International Journal of Earth Sciences

, Volume 103, Issue 7, pp 2101–2127 | Cite as

Volatile (H2O, CO2, Cl, S) budget of the Central American subduction zone

  • A. Freundt
  • I. Grevemeyer
  • W. Rabbel
  • T. H. Hansteen
  • C. Hensen
  • H. Wehrmann
  • S. Kutterolf
  • R. Halama
  • M. Frische
Original Paper

Abstract

After more than a decade of multidisciplinary studies of the Central American subduction zone mainly in the framework of two large research programmes, the US MARGINS program and the German Collaborative Research Center SFB 574, we here review and interpret the data pertinent to quantify the cycling of mineral-bound volatiles (H2O, CO2, Cl, S) through this subduction system. For input-flux calculations, we divide the Middle America Trench into four segments differing in convergence rate and slab lithological profiles, use the latest evidence for mantle serpentinization of the Cocos slab approaching the trench, and for the first time explicitly include subduction erosion of forearc basement. Resulting input fluxes are 40–62 (53) Tg/Ma/m H2O, 7.8–11.4 (9.3) Tg/Ma/m CO2, 1.3–1.9 (1.6) Tg/Ma/m Cl, and 1.3–2.1 (1.6) Tg/Ma/m S (bracketed are mean values for entire trench length). Output by cold seeps on the forearc amounts to 0.625–1.25 Tg/Ma/m H2O partly derived from the slab sediments as determined by geochemical analyses of fluids and carbonates. The major volatile output occurs at the Central American volcanic arc that is divided into ten arc segments by dextral strike-slip tectonics. Based on volcanic edifice and widespread tephra volumes as well as calculated parental magma masses needed to form observed evolved compositions, we determine long-term (105 years) average magma and K2O fluxes for each of the ten segments as 32–242 (106) Tg/Ma/m magma and 0.28–2.91 (1.38) Tg/Ma/m K2O (bracketed are mean values for entire Central American volcanic arc length). Volatile/K2O concentration ratios derived from melt inclusion analyses and petrologic modelling then allow to calculate volatile fluxes as 1.02–14.3 (6.2) Tg/Ma/m H2O, 0.02–0.45 (0.17) Tg/Ma/m CO2, and 0.07–0.34 (0.22) Tg/Ma/m Cl. The same approach yields long-term sulfur fluxes of 0.12–1.08 (0.54) Tg/Ma/m while present-day open-vent SO2-flux monitoring yields 0.06–2.37 (0.83) Tg/Ma/m S. Input–output comparisons show that the arc water fluxes only account for up to 40 % of the input even if we include an “invisible” plutonic component constrained by crustal growth. With 20–30 % of the H2O input transferred into the deeper mantle as suggested by petrologic modeling, there remains a deficiency of, say, 30–40 % in the water budget. At least some of this water is transferred into two upper-plate regions of low seismic velocity and electrical resistivity whose sizes vary along arc: one region widely envelopes the melt ascent paths from slab top to arc and the other extends obliquely from the slab below the forearc to below the arc. Whether these reservoirs are transient or steady remains unknown.

Keywords

Subduction input Forearc dewatering Arc magmatism Subduction fluids 

Notes

Acknowledgments

We thank David Pyle and an anonymous reviewer, as well as Erwin Suess as topic editor, for critical comments that greatly helped to improve this paper. This publication is contribution no. 261 of the Sonderforschungsbereich 574 “Volatiles and Fluids in Subduction Zones” at Kiel University.

Supplementary material

531_2014_1001_MOESM1_ESM.xlsx (90 kb)
Supplementary material 1 (XLSX 90 kb)

