, Bialas J, Henrys S, Pecher I, Netzeband GL, Greinert J, Mountjoy JJ, Pedley K, Crutchley G (2010) Tectonic and geological framework for gas hydrates and cold seeps on the Hikurangi subduction margin, New Zealand. Mar Geol 272:26–48. doi: 10.1016/j.margeo.2009.03.012 CrossRefGoogle Scholar
  4. Blumberg S, Lamy F, Arz HW, Echtler HP, Wiedicke M, Haug GH, Oncken O (2008) Turbiditic trench deposits at the South-Chilean active margin: a Pleistocene-Holocene record of climate and tectonics. Earth Planet Sci Lett 268:526–539. doi: 10.1016/j.epsl.2008.02.007 CrossRefGoogle Scholar
  5. Bohm M (2004) 3-D Lokalbebentomographie der südlichen Anden zwischen 36° und 40° S. PhD thesis, FU BerlinGoogle Scholar
  6. Brasse H (2011) Electromagnetic images of the South and Central American Subduction Zones. In: Petrovský E, Herrero-Bervera E, Harinarayana T, Ivers D (eds) The earth’s magnetic interior, vol 1. Springer, Dordrecht, pp 43–81CrossRefGoogle Scholar
  7. Brasse H, Soyer W (2001) A magnetotelluric study in the southern Chilean Andes. Geophys Res Lett 28:3757–3760CrossRefGoogle Scholar
  8. Brasse H, Kapinos G, Li Y, Mütschard L, Soyer W, Eydam D (2009) Structural electrical anisotropy in the crust at the South-Central Chilean continental margin as inferred from geomagnetic transfer functions. Phys Earth Planet Inter 173:7–16. doi: 10.1016/j.pepi.2008.10.017 CrossRefGoogle Scholar
  9. Brown KM, Bangs NL, Froelich PN, Kvenvolden KA (1996) The nature, distribution, and origin of gas hydrate in the Chile Triple Junction region. Earth Planet Sci Lett 139:471–483CrossRefGoogle Scholar
  10. Brückmann W (1989) Typische Kompaktionsabläufe mariner Sedimente und ihre Modifikation in einem rezenten Akkretionskeil (Barbados Ridge). Tübinger Geowissenschaftliche Arbeiten, Reihe A 5:135Google Scholar
  11. Carlson RL, Miller DJ (2003) Mantle wedge water contents estimated from seismic velocities in partially serpentinized peridotites. Geophys Res Lett 30:1250. doi: 10.1029/2002GL016600 CrossRefGoogle Scholar
  12. Connolly JAD (2009) The geodynamic equation of state: what and how. Geochem Geophys Geosyst 10:Q10014. doi: 10.1029/2009GC002540 CrossRefGoogle Scholar
  13. Conolly JAD (1990) Multi-variable phase diagrams; an algorithm based on generalized thermodynamics. Am J Sci 290:666–718CrossRefGoogle Scholar
  14. Contreras-Reyes E, Grevemeyer I, Flueh ER, Scherwath M, Heesemann M (2007) Alteration of oceanic subducting lithosphere at the southern central Chile trench-outer rise. Geochem Geophys Geosyst 8. doi: 10.1029/2007GC001632
  15. Contreras-Reyes E, Grevemeyer I, Flueh ER, Reichert C (2008) Upper lithospheric structure of the subduction zone offshore of southern Arauco Peninsula, Chile, at ~38°S. J Geophys Res 113. doi: 10.1029/2007JB005569
  16. Contreras-Reyes E, Flueh ER, Grevemeyer I (2010) Tectonic control on sediment accretion and subduction off south central Chile: implications for coseismic rupture processes of the 1960 and 2010 megathrust earthquakes. Tectonics 29:TC6018. doi: 10.1029/2010TC002734
  17. Diaz-Naveas JL (1999) sediment subduction and accretion at the Chilean Convergent Margin between 35°S and 40°S. PhD thesis, Christian-Albrechts University, Kiel, GermanyGoogle Scholar
