International Journal of Earth Sciences

, Volume 103, Issue 3, pp 683–696 | Cite as

Geochronology of a composite granitoid pluton: a high-precision ID-TIMS U–Pb zircon study of the Variscan Karkonosze Granite (SW Poland)

  • Ryszard KryzaEmail author
  • Urs Schaltegger
  • Teresa Oberc-Dziedzic
  • Christian Pin
  • Maria Ovtcharova
Original Paper


Resolving time differences between successive magmatic pulses in composite granitoid plutons is often a difficult task. High-precision CA-ID-TIMS zircon ages obtained from such a pluton, the Variscan Karkonosze Granite (NE part of the Bohemian Massif), provide evidence that the crystallization of the two main granite facies, porphyritic and equigranular, happened between 312.5 ± 0.3 and 312.2 ± 0.3 Ma, thus unresolvable at the 0.08–0.1 % precision level of a single 206Pb/238U age. This finding is at odds with most other previous dating attempts and asks for a re-evaluation of the previous scattered geochronological data. The main reasons for the scatter of the earlier dates obtained by various techniques can include analytical causes, the presence of older inheritance and disturbance of the U–Pb isotopic system, due to zircon metamictization (enhanced by high-U content in zircon) or late- and post-magmatic alteration.


U–Pb zircon geochronology ID-TIMS Composite granitoid plutons Variscan granitoids Karkonosze Pluton 



This research was carried out under the Project N307 008 32/0314 of the Polish Ministry of Science and Education. Additional support came from internal grants 1017/S/ING and 2022/W/ING of the University of Wrocław. Kalina Dymna separated the zircons. The financial support of the isotope laboratories at University of Geneva by the Swiss Science Foundation is kindly acknowledged. We are grateful to Fernando Corfu and Monika Kusiak for their constructive reviews.