References

*Marks SFB 574 contributions

  1. Abers GA, Plank T, Hacker BR (2003) The wet Nicaraguan slab. Geophys Res Lett 30:1098. doi: 10.1029/2002GL015649 Google Scholar
  2. Alt JC (1994) A sulfur isotopic profile through the Troodos ophiolite, Cyprus: primary composition and the effects of seawater hydrothermal alteration. Geochim Cosmochim Acta 58:1825–1840Google Scholar
  3. Alt JC, Shanks WC (1998) Sulfur in serpentinized oceanic peridotites: serpentinization processe and microbial sulfate reduction. J Geophys Res 103:9917–9929Google Scholar
  4. Alt JC, Shanks WC (2003) Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: sulfur geochemistry and reaction modeling. Geochim Cosmochim Acta 67:641–653Google Scholar
  5. Alt JC, Shanks WC (2006) Stable isotope compositions of serpentinite seamounts in the Mariana forearc: serpentinization processes, fluid sources and sulfur metasomatism. Earth Planet Sci Lett 242:272–285Google Scholar
  6. Alt JC, Shanks WC, Jackson MC (1993) Cycling of sulfur in subduction zones: the geochemistry of sulfur in the Mariana Arc and back-arc trough. Earth Planet Sci Lett 119:477–494Google Scholar
  7. Alt JC, Schwarzenbach EM, Früh-Green GL, Shanks WC, Bernasconi SM, Garrido CJ, Crispini L, Gaggero L, Padron-Navarta JA, Marchesi C (2013) The role of serpentinites in cycling of carbon and sulfur: seafloor serpentinization and subduction metamorphism. Lithos 178:40–54Google Scholar
  8. Andres RJ, Kasgnoc AD (1998) A time-averaged inventory of subaerial volcanic sulphur emissions. J Geophys Res 103:25251–25651Google Scholar
  9. *Arroyo IG, Husen S, Flueh E, Gossler J, Kissling E, Alvarado GE (2009) Three-dimensional P-wave velocity structure on the shallow part of the Central Costa Rican Pacific margin from Local Earthquake Tomography using off- and onshore networks. Geophys J Int. doi: 10.1111/j.1365-246X.2009.04342.x Google Scholar
  10. *Arroyo IG, Husen S, Flüh ER (2013) The seismogenic zone in the Central Costa Rican Pacific margin: high-quality hypocenters from an amphibious network. Int J Earth Sci. doi: 10.1007/s00531-013-0955-8 Google Scholar
  11. Avellan DR, Macias JL, Pardo N, Scolamacchia T, Rodriguez D (2012) Stratigraphy, geomorphology, geochemistry and hazard implications of the Nejapa Volcanic Field, western Managua, Nicaragua. J Volcanol Geotherm Res 213–214:51–71. doi: 10.1016/j.jvolgeores.2011.11.002 Google Scholar
  12. Azema J, Bourgois J, Baumgartner PO, Tournon J, Desmet A, Auboin J (1982) A tectonic cross-section of the Costa Rican Pacific littoral as a key to the structure of the landward slope of the Middle America trench off Guatemala. Init Rep DSDP 84:831–850Google Scholar
  13. Bach W, Rosner M, Jöns N, Rausch S, Robinson LF, Paulick H, Erzinger J (2011) Carbonate veins trace seawater circulation during exhumation and uplift of mantle rock: results from ODP Leg 209. Earth Planet Sci Lett 311:242–252Google Scholar
  14. Barnes JD, Sharp ZD (2006) A chlorine isotope study of DSDP/ODP serpentinized ultramafic rocks: insights into the serpentinization process. Chem Geol 228:246–265Google Scholar
  15. Barnes JD, Sharp ZD, Fischer TP, Hilton DR, Carr MJ (2009) Chlorine isotope variations along the Central American volcanic front and back arc. Geochem Geophys Geosys 10:Q11S17. doi: 10.1029/2009GC002587 Google Scholar
  16. Bebout GE (1996) Volatile transfer and recycling at convergent margins: mas-balance and insights from high-P/T metamorphic rocks (overview). In: GE Bebout, DW Scholl, SH Kirby, JP Platt (eds) Subduction—top to bottom. AGU Geophys Monogr 96:179–193Google Scholar
  17. Bebout GE, Bebout AE, Graham CM (2007) Cycling of B, Li, and LILE (K, Cs, Rb, Ba, Sr) into subduction zones: SIMS evidence from micas in high-P/T metasedimentary rocks. Chem Geol 239:284–304Google Scholar
  18. Behn MD, Kelemen PB, Hirth G, Hacker BR, Massonne HJ (2011) Diapirs as the source of the sediment signature in arc lavas. Nat Geosci 4:641–646Google Scholar
  19. Behrens H, Ohlhorst S, Holtz F, Champenois M (2004) CO2 solubility in dacitic melts equilibrated with H2O-CO2 fluids: implications for modeling the solubility of CO2 in silicic melts. Geochim Cosmochim Acta 68:4687–4703Google Scholar
  20. Blank JG, Stolper EM, Carroll MR (1993) Solubilities of carbon dioxide and water in rhyolitic melt at 850 °C and 750 bars. Earth Planet Sci Lett 119:27–36Google Scholar
  21. Bonifacie M, Jendrzejewski N, Agrinier P, Coleman M, Pineau F, Javoy M (2007) Pyrohydrolysis-IRMS determination of silicate chlorine stable isotope compositions. Application to oceanic crust and meteorite samples. Chem Geol 242:187–201Google Scholar
  22. Botcharnikov RE, Behrens H, Holtz F, Koepke J, Sato H (2004) Sulfur and chlorine solubility in Mt. Unzen rhyodacite melt at 850 °C and 200 MPa. Chem Geol 213:207–225Google Scholar
  23. *Brasse H, Kapinos G, Mütschard L, Alvarado GE, Worzewski T, Jegen M (2009) Deep electrical resistivity structure of northwestern Costa Rica. Geophys Res Lett 36:L02310. doi: 10.1029/2008GL036397 Google Scholar
  24. Carlson RL, Miller DJ (2003) Mantle wedge water contents estimated from seismic velocities in partially serpentinized peridotites. Geophys Res Lett 30:1250. doi: 10.1029/2002GL016600 Google Scholar
  25. Carmichael ISE (2002) The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west-central (105-99°W) Mexico. Contrib Mineral Petrol 143:641–663Google Scholar
  26. Carr MJ (1984) Symmetrical and segmented variation of physical and geochemical characteristics of the Central American volcanic front. J Volcanol Geotherm Res 20:231–252Google Scholar