  18. Dixon HJ, Murphy MD, Sparks SJ, Chávez R, Naranjo JA, Dunkley PN, Young SR, Gilbert JS, Pringle MR (1999) The geology of Nevados de Chillán volcano, Chile. Revista geológica de Chile 26. doi: 10.4067/S0716-02081999000200006
  19. D’Orazio M, Innocenti F, Manetti P, Tamponi M, Tonarini S, Gonzalez-Ferran O, Lahsen A, Omarini R (2003) The Quaternary calc-alkaline volcanism of the Patagonian Andes close to the Chile triple junction: geochemistry and petrogenesis of volcanic rocks from the Cay and Maca volcanoes (~45°S, Chile). J S Am Earth Sci 16:219–242. doi: 10.1016/S0895-9811(03)00063-4 CrossRefGoogle Scholar
  20. Dzierma Y, Rabbel W, Thorwart M, Koulakov I, Wehrmann H, Hoernle K, Comte D (2012) Seismic velocity structure of the slab and continental plate in the region of the 1960 Valdivia (Chile) slip maximum—insights into fluid release and plate coupling. Earth Planet Sci Lett 331–332:164–176. doi: 10.1016/j.epsl.2012.02.006 CrossRefGoogle Scholar
  21. Flueh E, Bialas J (2008) RRS JAMES COOK cruise report JC23-A & B. IFM-GEOMAR, KielGoogle Scholar
  22. Geersen J, Behrmann JH, Völker D, Krastel S, Ranero CR, Diaz-Naveas J, Weinrebe WR (2011) Active tectonics of the South Chilean marine forearc (35°S–40°S). Tectonics 30, TC3006. doi: 10.1029/2010TC002777
  23. Greinert J, Lewis KB, Bialas J, Pecher IA, Rowden A, Bowden DA, De Batist M, Linke P (2010) Methane seepage along the Hikurangi Margin, New Zealand: overview of studies in 2006 and 2007 and new evidence from visual, bathymetric and hydroacoustic investigations. Mar Geol 272:6–25. doi: 10.1016/j.margeo.2010.01.017 CrossRefGoogle Scholar
  24. Grevemeyer I, Kaul N, Diaz-Naveas JL, Villinger HW, Ranero CR, Reichert C (2005) Heat flow and bending-related faulting at subduction trenches: case studies offshore of Nicaragua and Central Chile. Earth Planet Sci Lett 236:238–248. doi: 10.1016/S0012-821X(03)00303-0 CrossRefGoogle Scholar
  25. Grevemeyer I, Kaul N, Diaz-Naveas JL (2006) Geothermal evidence for fluid flow through the gas hydrate stability field off Central Chile—transient flow related to large subduction zone earthquakes? Geophys J Int 166:461–468. doi: 10.1111/j.1365-246X.2006.02940.x CrossRefGoogle Scholar
  26. Haberland C, Rietbrock A, Lange D, Bataille K, Dahm T (2009) Structure of the seismogenic zone of the southcentral Chilean margin revealed by local earthquake traveltime tomography. J Geophys Res: Solid Earth 114:B01317. doi: 10.1029/2008JB005802 Google Scholar
  27. Hacker BR (2008) H2O subduction beyond arcs. Geochem Geophys Geosyst 9(3). doi: 10.1029/2007GC001707
  28. Hacker BR, Abers GA, Peacock SM (2003) Subduction factory 1, Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. J Geophys Res 108:10-11–10-26. doi: 10.1029/2001JB001127 Google Scholar
  29. Hashin Z, Shtrikman S (1962) A variational approach to the theory of the effective magnetic permeability of multiphase material. J Appl Phys 33:3125–3131CrossRefGoogle Scholar
  30. Hay WW (1994) Pleistocene-Holocene fluxes are not the Earth’s norm. In Hay WW et al (eds) Material fluxes on the surface of the earth. Natl Acad Press, Washington, DC, pp 15–27Google Scholar
  31. Heberer B, Roeser G, Behrmann JH, Rahn M, Kopf AJ (2010) Holocene sediments from the Southern Chile Trench; a record of active margin magmatism, tectonics and palaeoseismicity. J Geol Soc London 167:539–553. doi: 10.1144/0016-76492009-015 CrossRefGoogle Scholar