  1. Aleksandrowski P, Kryza R, Mazur S, Żaba J (1997) Kinematic data on major Variscan strike-slip faults and shear zones in the Polish Sudetes, northeast Bohemian Massif. Geol Mag 134:727–739CrossRefGoogle Scholar
  2. Awdankiewicz M (2007) Late Palaeozoic lamprophyres and associated mafic subvolcanic rocks of the Sudetes (SW Poland): petrology, geochemistry and petrogenesis. Geologia Sudetica 39:11–97Google Scholar
  3. Awdankiewicz M, Awdankiewicz H, Kryza R (2007) Preliminary SHRIMP zircon age of the micromonzodiorite dyke from Bukowiec: age constraint for the Karkonosze granite (Polish Sudetes). Mineral Pol Spec Pap 31:57–60Google Scholar
  4. Awdankiewicz M, Awdankiewicz H, Kryza R, Rodionov N (2010) SHRIMP zircon study of a micromonzodiorite dyke in the Karkonosze Granite, Sudetes (SW Poland): age constraints for late Variscan magmatism in Central Europe. Geol Mag 147:77–85CrossRefGoogle Scholar
  5. Bachmann O, Charlier BLA, Lowenstern JB (2007) Zircon crystallization and recycling in the magma chamber of the rhyolitic Kos Plateau Tuff (Aegean arc). Geology 35:73–76CrossRefGoogle Scholar
  6. Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW, Mundil R, Campbell IH, Korsch RJ, Williams IS, Foudoulis C (2004) Improved Pb-206/U-238 microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem Geol 205:115–140CrossRefGoogle Scholar
  7. Borkowska M (1966) Petrografia granitu Karkonoszy. Geologia Sudetica 2:7–119 (in Polish, French summary)Google Scholar
  8. Chaloupský J, Červenka J, Jetel J, Králik F, Libalová J, Přchová E, Pokorný J, Pošmourný K, Sekyra J, Shřbený O, Šalanský K, Šrámek J, Václ J (1989) Geology of the Krkonoše and Jizerské hory Mts. Ústředni ústav geologický, Praha (in Czech, English summary)Google Scholar
  9. Cherniak DJ, Watson EB (2001) Pb diffusion in zircon. Chem Geol 172:5–24CrossRefGoogle Scholar
  10. Chiaradia M, Vallance J, Fontboté L, Stein H, Schaltegger U, Coder J, Richards J, Villeneuve M, Gendall I (2008) U–Pb, Re–Os, and 40Ar/39Ar geochronology of the Nambija Au-skarn and Pangui porphyry Cu deposits, Ecuador: implications for the Jurassic metallogenic belt of the Northern Andes. Miner Deposita 44:371–387CrossRefGoogle Scholar
  11. Chiaradia M, Schaltegger U, Spikings R (2013) How accurately can we date the duration of magmatic-hydrothermal events in porphyry systems? An invited paper. Econ Geol 108:565–584CrossRefGoogle Scholar
  12. Cloos H (1925) Einführung in die tektonische Behandlung magmatischer Erscheinungen (Granittektonik). I Spez Teil Das Riesengebirge in Schlesien, BerlinGoogle Scholar
  13. Crowley J, Schoene B, Bowring S (2007) U–Pb dating of zircon in the Bishop Tuff at the millennial scale. Geology 35:1123CrossRefGoogle Scholar
  14. Davis JW, Coleman DS, Gracely JT, Gaschnig R, Stearns M (2011) Magma accumulation rates and thermal histories of plutons of the Sierra Nevada batholith, CA. Contrib Miner Petrol 163:449–465CrossRefGoogle Scholar
  15. Duthou JL, Couturie JP, Mierzejewski MP, Pin C (1991) Next dating of granite sample from the Karkonosze Mountains using Rb–Sr total rock isochrone method. Przegląd Geologiczny 36:75–79 (in Polish, English summary)Google Scholar
  16. Finger F, Gerdes A, René M, Riegler G (2009) The Saxo-Danubian Granite Belt: magmatic response to postcollisional delamination of mantle lithosphere below the southwestern sector of the Bohemian Massif (Variscan orogen). Geol Carpath 60:205–212CrossRefGoogle Scholar
  17. Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 11:2033–2048CrossRefGoogle Scholar
  18. Geisler T, Schaltegger U, Tomaschek F (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements 3:43–50CrossRefGoogle Scholar
  19. Gerstenberger H, Haase G (1997) A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem Geol 136:309–312CrossRefGoogle Scholar
  20. Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurements of half-lives and specific activities of 235U and 238U. Phys Rev C 4:1889–1906CrossRefGoogle Scholar
  21. Klomínský J (1969) Krkonošsko-jizerský granitoid masiv. Sborník Geologických Věd, Geologie 15:7–133 (in Czech, German summary)Google Scholar
  22. Kotkova J, Schaltegger U, Leichmann J (2010) Two types of ultrapotassic plutonic rocks in the Bohemian Massif: coeval intrusions at different crustal levels. Lithos 115:163–176CrossRefGoogle Scholar
  23. Krogh TE (1973) A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim Cosmochim Acta 37:485–494CrossRefGoogle Scholar
  24. Kröner A, Hegner E, Hammer J, Haase G, Bielicki KH, Krauss M, Eidam J (1994) Geochronology and Nd-Sm systematics of Lusatian granitoids: significance for the evolution of the Variscan orogen in east-central Europe. Geol Rundsch 83:357–376CrossRefGoogle Scholar