  27. Carr MJ, Feigensohn MD, Benett EA (1990) Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the central American arc. Contrib Mineral Petrol 105:369–380Google Scholar
  28. Carr MJ, Feigenson MD, Patino LC, Walker JA (2003) Volcanism and geochemistry in Central America: progress and problems. In: Eiler JM (ed) Inside the subduction factory. AGU Geophys Monogr Ser 138:153–179Google Scholar
  29. Carr MJ, Patino LC, Feigenson MD (2007) Petrology and geochemistry of lavas. In: Buntschuh J, Alvarado GE (eds) Central America—geology, resources and hazards, vol 1. Balkema, Rotterdam, pp 565–590Google Scholar
  30. Carroll MR (2005) Chlorine solubility in evolved alkaline magmas. Ann Geophys 48:619–631Google Scholar
  31. Cartwright I, Barnicoat AC (1999) Stable isotope geochemistry of Alpine ophiolites: a window to ocean-floor hydrothermal alteration and constraints on fluid–rock interaction during high-pressure metamorphism. Int J Earth Sci 88:219–235Google Scholar
  32. Christeson GL, McIntosh KD, Shipley TH, Flueh ER, Goedde H (1999) Structure of the Costa Rica convergent margin, offshore Nicoya Peninsula. J Geophys Res 104:25443–25468Google Scholar
  33. Clift P, Vannucchi P (2004) Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev Geophys 42. doi: 10.1029/2003RG000127
  34. Crisp JA (1984) Rates of magma emplacement and volcanic output. J Volcanol Geotherm Res 20:177–211Google Scholar
  35. De Hoog JCM, Mason PRD, Van Bergen MJ (2001) Sulfur and chalcophile elements in subduction zones: constraints from laser-ablation ICP-MS study of melt inclusions from Galunggung volcano, Indonesia. Geochim Cosmochim Acta 65:3147–3164Google Scholar
  36. De Leeuw GAM, Hilton DR, Fischer TP, Walker JA (2007) The He–CO2 isotope and relative abundance characteristics of geothermal fluids in El Salvador and Honduras: new constraints on volatile mass balance of the Central American volcanic arc. Earth Planet Sci Lett 258:132–146Google Scholar
  37. Delacour A, Früh-Green GL, Bernasconi SM, Schaeffer P, Kelley DS (2008a) Carbon geochemistry of serpentinites in the Lost City Hydrothermal System (30°N, MAR). Geochim Cosmochim Acta 72:3681–3702Google Scholar
  38. Delacour A, Früh-Green GL, Bernasconi SM (2008b) Sulfur mineralogy and geochemistry of serpentinites and gabbros of the Atlantis Massif (IODP Site U1309). Geochim Cosmochim Acta 72:5111–5127Google Scholar
  39. Delmelle P, Stix J, Baxter PJ, Garcia-Alvarez J, Barquero J (2002) Atmospheric dispersion, environmental effects and potential health hazard associated with the low-altitude gas plume of Masaya volcano, Nicaragua. Bull Volcanol 64:423–434Google Scholar
  40. DeMets C (2001) A new estimate for present-day Cocos-Caribbean plate motion: implications for slip along the Central American volcanic arc. Geophys Res Lett 28:4043–4046Google Scholar
  41. DePaolo DJ (1983) The mean life of continents: estimates of continental recycling rates from Nd and Hf isotopic data and implications for mantle structure. Geophys Res Lett 10:705–708Google Scholar
  42. *DeShon HR, Schwartz SY, Newman AV, González V, Protti M, Dorman LM, Dixon TH, Sampson DE, Flueh ER (2006) Seismogenic zone structure beneath the Nicoya Peninsula, Costa Rica, from three-dimensional local earthquake P- and S-wave tomography. Geophys J Int 164:109–124. doi: 10.1111/j.1365-246X.2005.02809.x Google Scholar
  43. *Dinc AN, Koulakov I, Thorwart M, Rabbel W, Flüh ER, Arroyo I, Taylor W, Alvarado G (2010) Local Earthquake Tomography of Central Costa Rica: transition from seamount to ridge subduction. Geophys J Int 183:286–302. doi: 10.1111/j.1365-246X.2010.04717.x Google Scholar
  44. *Dinc AN, Rabbel W, Flüh ER, Taylor W (2011) Mantle wedge hydration in Nicaragua from local earthquake tomography. Geophys J Int 186:99–112. doi: 10.1111/j.1365-246X.2011.05041.x Google Scholar
  45. Dixon JE, Stolper EM, Holloway JR (1995) An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: calibration and solubility models. J Petrol 36:1607–1631Google Scholar
  46. Domanik KJ, Holloway R (1996) Stability and composition of phengitic muscovite and associated phases from 5.5 to 11 GPa: implications for deeply subducted sediments. Geochim Cosmochim Acta 60:4133–4150Google Scholar
  47. Ehrenborg J (1996) A new stratigraphy for the Tertiary volcanic rocks of the Nicaraguan highland. Geol Soc Am Bull 108:830–842Google Scholar
  48. Eickmann B, Bach W, Peckmann J (2009) Geochemical constraints on the modes of carbonate precipitation in peridotites from the Logatchev Hydrothermal Vent Field and Gakkel Ridge. Chem Geol 268:97–106Google Scholar
  49. Faccenda M, Gerya TV, Mancktelow NS, Moresi L (2012) Fluid flow during slab unbending and dehydration: implications for intermediate-depth seismicity, slab weakening and deep water recycling. Geochem Geophys Geosyst 13:Q01010. doi: 10.1029/2011GC003860 Google Scholar
  50. Feigenson MD, Carr MJ, Maharaj SV, Juliano S, Bolge LL (2004) Lead isotope composition of Central American volcanoes: influence of the Galapagos plume. Geochem Geophys Geosyst 5:Q06001. doi: 10.1029/2003GC000621 Google Scholar
  51. Fischer TP (2008) Fluxes of volatiles (H2O, CO2, N2, Cl, F) from arc volcanoes. Geochem J 42:21–38Google Scholar
  52. *Freundt A, Kutterolf S, Schmincke HU, Hansteen TH, Wehrmann H, Perez W, Strauch W, Navarro M (2006) Volcanic hazards in Nicaragua: past, present, and future. In: Rose WI, Bluth G, Carr MJ, Ewert J, Patino L, Vallance J (eds) Volcanic hazards in Central America. Geol Soc Am Spec Pap 412:141–165. doi: 10.1130/2006.2412(08)