  32. Herron EM, Cande SC, Hall BR (1981) An active spreading center collides with a subduction zone: a geophysical survey of the Chile Margin Triple Junction. Geol Soc Am Mem 154:683–701CrossRefGoogle Scholar
  33. Hildreth W, Drake RE (1992) Volcán Quizapu, Chilean Andes. Bull Volcanol 54:93–125CrossRefGoogle Scholar
  34. Hildreth W, Moorbath W (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Mineral Petr 98:455–489CrossRefGoogle Scholar
  35. Hildreth W, Grunder AL, Drake RE (1984) The Loma Seca Tuff and the Calabozos caldera: a major ash-flow and caldera complex in the southern Andes of central Chile. Geol Soc Am Bull 95(1):45–54CrossRefGoogle Scholar
  36. Hilton DR, Fischer TP, Marty B (2002) Noble gases and volatile recycling at subduction zones. Rev Mineral Geochem 47:319–370. doi: 10.2138/rmg.2002.47.9 CrossRefGoogle Scholar
  37. Ito E, Harris DM, Anderson AT Jr (1983) Alteration of oceanic crust and geologic cycling of chlorine and water. Geochim et Cosmochim Ac 47:1613–1624CrossRefGoogle Scholar
  38. Ivandic M, Grevemeyer I, Berhorst A, Flueh ER, McIntosh K (2008) Impact of bending related faulting on the seismic properties of the incoming oceanic plate offshore of Nicaragua. J Geophys Res 113:B05410. doi: 10.1029/2007JB005291 Google Scholar
  39. Ivandic M, Grevemeyer I, Bialas J, Petersen CJ (2010) Serpentinization in the trench-outer rise region offshore of Nicaragua: constraints from seismic refraction and wide-angle data. Geophys J Int 180:1253–1264. doi: 10.1111/j.1365-246X.2009.04474.x CrossRefGoogle Scholar
  40. Iyer K, Rüpke LH, Phipps Morgan J, Grevemeyer I (2012) Controls of faulting and reaction kinetics on serpentinization and double Benioff zones. Geochem Geophys Geosyst 13:Q09010. doi: 10.1029/2012GC004304 CrossRefGoogle Scholar
  41. Jacques G, Hoernle K, Gill J, Hauff F, Wehrmann H, Garbe-Schönberg D, Bogaard PVD, Bindeman I, Lara LE (2013) Across-arc geochemical variations in the Southern Volcanic Zone, Chile (34.5–38.0°S): constraints on mantle wedge and slab input compositions. Geochim Cosmochim Acta 123:218–243. doi: 10.1016/j.gca.2013.05.016 CrossRefGoogle Scholar
  42. Jacques G, Hoernle K, Gill J, Wehrmann H, Bindeman I, Lara LE (2014) Geochemical variations in the Central Southern Volcanic Zone, Chile (38°S–43): the role of fluids in generating arc magmas. Chem Geol. doi: 10.1016/j.chemgeo.2014.01.015
  43. Jarrard RD (2003) Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem Geophys Geosyst 4:8905. doi: 10.1029/2002GC000392 CrossRefGoogle Scholar
  44. Jödicke H, Jording A, Ferrari L, Arzate J, Mezger K, Rüpke L (2006) Fluid release from the subducted Cocos plate and partial melting of the crust deduced from magnetotelluric studies in southern Mexico: implications for the generation of volcanism and subduction dynamics. J Geophys Res 111:B08102. doi: 10.1029/2005JB003739 Google Scholar
  45. Kerrick DM, Connolly JAD (1998) Subduction of ophicarbonates and recycling of CO2 and H2O. Geology 26:375–378. doi: 10.1130/0091-7613(1998)026 CrossRefGoogle Scholar
  46. Kimura G, Silver E, Blum P (1997) Proceedings of ODP, Init. repts. 170, Ocean Drilling Program, Vol, Texas A&M UniversityGoogle Scholar
  47. Klotz J, Khazaradze AA, Heinze B, Vietor T, Hackney R, Bataille K, Maturana R, Viramonte J, Perdomo R (2006) Long-term signals in the present-day deformation field of the central and southern Andes and constraints on the viscosity of the earth’s upper mantle. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes: active subduction orogeny. Springer, Berlin, pp 65–89CrossRefGoogle Scholar
  48. Kutterolf S, Freundt A, Perez W (2008) Pacific offshore record of plinian arc volcanism in Central America: 2. Tephra volumes and erupted masses. Geochem Geophys Geosyst 9 (2), Q02S02. doi: 10.1029/2007GC001791
  49. Lamy F, Hebbeln D, Wefer G (1998) Terrigenous sediment supply along the Chilean continental margin: modern regional patterns of texture and composition. Geol Rundsch 87:477–494CrossRefGoogle Scholar
  50. Lefeldt M, Grevemeyer I, Goßler J, Bialas J (2009) Intraplate seismicity and related mantle hydration at the Nicaraguan trench outer rise. Geophys J Int 178:742–752. doi: 10.1111/j.1365-246X.2009.04167.x CrossRefGoogle Scholar
  51. Linke P (2011) RV SONNE CRUISE SO-210 (23.09.–1.11.2010 Valparaiso—Valparaiso)—ChiFlux-identification and investigation of fluid flux, mass wasting and sediments in the forearc of the central Chilean subduction zoneGoogle Scholar
  52. López-Escobar L, Kempton PD, Moreno H, Parada MA, Hickey-Vargas R, Frey FA (1995) Calbuco volcano and minor eruptive centers distributed along the Liquiñe-Ofqui fault zone, Chile (41°–42°S): contrasting origin of andesitic and basaltic magma in the Southern Volcanic Zone of the Andes. Contrib Miner Petr 119:345–361CrossRefGoogle Scholar
  53. Martin B, Fyfe WS (1970) Some experimental and theoretical observations on the kinetics of hydration reactions with particular reference to serpentinization. Chem Geol 6:185–202CrossRefGoogle Scholar
  54. McMillan NJ, Harmon RS, Moorbath S, Lopez-Escobar L, Strong D (1989) Crustal sources involved in continental arc magmatism: a case study of Volcan Mocho-Choshuenco, southern Chile. Geology 17:1152–1156CrossRefGoogle Scholar
  55. Melnick D, Echtler HP (2006) Inversion of forearc basins in south-central Chile caused by rapid glacial age trench fill. Geology 34(9):709–712. doi: 10.1130/G22440.1 CrossRefGoogle Scholar
  56. Mix AC, Tiedemann R, Blum P, Party SS (2003) Initial reports, ODP-leg 202. Proceedings of ODP, Init Rep, 202Google Scholar
  57. Moore JC, Vrolijk P (1992) Fluids in accretionary prisms. Rev Geophys 30:113–135CrossRefGoogle Scholar
  58. Müller RD, Roest WR, Royer J-Y, Gahagan LM, Sclater JC (1997) Digital isochrons of the world’s ocean floor. J Geophys Res 102:3211–3214CrossRefGoogle Scholar
  59. Naranjo JA, Stern CR (1998) Holocene explosive activity of Hudson Volcano, southern Andes. Bull Volcanol 59:291–306CrossRefGoogle Scholar
  60. Naranjo JA, Stern CR (2004) Holocene tephrochronology of the southernmost part (42°30′–45°S′) of the Andean Southern Volcanic Zone. Revista Geológica de Chile 31:225–240Google Scholar
  61. Oliver PG, Levin L (2006) A new species of the family Thyasiridae (Mollusca: Bivalvia) from the oxygen minimum zone of the Pakistan margin. J Mar Biol Assoc UK 86:411–416. doi: 10.1017/S0025315406013270 CrossRefGoogle Scholar
  62. Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394CrossRefGoogle Scholar
  63. Portnyagin M, Hoernle K, Plechov P, Mironov N, Khubunaya S (2007) Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. Earth Planet Sci Lett 255:53–69. doi: 10.1016/j.epsl.2006.12.005