  53. *Frische M, Garofalo K, Hansteen TH, Borchers R (2006) Fluxes and origin of halogenated organic trace gases from Momotombo volcano (Nicaragua). Geochem Geophys Geosyst 7:Q05020. doi: 10.1029/2005GC001162 Google Scholar
  54. Galle B, Arellano S, Norman P, Conde V, and the NOVAC Team (2012) Inventory of gas flux measurements from volcanoes of the global network for observation of volcanic and atmospheric change (NOVAC). Geophys Res Abs 14, EGU2012-8988-2, EGU General Assembly 2012Google Scholar
  55. *Gao J, John T, Klemd R, Xiong X (2007) Mobilisation of Ti-Nb-Ta during subduction: evidence from rutile-bearing dehydration segregations and veins hosted in eclogite, Tianshan, NW China. Geochim Cosmochim Acta 71:4974–4996. doi: 10.1016/j.gca.2007.07.027 Google Scholar
  56. Gerya T (2011) Future directions in subduction modeling. J Geodyn 52:344–378Google Scholar
  57. Gerya TV, Meilick FI (2010) Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts. J Metamorph Geol 29:7–31Google Scholar
  58. Gorman PJ, Kerrick DM, Connolly JAD (2006) Modeling open system metamorphic decarbonation of subducting slabs. Geochem Geophys Geosyst 7:Q04007. doi: 10.1029/2005GC001125 Google Scholar
  59. *Grevemeyer I, Kaul N, Diaz-Naveas JL, Villinger HW, Ranero CR, Reichert C (2005) Heat flow and bending-related faulting at subduction trenches: case studies offshore of Nicaragua and Central Chile. Earth Planet Sci Lett 236:238–248Google Scholar
  60. *Grevemeyer I, Ranero CR, Flüh ER, Kläschen D, Bialas J (2007) Passive and active seismological study of bending-related faulting and mantle serpentinization at the Middle America trench. Earth Planet Sci Lett 258:528–542Google Scholar
  61. Hacker BR (2008) H2O subduction beyond arcs. Geochem Geophys Geosys 9:Q03001. doi: 10.1029/2007GC001707 Google Scholar
  62. *Halama R, Bebout GE, John T, Scambelluri M (2012) Nitrogen recycling in subducted mantle rocks and implications for the global nitrogen cycle. Int J Earth Sci. doi: 10.1007/s00531-012-0782-3 Google Scholar
  63. *Han X, Suess E, Sahling H, Wallmann K (2004) Fluid venting activity on the Costa Rica margin: new results from authigenic carbonates. Intl J Earth Sci 93:596–611Google Scholar
  64. *Hansen KW, Wallmann K (2003) Cretaceous and cenozoic evolution of seawater composition, atmospheric O2 and CO2: a model perspective. Am J Sci 303:94–148Google Scholar
  65. Hattori KH, Guillot S (2007) Geochemical character of serpentinites associated with high- to ultrahigh-pressure metamorphic rocks in the Alps, Cuba, and the Himalayas: recycling of elements in subduction zones. Geochem Geophys Geosyst 8:Q09010. doi: 10.1029/2007GC001594 Google Scholar
  66. *Hensen C, Wallmann K (2005) Methane formation at Costa Rica continental margin—constraints for gas hydrate inventories and cross-décollement fluid flow. Earth Planet Sci Lett 236:41–60Google Scholar
  67. *Hensen C, Wallmann K, Schmidt M, Ranero CR, Suess E (2004) Fluid expulsion related to mud extrusion off Costa Rica—a window to the subducting slab. Geology 32:201–204Google Scholar
  68. Hilton DR, Fischer TP, Marty B (2002) Noble gases and volatile recycling at subduction zones. Rev Miner 47:319–370Google Scholar
  69. Hoernle K, van den Bogaard P, Werner R, Lissinna B, Hauff F, Alvarado G, Garbe-Schönberg D (2002) Missing history (16–71 Ma) of the Galápagos hotspot: implications for the tectonic and biological evolution of the Americas. Geology 30:795–798Google Scholar
  70. *Hoernle K, Abt DL, Fischer KM, Nichols H, Hauff F, Abers G, van den Bogaard P, Heydolph K, Alvarado G, Protti JM, Strauch W (2008) Arc-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua. Nature. doi: 10.1038/nature06550 Google Scholar
  71. Ito E, Harris DM, Anderson AT (1983) Alteration of oceanic crust and geologic cycling of chlorine and water. Geochim Cosmochim Acta 47:1613–1624Google Scholar
  72. *Ivandic M, Grevemeyer I, Berhorst A, Flueh ER, McIntosh K (2008) Impact of bending related faulting on the seismic properties of the incoming oceanic plate offshore of Nicaragua. J Geophys Res 113:B05410. doi: 10.1029/2007JB005291 Google Scholar
  73. *Ivandic M, Grevemeyer I, Bialas J, Petersen CJ (2010) Serpentinization in the trench-outer rise region offshore of Nicaragua: constraints from seismic refraction and wide-angle data. Geophys J Int 180:1253–1264Google Scholar
  74. Iyer K, Rüpke LH, Grevemeyer I, Phipps Morgan J (2012) Controls of faulting and reaction kinetics on serpentinization and double Benioff zones. Geochem Geophys Geosyst 13:Q09010. doi: 10.1029/2012gc004304 Google Scholar
  75. Jarrard RD (2003) Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem Geophys Geosyst 4:8905. doi: 10.1029/2002GC000392 Google Scholar
  76. Jégo S, Dasgupta R (2013) Fluid-present melting of sulfide-bearing ocean crust: experimental constraints on the transport of sulfur from slab to mantle wedge. Geochim Cosmochim Acta 110:106–134. doi: 10.1016/j.gca.2013.02.011 Google Scholar
  77. *John T, Klemd R, Gao J, Garbe-Schönberg CD (2008) Trace-element mobilization in slabs due to non steady-state fluid-rock interaction: constraints from an eclogite-facies transport vein in blueschist (Tianshan, China). Lithos 103:1–24. doi: 10.1016/j.lithos.2007.09.005 Google Scholar
  78. *John T, Layne GD, Haase KM, Barnes JD (2010) Chlorine isotope evidence for crustal recycling into the Earth’s mantle. Earth Planet Sci Lett 298:175–182. doi: 10.1016/j.epsl.2010.07.039 Google Scholar