  64. Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120. doi: 10.2138/rmg.2008.69.3 CrossRefGoogle Scholar
  65. Pytte AM, Reynolds RC (1998) The thermal transformation of smectite to illite. In: Thermal history of sedimentary basins. Springer, New York, pp 133–140Google Scholar
  66. Ranero CR, Morgan JP, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentinization at the middle America Trench. Nature 425:376–383. doi: 10.1038/nature0196 CrossRefGoogle Scholar
  67. Rea JC (2009) The petrology and geochemistry of Volcán Callaqui, Chile. PhD Thesis, Weselyan UniversityGoogle Scholar
  68. Rea DK, Ruff LJ (1996) Composition and mass flux of sediment entering the world’s subduction zones: implications for global sediment budgets, great earthquakes, and volcanism. Earth Planet Sci Lett 140:1–12CrossRefGoogle Scholar
  69. Rodrigo C (2010) Canones submarinos en el margen continentalchileno. In: Diaz-Naveas J, J JF (eds) Geología Marina de Chile. Comite′ Oceanográfico Nacional de Chile—Pontificia Universidad Católica de Valparaíso—Servicio Nacional de Geología y Minería de Chile, Valparaíso, pp 32–35Google Scholar
  70. Rüpke LH, Morgan JP, Hort M, Connolly JAD (2002) Are the regional variations in Central American arc lavas due to differing basaltic versus peridotitic slab sources of fluids? Geology 30(11):1035–1038. doi: 10.1130/0091-7613(2002 CrossRefGoogle Scholar
  71. Rüpke LH, Morgan JP, Hort M, Connolly JAD (2004) Serpentine and the subduction zone water cycle. Earth Planet Sci Lett 223:17–23. doi: 10.1016/j.epsl.2004.04.018 CrossRefGoogle Scholar
  72. Sadofsky SJ, Portnyagin MV, Hoernle K, Bogaard PVD (2008) Subduction cycling of volatile and trace elements through the Central American volcanic arc: evidence from melt inclusions. Contrib Mineral Petr 155:433–456. doi: 10.1007/s00410-007-0251-3 CrossRefGoogle Scholar
  73. Sahling H, Masson DG, Ranero CR, Hühnerbach V, Weinrebe W, Klaucke I, Bürk D, Brückmann W, Suess E (2008) Fluid seepage at the continental margin offshore Costa Rica and southern Nicaragua. Geochem Geophys Geosyst 9:Q05S05, doi: 10.1029/2008GC001978
  74. Scherwath M, C-R E, Flueh ER, Grevemeyer I, Krabbenhoeft A, Papenberg C, Petersen CJ, Weinrebe RW (2009) Deep lithospheric structures along the southern central Chile Margin from wide-angle P-wave modelling. Geophys J Int 179:579–600. doi: 10.1111/j.1365-246X.2009.04298.x CrossRefGoogle Scholar
  75. Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163:361–379CrossRefGoogle Scholar
  76. Scholz F, Hensen C, Schmidt M, Geersen J (2013) Submarine weathering of silicate minerals and the extent of pore water freshening at active continental margins. Geochim Cosmochim Acta 100:200–216. doi: 10.1016/j.gca.2012.09.043 CrossRefGoogle Scholar
  77. Sellanes J, Krylova E (2005) A new species of Calyptogena (Bivalvia: Vesicomyidae) from a recently discovered methane seepage area of Concepcion Bay, Chile (~36°S). J Mar Biol Assoc UK 85:969–976CrossRefGoogle Scholar
  78. Sellanes J, Quiroga E, Gallardo VA (2004) First direct evidences of methane seepage and associated chemosynthetic communities in the bathyal zone of Chile. J Mar Biol Assoc UK 84:1065–1066CrossRefGoogle Scholar
  79. Sellanes J, Quiroga E, Neira C (2008) Megafauna community structure and trophic relationships at the recently discovered Concepcion Methane Seep Area, Chile, ~36°S. ICES J Mar Sci 65:1102–1111CrossRefGoogle Scholar
  80. Sellés D (2006) Stratigraphy, petrology, and geochemistry of Nevado de Longaví volcano, Chilean Andes (36.2°S). PhD thesis, Université de GeneveGoogle Scholar
  81. Siebert L, Simkin T (2002) Volcanoes of the world: An illustrated catalog of Holocene volcanoes and their eruptions, Vol 1Google Scholar
  82. Soyer W, Unsworth M (2006) Deep electrical structure of the northern Cascadia (British Columbia, Canada) subduction zone: implications for the distribution of fluids. Geology 34:53–56. doi: 10.1130/G21951.21951 CrossRefGoogle Scholar
  83. Sruoga P, Llambías EJ, Fauqué L, Schonwandt D, Repol DG (2005) Volcanological and geochemical evolution of the Diamante Caldera-Maipo volcano complex in the southern Andes of Argentina (34°10′S). J S Am Earth Sci 19:399–414. doi: 10.1016/j.jsames.2005.06.003 CrossRefGoogle Scholar
  84. Staudigel H, Plank T, White B, Schmincke H-U (1996) Geochemical fluxes during seafloor alteration of the basaltic upper oceanic Crust: DSDP sites 417 and 418. In: Subduction top to bottom. AGU, Washington, DC. doi: 10.1029/GM096p0019. p 19–38
  85. Stein C, Stein S (1992) A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359Google Scholar
  86. Stern CR (2004) Active Andean volcanism: its geologic and tectonic setting. Revista geológica de Chile 31:161–206CrossRefGoogle Scholar
  87. Stern CR (2011) Subduction erosion: rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Res 20:284–308. doi: 10.1016/j.gr.2011.03.006 CrossRefGoogle Scholar
  88. Stern CR, Moreno H, Lopez-Escobar L, Clavero JE, Lara LE, Naranjo JA, Parada MA, Skewes MA (2007) Chilean volcanoes. In: Moreno T, Gibbons W (eds) The geology of Chile. Geological Society of London, London, pp 147–178Google Scholar
  89. Straub SM, Layne GD (2003) The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: implications for volatile recycling in subduction zones. Geochim Cosmochim Acta 67:4179–4203. doi: 10.1016/S0016-7037(03)00307-7 CrossRefGoogle Scholar
  90. Stuardo J, Valdovinos C (1988) A new bathyal Calyptogena from the coast of central Chile (Bivalvia: vesicomyidae). Venus 47:241–250Google Scholar
  91. Syracuse, EM, Abers, GA (2006) Global compilation of variations in slab depth beneath arc volcanoes and implications, Geochem Geophys Geosyst, 7(5). doi: 10.1029/2005GC001045
  92. Syracuse EM, van Keken PE, Abers GA (2010) The global range of subduction zone thermal models. Phys Earth Planet Inter 183:73–90. doi: 10.1016/j.pepi.2010.02.004 CrossRefGoogle Scholar
  93. Tebbens SF, Cande SC, Kovacs L, Parra JC, LaBrecque JL, Vergara H (1997) The Chile Ridge: a tectonic framework. J Geophys Res 102:12,035–012,059Google Scholar
  94. Völker D, Wiedicke M, Ladage S, Gaedicke C, Reichert C, Rauch K, Kramer W, Heubeck C (2006) Latitudinal variation in sedimentary processes in the Peru-Chile trench off central Chile. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes: active subduction orogeny. Springer, Berlin, pp 193–216CrossRefGoogle Scholar
  95. Völker D, Kutterolf S, Wehrmann H (2011a) Comparative mass balance of volcanic edifices at the southern volcanic zone of the Andes between 33°S and 46°S. J Volcanol Geotherm Res 205:114–129. doi: 10.1016/j.jvolgeores.2011.03.011 CrossRefGoogle Scholar