  79. *John T, Scambelluri M, Frische M, Barnes JD, Bach W (2011) Dehydration of subducting serpentinite: implications for halogen mobility in subduction zones and the deep halogen cycle. Earth Planet Sci Lett 308:65–76. doi: 10.1016/j.epsl.2011.05.038 Google Scholar
  80. *Karaca D, Hensen C, Wallmann K (2010) Controls on authigenic carbonate precipitation at cold seeps along the convergent margin off Costa Rica. Geochem Geophys Geosyst 11:Q08S27. doi: 10.1029/2010GC003062 Google Scholar
  81. *Karaca D, Schleicher T, Hensen C, Linke P, Wallmann K (2012) Quantification of methane emission from bacterial mat sites at Quepos Slide offshore Costa Rica. Int J Earth Sci. doi: 10.1007/s00531-012-0839-3 Google Scholar
  82. Kendrick MA, Woodhead JD, Kamenetsky VS (2012) Tracking halogens through the subduction cycle. Geology 40:1075–1078Google Scholar
  83. Kendrick MA, Honda M, Pettke T, Scambelluri M, Phillips D, Giuliani A (2013) Subduction zone fluxes of halogens and noble gases in seafloor and forearc serpentinites. Earth Planet Sci Lett 365:86–96Google Scholar
  84. Kent AJR, Peate DW, Newman S, Stolper EM, Pearce JA (2002) Chlorine in submarine glasses from the Lau Basin: seawater contamination and constraints on the composition of slab-derived fluids. Earth Planet Sci Lett 202:361–377Google Scholar
  85. Kerrick DM, Connolly JAD (1998) Subduction of ophiocarbonates and recycling of CO2 and H2O. Geology 26:375–378Google Scholar
  86. Kerrick DM, Connolly JAD (2001) Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle. Nature 411:293–296Google Scholar
  87. Kim JJ, Matumoto T, Latham GV (1982) A crustal section of northern Central America as inferred from wide-angle reflections from shallow eathquakes. Bull Seism Soc Am 72:925–940Google Scholar
  88. Kimura G, Silver EA, Blum P et al (1997) Site 1039. Proc ODP Init Repts 170:45–93Google Scholar
  89. King PL, Holloway JR (2002) CO2 solubility and speciation in intermediate (andesitic) melts: the role of H2O and composition. Geochim Cosmochim Acta 66:1627–1640Google Scholar
  90. *Kutterolf S, Freundt A, Peréz W (2008) The Pacific offshore record of Plinian arc volcanism in Central America, part 2: tephra volumes and erupted masses. Geochem Geophys Geosys 9. doi: 10.1029/2007GC001791
  91. *Kutterolf S, Hansteen TH, Appel K, Freundt A, Krüger K, Perez W, Wehrmann H (2013) Combined bromine and chlorine release from large explosive volcanic eruptions: a threat to stratospheric ozone? Geology. doi: 10.1130/G34044.1 Google Scholar
  92. La Femina P, Dixon TH, Govers R, Norabuena E, Turner H, Saballos A, Mattioli G, Protti M, Strauch W (2009) Fore-arc motion and Cocos Ridge collision in Central America. Geochem Geophys Geosyst 10:Q05S14. doi: 10.1029/2008GC002181 Google Scholar
  93. Lange RA, Frey HM, Hector J (2009) A thermodynamic model for the plagioclase-liquid hygrometer/thermometer. Am Mineral 94:494–506Google Scholar
  94. *Lefeldt M, Grevemeyer I (2008) Centroid depth and mechanism of trench-outer rise earthquakes. Geophys J Int 172:240–251. doi: 10.1111/j.1365-246X.2007.03616 Google Scholar
  95. *Lefeldt M, Grevemeyer I, Gossler J, Bialas J (2009) Intraplate seismicity and related mantle hydration at the Nicaraguan trench outer rise. Geophys J Int 178:742–752. doi: 10.1111/j.1365-246X.2009.04167.x Google Scholar
  96. *Lefeldt M, Ranero CR, Grevemeyer I (2012) Seismic evidence of tectonic control on the depth of water influx into incoming oceanic plates at subduction trenches. Geochem Geophys Geosyst 13:Q05013. doi: 10.1029/2012GC004043 Google Scholar
  97. Li L, Bebout GE (2005) Carbon and nitrogen geochemistry of sediments in the Central American convergent margin: insights regarding subduction input fluxes, diagenesis, and paleoproductivity. J Geophys Res 110:B11202. doi: 10.1029/2004JB003276 Google Scholar
  98. *Liebetrau V, Augustin N, Kutterolf S, Schmidt M, Eisenhauer A, Garbe-Schönberg D, Weinrebe W (2014) Authigenic carbonate archives of mound and slide related fluid venting at the central american forearc: geochemical and mineralogical insights. Int J Earth Sci (in press)Google Scholar
  99. *Linke P, Wallmann K, Suess E, Hensen C, Rehder G (2005) In-situ benthic fluxes from an intermittently active mud volcano at the Costa Rica convergent margin. Earth Planet Sci Lett 235:79–95. doi: 10.1016/j.epsl.2005.03.009 Google Scholar
  100. *Lu Z, Hensen C, Fehn U, Wallmann K (2007) Old iodine in fluids venting along the Central American convergent margin. Geophys Res Lett L22604. doi: 10.1029/2007/GL031864
  101. *Lücke O (2012) Moho structure of Central America based on three-dimensional lithospheric density modelling of satellite derived gravity data. Int J Earth Sci. doi: 10.1007/s00531-012-0787-y Google Scholar
  102. MacKenzie L, Abers GA, Fisher KM, Syracuse EM, Protti JM, Gonzales V, Strauch W (2008) Crustal structure along the southern Central American volcanic front. Geochem Geophys Geosyst 9(8):Q08S09. doi: 10.1029/2008GC001991 Google Scholar
  103. Mann P, Rogers RD, Gahagan L (2007) Overview of plate tectonic history and its unresolved tectonic problems. In: Buntschuh J, Alvarado GE (eds) Central America—geology, resources and hazards. Balkema, Rotterdam, pp 205–241Google Scholar
  104. Marshall JS, Anderson RS (1995) Quetarnary uplift and seismic cycle deformation, Peninsula de Nicoya, Costa Rica. Bull Geol Soc Am 107:463–473Google Scholar