  96. Völker D, Grevemeyer I, Stipp M, Wang K, He J (2011b) Thermal control of the seismogenic zone of southern central Chile. J Geophys Res 116:B10305. doi: 10.1029/2011JB008247 CrossRefGoogle Scholar
  97. Völker D, Geersen J, Contreras-Reyes E, Reichert C (2013) Sedimentary fill of the Chile Trench (32°S–46°): volumetric distribution and causal factors. J Geol Soc London. doi: 10.1144/jgs2012-119 Google Scholar
  98. von Huene R, Scholl DW (1991) Observations at convergent margins concerning sediment subduction, subsuction erosion and the growth of continental crust. Rev Geophys 29:279–316CrossRefGoogle Scholar
  99. Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusions and volcanic gas data. J Volcanol Geotherm Res 140:217–240. doi: 10.1016/j.volgeores.2004.07.023 CrossRefGoogle Scholar
  100. Watt SFL (2010) Records of volcanism and controls on volcanic processes in southern Chile. D.Phil thesis, Univ of Oxford, UKGoogle Scholar
  101. Watt SFL, Pyle DM, Mather TA (2011) Geology, petrology and geochemistry of the dome complex of Huequi volcano, southern Chile. Andean Geol 38:335–348Google Scholar
  102. Wehrmann H, Hoernle K, Portnyagin M, Wiedenbeck M, Heydolph K (2011) Volcanic CO2 output at the Central American subduction zone inferred from melt inclusions in olivine crystals from mafic tephras. Geochem Geophys Geosys 12(6):Q06003. doi: 10.1029/2010GC003412 CrossRefGoogle Scholar
  103. Wehrmann H, Hoernle K, Garbe-Schönberg D, Jacques G, Mahlke J, Schumann K (2014a) Insights from trace element geochemistry as to the roles of subduction zone geometry and subduction input on the chemistry of arc magmas. Int J Earth SciGoogle Scholar
  104. Wehrmann H, Hoernle K, Jacques G, Garbe-Schönberg D, Schumann K, Mahlke J (2014b) Major, volatile (sulfur and chlorine), and trace element geochemistry of mafic to intermediate tephras from the Chilean Southern Volcanic Zone (33–43°S). Int J Earth SciGoogle Scholar
  105. Worzewski T, Jegen M, Kopp H, Brasse H, Taylor Castillo W (2011) Magnetotelluric image of the fluid cycle in the Costa Rican subduction zone. Nature Geosc 4:108–111. doi: 10.1038/ngeo1041 CrossRefGoogle Scholar
  106. Freundt A, Grevemeyer I, Rabbel W, Hansteen TH, Hensen C, Wehrmann H, Kutterolf S, Halama R, Frische M (this volume) Volatile (H2O, CO2, Cl, S) budget of the Central American subduction zone. Int J Earth SciGoogle Scholar
  107. Völker D, Stipp M (submitted) Water input and water release from the subducting Nazca Plate along southern Central Chile (33°S–46°S). Geochem Geophys GeosystGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • David Völker
    • 1
    • 2
    Email author
  • Heidi Wehrmann
    • 1
  • Steffen Kutterolf
    • 1
  • Karthik Iyer
    • 1
  • Wolfgang Rabbel
    • 3
  • Jacob Geersen
    • 1
    • 4
  • Kaj Hoernle
    • 1
  1. 1.Collaborative Research Center (SFB) 574 at GEOMAR, Helmholtz Centre for Ocean Research KielKielGermany
  2. 2.MARUM Center for Marine Environmental SciencesUniversity of BremenBremenGermany
  3. 3.Institute of GeosciencesCollaborative Research Center (SFB) 574 at the University of KielKielGermany
  4. 4.National Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK

Personalised recommendations