  105. Marty B, Tolstikhin IN (1998) CO2 fluxes from mid-ocean ridges, arcs and plumes. Chem Geol 145:233–248Google Scholar
  106. Mather TA, Pyle DM, Tsanev VI, McGonigle AJS, Oppenheimer C, Allen AG (2006) A reassessment of current volcanic emissions from the Central American arc with specific examples from Nicaragua. J Volcanol Geotherm Res 149:297–311Google Scholar
  107. *Mau S, Sahling H, Rehder G, Suess E, Linke P, Soeding E (2006) Estimates of methane output from mud extrusions at the erosive convergent margin off Costa Rica. Mar Geol 225:129–144Google Scholar
  108. *Mau S, Rehder G, Arroyo IG, Gossler J, Suess E (2007) Indications of a link between seismotectonics and CH4 release from seeps off Costa Rica. Geochem Geophys Geosys 8:Q04003. doi: 10.1029/2006GC001326 Google Scholar
  109. *Mau S, Rehder G, Sahling H, Schleicher T, Linke P (2012) Seepage of methane at Jaco Scar, a slide caused by seamount subduction offshore Costa Rica. Int J Earth Sci. doi: 10.1007/s00531-012-0822-z
  110. *Mavromatis V, Botz R, Schmidt M, Liebetrau V, Hensen C (2012) Formation of carbonate concretions in surface sediments of two mud mounds offshore Costa Rica: a stable isotope study. Int J Earth Sci. doi: 10.1007/s00531-012-0843-7 Google Scholar
  111. McDonough WF, Sun SS (1995) The composition of the earth. Chem Geol 120:223–253Google Scholar
  112. *Metzner D, Toohey M, Kutterolf S, Freundt A, Niemeier U, Timmreck C, Krüger K (2012) Radiative forcing and climate impact resulting from the SO2 injections based on a 200,000 year record of Plinian eruptions along the Central American volcanic arc. Int J Earth Sci. doi: 10.1007/s00531-012-0814-z Google Scholar
  113. Michael PJ (1988) The concentration, behaviour and storage of H2O in the suboceanic upper mantle: implications for mantle metasomatism. Geochim Cosmochim Acta 52:555–566Google Scholar
  114. Molina JF, Poli S (2000) Carbonate stability and fluid composition in subducted oceanic crust: an experimental study on H2O–CO2-bearing basalts. Earth Planet Sci Lett 176:295–310Google Scholar
  115. Moore GF, Saffer D, Studer M, Costa Pisani P (2011) Structural restoration of thrusts at the toe of the Nankai Trough accretionary prism off Shikoku Island, Japan: implications for dewatering processes. Geochem Geophys Geosyst 12:Q0AD12. doi: 10.1029/2010GC003453 Google Scholar
  116. *Mörz T, Fekete N, Kopf A, Brückmann W, Kreiter S, Hünerbach V, Masson DG, Hepp DA, Schmidt M, Kutterolf S, Sahling H, Abegg F, Spieß V, Suess E, Ranero CR (2005) Styles and productivity of mud diapirism along the Middle American margin, part II: mound culebra and mounds 11, and 12. In Martinelli G, Panahi B (eds) Mud volcanoes, geodynamics and seismicity. NATO science series IV. Springer, Dordrecht, pp 49–76Google Scholar
  117. Papale P (1999) Modeling of the solubility of a two-component H2O + CO2 fluid in silicate liquids. Am Mineral 84:477–492Google Scholar
  118. Parai R, Mukhopadhyay S (2012) How large is the subducted water flux? New constraints on mantle regassing rates. Earth Planet Sci Lett 317–318:396–406Google Scholar
  119. Patino LC, Carr MJ, Feigenson MD (2000) Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contrib Mineral Petrol 138:265–283Google Scholar
  120. Peacock SM (1990) Fluid processes in subduction zones. Science 248:329–337Google Scholar
  121. Peacock SM (2001) Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology 29:299–302Google Scholar
  122. Peacock SM, van Keken PE, Holloway SD, Hacker BR, Abers GA, Fergason RL (2005) Thermal structure of the Costa Rica—Nicaragua subduction zone. Phys Earth Planet Int 149:187–200Google Scholar
  123. *Phipps-Morgan J, Ranero CR, Vannucchi P (2008) Intra-arc extension in Central America: links between plate motions, tectonics, volcanism, and geochemistry. Earth Planet Sci Lett 272:365–371. doi: 10.1016/j.epsl2008.05.004 Google Scholar
  124. Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394Google Scholar
  125. Puchelt H, Pritchard HM, Berner Z, Maynard J (1996) Sulfide mineralogy, sulfur content, and sulfur isotope composition of mafic and ultramafic rocks from Leg 147. Proc ODP Sci Res 147:91–101Google Scholar
  126. Putirka KD (2008) Thermometers and barometers for volcanic systems. In: Putirka KD, Tepley FJ III (eds) Minerals, inclusions and volcanic processes. Rev Mineral Geochem 69:61–120Google Scholar
  127. Pyle DM, Mather TA (2009) Halogens in igneous processes and their fluxes to the atmosphere and oceans from volcanic activity: a review. Chem Geol 263:110–121Google Scholar
  128. *Rabbel W, Koulatov I, Dinc AN, Jakovlev A (2011) Arc parallel shear deformation and escape flow in the mantle wedge of the Central America subduction zone: evidence from P-wave anisotropy. Geochem Geophys Geosyst 12:Q05S31. doi: 10.1029/2010GC003325 Google Scholar
  129. Ranero CR, von Huene R (2000) Subduction erosion along the Middle America convergent margin. Nature 404:748–752Google Scholar
  130. *Ranero CR, Weinrebe W (2005) Tectonic processes during convergence of lithospheric plates at subduction zones. In: Wille PC (ed) Sound images of the ocean. Springer, Berlin, pp 85–105Google Scholar
  131. Ranero CR, von Huene R, Flueh E, Duarte M, Baca D, McIntosh K (2000) A cross section of the convergent Pacific margin of Nicaragua. Tectonics 19:335–357Google Scholar
  132. *Ranero CR, Phipps-Morgan J, McIntosh K, Reichert C (2003) Bending, faulting and mantle serpentinization at the Middle America Trench. Nature 425:367–373Google Scholar
  133. *Ranero CR, Grevemeyer I, Sahling H, Barckhausen U, Hensen C, Wallmann K, Weinrebe W, Vannucchi P, von Huene R, McIntosh K (2008) The hydrogeological system of erosional convergent margins and its influence on tectonics and interplate seismogenesis. Geochem Geophys Geosys 9(3):Q03S04. doi: 10.1029/2007GC001679 Google Scholar
  134. Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol 160:45–66Google Scholar
  135. Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219Google Scholar
  136. *Rüpke L, Phipps-Morgan J, Hort M, Conolly JAD (2002) Are the regional variations in Central American arc lavas due to differing basaltic versus peridotitic slab sources of fluids? Geology 30:1035–1038Google Scholar
  137. *Rüpke LH, Phipps Morgan J, Hort M, Connolly J (2004) Serpentine and the subduction zone water cycle. Earth Planet Sci Lett 223:17–34Google Scholar
  138. Ruscitto DM, Wallace PJ, Cooper LB, Plank T (2012) Global variations in H2O/Ce: 2. Relationships to arc magma geochemistry and volatile fluxes. Geochem Geophys Geosyst 13:Q03025. doi: 10.1029/2011GC003887 Google Scholar
  139. *Sadofsky SJ, Bebout GE (2004) Field and isotopic evidence for fluid mobility in the Franciscan Complex: forearc paleohydrogeology to depths of 30 kilometers. Int Geol Rev 46:1053–1088Google Scholar
  140. *Sadofsky S, Portnyagin M, Hoernle K, van den Bogaard P (2008) Subduction cycling of volatiles and trace elements through the Central American volcanic arc: evidence from melt inclusions. Contrib Mineral Petrol 155:433–456. doi: 10.1007/s00410-007-0251-3 Google Scholar
  141. Saffer DM (2003) Pore pressure development and progressive dewatering in underthrust sediments at the Costa Rican subduction margin: comparison with northern Barbados and Nankai. J Geophys Res 108(B5):2261. doi: 10.1029/2002JB001787 Google Scholar
  142. Saffer DM, Tobin HJ (2011) Hydrogeology and mechanics of subduction zone forearcs: fluid flow and pore pressure. Annu Rev Earth Planet Sci 39:157–186Google Scholar
  143. *Sahling H, Masson DG, Ranero CR, Hühnerbach V, Weinrebe W, Klaucke I, Bürk D, Brückmann W, Suess E (2008) Fluid seepage at the continental margin offshore Costa Rica and southern Nicaragua. G-cubed 9:05. doi: 10.1029/2008GC001978 Google Scholar
  144. Sallares V, Dañobeitia JJ, Flüh ER (2001) Lithospheric structure of the Costa Rican isthmus: effects of subduction magmatism on an oceanic plateau. J Geophys Res 106:621–643Google Scholar
  145. Sano Y, Williams SN (1996) Fluxes of mantle and subducted carbon along convergent plate boundaries. Geophys Res Lett 23:2749–2752Google Scholar
  146. Scambelluri M, Münterer O, Ottolini L, Pettke TT, Vannucci R (2004) The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluids. Earth Planet Sci Lett 222:217–234Google Scholar
  147. Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163:361–379Google Scholar
  148. Schmidt MW, Poli S (2003) Generation of mobile components during subduction of oceanic crust. In: Rudnick RL (ed) The crust. Treatise on geochemistry, vol 3, Holland HD and Turekian KK, series eds. Elsevier-Pergamon, Oxford, pp 567–591Google Scholar
  149. *Schmidt M, Hensen C, Mörz T, Müller C, Grevemeyer I, Wallmann K, Mau S, Kaul N (2005) Methane hydrate accumulation in “Mound 11” mud volcano, Costa Rica forearc. Mar Geol 216:83–100Google Scholar
  150. *Scholz F, Hensen C, Schmidt M, Geersen J (2013) Submarine weathering of silicate minerals and the extent of pore water freshening at active continental margins. Geochim Cosmochim Acta 100:200–216Google Scholar
  151. Shaw AM, Hilton DR, Fischer TP, Walker JA, Alvarado GE (2003) Contrasting He–C relationships in Nicaragua and Costa Rica: insights into C cycling through subduction zones. Earth Planet Sci Lett 214:499–513Google Scholar
  152. Shinohara H (2013) Volatile flux from subduction zone volcanoes: insights from a detailed evaluation of the fluxes from volcanoes in Japan. J Volcanol Geotherm Res 268:46–63Google Scholar
  153. Spinelli GA, Underwood MB (2004) Character of sediments entering the Costa Rica subduction zone: implications for partitioning of water along the plate interface. Isl Arc 13:432–451Google Scholar
  154. Stavenhagen AU, Flueh ER, Ranero C, McIntosh KD, Shipley T, Leandro G, Schulze A, Danobeitia JJ (1998) Seismic wide-angle investigations in Costa Rica—a crustal velocity model from the Pacific to the Caribbean coast. Z Geol Palaontol H 3–6:393–408Google Scholar
  155. Straub SM, Layne GD (2003) The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: implications for volatile recycling in subduction zones. Geochim Cosmochim Acta 67:4179–4203Google Scholar
  156. *Suess E (2014) Marine cold seeps and their products: manifestations of material transport, environmental conditions and tectonic settings. Int J Earth Sci (in press)Google Scholar
  157. Syracuse EM, Abers GA (2006) Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem Geophys Geosyst 7. doi: 10.1029/2005GC001045
  158. *Thorwart M, Dzierma Y, Rabbel W, Hensen C (2013) Seismic swarms, fluid flow and hydraulic conductivity in the forearc offshore North Costa Rica and Nicaragua. Int J Earth Sci. doi: 10.1007/s00531-013-0960-y Google Scholar
  159. Tsuno K, Dasgupta R, Danielson L, Righter K (2012) Flux of carbonate melt from deeply subducted pelitic sediments: geophysical and geochemical implications for the source of Central American volcanic arc. Geophys Res Lett 39:L16307. doi: 10.1029/2012GL052606 Google Scholar
  160. Ueda A, Sakai H (1984) Sulfur isotope study of Quaternary volcanic rocks from the Japanese Islands Arc. Geochim Cosmochim Acta 48:1837–1848Google Scholar
  161. Van Avendonk HJA, Holbrook WS, Lizarralde D, Denyer P (2011) Structure and serpentinization of the subducting Cocos plate offshore Nicaragua and Costa Rica. Geochem Geophys Geosyst 12:Q06009. doi: 10.1029/2011GC003592 Google Scholar
  162. *Van der Straaten F, Halama R, John T, Schenk V, Hauff F, Andersen N (2012) Tracing the effects of high-pressure metasomatic fluids and seawater alteration in blueschist-facies overprinted eclogites: implications for subduction channel processes. Chem Geol 292–293:69–87. doi: 10.1016/j.chemgeo.2011.11.008 Google Scholar
  163. Van Keken PE, Hacker BR, Syracuse EM, Abers GA (2011) Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J Geophys Res 116:B01401. doi: 10.1029/2010JB007922 Google Scholar
  164. Vannucchi P, Scholl DW, Meschede M, McDougall-Reid K (2001) Tectonic erosion and consequent collapse of the Pacific margin of Costa Rica: combined implications from ODP Leg 170, seismic offshore data, and regional geology of the Nicoya Peninsula. Tectonics 20:649–668Google Scholar
  165. *Vannucchi P, Ranero CR, Galeotti S, Straub SM, Scholl DW, McDougall-Ried K (2003) Fast rates of subduction erosion along the Costa Rica Pacific margin: implications for non-steady rates of crustal recycling at subduction zones. J Geophys Res 108:2511. doi: 10.1029/2002/B002207 Google Scholar
  166. *Vannucchi P, Galeotti S, Clift PD, Ranero CR, von Huene R (2004) Long-term subduction-erosion along the Guatemalan margin of the Middle America Trench. Geology 32:617–620Google Scholar
  167. *Völker D, Kutterolf S, Wehrmann H (2011) Comparative mass balance of volcanic edifices at the Southern Volcanic Zone of the Andes between 33°S and 46°S. J Volcanol Geotherm Res 205:114–129Google Scholar
  168. *Völker D, Wehrmann H, Kutterolf S, Iyer K, Rabbel W, Geersen J, Hoernle K (2014) Constraining input and output fluxes of the southern Central Chile Subduction Zone: water, chlorine, sulfur. Int J Earth Sci (in press)Google Scholar
  169. Von Glasow R, Bobrowski N, Kern C (2009) The effects of volcanic eruptions on atmospheric chemistry. Chem Geol 263:131–142Google Scholar
  170. Von Huene R, Scholl DW (1991) Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev Geophys 29:279–316Google Scholar
  171. von Huene R, Auboin J, Azema J, Blackington G, Carter JA, Coulburn WT, Cowan DS, Curiale JA, Dengo CA, Faas RW, Harrison W, Hesse R, Hussong DM, Laad JW, Muzylov N, Shiki T, Thompson PR, Westberg J (1980) Leg 67: the deep sea drilling project Mid-America trench transect off Guatemala. Geol Soc Am Bull 91:421–432Google Scholar
  172. Walker JA, Carr MJ, Feigenson MD, Kalamarides RI (1990) The petrogenetic significance of interstratified high- and low-Ti basalts in central Nicaragua. J Petrol 31:1141–1164Google Scholar
  173. Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140:217–240Google Scholar
  174. Wallace PJ, Anderson AT (2000) Volatiles in magmas. In: Sigurdsson H et al (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 149–170Google Scholar
  175. Walther CHE (2003) The crustal structure of the Cocos ridge off Costa Rica. J Geophys Res 108:2136. doi: 10.1029/2001JB000888 Google Scholar
  176. *Walther C, Flüh ER (2002) Remnant of the ancient farallon plate breakup: a low-velocity body in the lower oceanic crust off Nicoya Peninsula, Costa Rica—evidence from wide-angle seismics. Geophys Res Lett 29:45/1–4Google Scholar
  177. Walther CHE, Flueh ER, Ranero CR, von Huene R, Strauch W (2000) Crustal structure across the Pacific margin of Nicaragua: evidence for ophiolitic basement and a shallow mantle sliver. Geophys J Int 141:759–777Google Scholar
  178. *Wehrmann H, Hoernle K, Portnyagin M, Wiedenbeck M, Heydoph K (2011) Volcanic CO2 output at the Central American subduction zone inferred from melt inclusions in olivine crystals from mafic tephras. Geochem Geophys Geosyst 12:Q06003. doi: 10.1029/2010GC003412 Google Scholar
  179. *Weinrebe W, Flüh ER (eds) (2002) Cruise report SO163—subduction I, GEOMAR Report 106, p 534Google Scholar
  180. Werner R, Hoernle K, Bogaard P, Ranero C, Huene R, Korich D (1999) Drowned 14 -m.y.-old Galapagos archipelago off the cost of Costa Rica: implications for tectonic and evolutionary models. Geology 27:499–502Google Scholar
  181. *Worzewski T, Jegen M, Kopp H, Brasse H, Taylor Castillo W (2011) Magnetotelluric image of the fluid cycle in the Costa Rican subduction zone. Nat Geosci 4:108–111. doi: 10.1038/ngeo1041 Google Scholar
  182. Ye S, Bialas J, Flueh ER, Stavenhagen A, von Huene R (1996) Crustal structure of the subduction zone off Costa Rica derived from OBS refraction and wide-angle reflection seismic data. Tectonics 15:1006–1021Google Scholar
  183. Zimmer MM, Fischer TP, Hilton DR, Alvarado GE, Sharp ZD, Walker JA (2004) Nitrogen systematics and gas fluxes of subduction zones: insights from Costa Rica arc volatiles. Geochem Geophys Geosyst 5:Q05J11. doi: 10.1029/2003GC000651 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • A. Freundt
    • 1
  • I. Grevemeyer
    • 1
  • W. Rabbel
    • 2
  • T. H. Hansteen
    • 1
  • C. Hensen
    • 1
  • H. Wehrmann
    • 1
  • S. Kutterolf
    • 1
  • R. Halama
    • 2
    • 3
  • M. Frische
    • 1
  1. 1.SFB 574GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  2. 2.SFB 574, Institute for GeosciencesChristian Albrechts UniversityKielGermany
  3. 3.Institute of Earth and Environmental ScienceUniversity of PotsdamPotsdamGermany

Personalised recommendations