  25. Kröner A, Jaeckel P, Hegner E, Opletal M (2001) Single zircon ages and whole-rock Nd isotopic systematics of early Palaeozoic granitoid gneisses from the Czech and Polish Sudetes (Jizerské hory, Krkonoše Mountains and Orlice-Snĕžník Complex). Int J Earth Sci 90:304–324CrossRefGoogle Scholar
  26. Kryza R, Mazur S, Oberc-Dziedzic T (2004) The Sudetic geological mosaic: insights into the root of the Variscan orogen. Przegląd Geologiczny 52:761–773Google Scholar
  27. Kryza R, Crowley QG, Larionov A, Pin C, Oberc-Dziedzic T, Mochnacka K (2012) Chemical abrasion applied to SHRIMP zircon geochronology: an example from the Variscan Karkonosze Granite (Sudetes, SW Poland). Gondwna Res 21:757–767CrossRefGoogle Scholar
  28. Kryza R, Pin C, Oberc-Dziedzic, Crowley QG, Larionov A (2014) Deciphering the geochronology of a large granitoid pluton (Karkonosze Granite, SW Poland): an assessment of U–Pb zircon SIMS and Rb–Sr whole-rock dates relative to U–Pb zircon CA-ID-TIMS (submitted)Google Scholar
  29. Kusiak MA, Dunkley DJ, Słaby E, Martin H, Budzyń B (2009) Sensitive high-resolution ion microprobe analysis of zircon reequilibrated by late magmatic fluids in a hybridized pluton. Geology 37:1063–1066CrossRefGoogle Scholar
  30. Kusiak MA, Williams I, Dunkley DJ, Konecny P, Słaby E, Martin H (2013) Monazite to the rescue: U–Th–Pb dating of the intrusive history of the composite Karkonosze pluton, Bohemian Massif. Chem Geol. doi: 10.1016/j.chemgeo.2013.11.016
  31. Leuthold J, Müntener O, Baumgartner LP, Putlitz B, Ovtcharova M, Schaltegger U (2012) Time resolved construction of a bimodal laccolith (Torres del Paine, Patagonia). Earth Planet Sci Lett 325–326:85–92CrossRefGoogle Scholar
  32. Ludwig KR (1980) Calculation of uncertainties of U–Pb isotope data. Earth Planet Sci Lett 46:212–220CrossRefGoogle Scholar
  33. Ludwig KR (2005) User’s manual for ISOPLOT/Ex 3.22. A geochronological toolkit for microsoft excel. Berkeley Geochronology Center Special Publication,
  34. Machowiak K, Armstrong R (2007) SHRIMP U–Pb zircon age from the Karkonosze granite. Mineral Pol Spec Pap 31:193–196Google Scholar
  35. Marheine D, Kachlik V, Maluski H, Patocka F, Żelaźniewicz A (2002) New 40Ar/39Ar ages in the West Sudetes (Bohemian Massif): constraints on the Variscan polyphase tectonothermal development. In: Winchester JA, Paharaoh TC, Verniers J (eds) Palaeozoic Amalgamation of Central Europe, Geological Society Special Publication 201:133–155Google Scholar
  36. Mattinson JM (2005) Zircon U–Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem Geol 220:47–66CrossRefGoogle Scholar
  37. Mazur S (1995) Structural and metamorphic evolution of the country rocks at the eastern contact of the Karkonosze granite in the southern Rudawy Janowickie Mts and Lasocki Range (in Polish with English summary). Geologia Sudetica 29:31–98Google Scholar
  38. Mazur S, Aleksandrowski P (2001) The Tepla(?)/Saxothuringian suture in the Karkonosze-Izera Massif, Western Sudetes, Central European Variscides. Int J Earth Sci 90:341–360CrossRefGoogle Scholar
  39. Mazur S, Aleksandrowski P, Kryza R, Oberc-Dziedzic T (2006) The variscan orogen in Poland. Geol Q 50:89–118Google Scholar
  40. Mazur S, Aleksandrowski P, Turniak K, Awdankiewicz M (2007) Geology, tectonic evolution and Late Palaeozoic magmatism of Sudetes: an overview. In: Kozłowski A, Wiszniewska J (eds) Granitoids in Poland, Archivum Mineralogiae Monograph No 1, pp 59–87Google Scholar
  41. Michel J, Baumgartner L, Putlitz B, Schaltegger U, Ovtcharova M (2008) Incremental growth of the Patagonian Torres del Paine laccolith over 90 ky, Patagonia. Geology 36:459–462CrossRefGoogle Scholar
  42. Mierzejewski MP (2007) A general view on the Karkonosze granite. In: Kozłowski A, Wiszniewska J (eds) Granitoids in Poland. Archiwum Mineralogiczne Monograph 1, pp 111–122Google Scholar
  43. Mierzejewski M, Oberc-Dziedzic T (1990) The Izera-Karkonosze Block and its tectonic development (Sudetes, Poland). Neues Jb Geol Paläontol Abh 179:197–222Google Scholar
  44. Mierzejewski MP, Pin C, Duthou JL, Couturie JP (1994) Sr-Nd isotopic study of the Karkonosze granite (Western Sudetes). In: Kryza R (ed) Igneous activity and metamorphic evolution of the Sudetes area (2nd Conference, French-Polish Cooperation in Geology between l’Université B. Pascal, Clermont-Ferrand and Wrocław University, 1983–1993, p 87. University of WrocławGoogle Scholar
  45. Mikulski SZ (2007) Metal ore potential of the parent magma of granite: the Karkonosze massif example. In: Kozłowski A, Wiszniewska J (eds) Granitoids in Poland, Archiwum Mineralogiczne Monograph 1, pp 123–145Google Scholar
  46. Mundil R, Ludwig KR, Metcalfe I, Renne PR (2004) Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science 305:1760–1763CrossRefGoogle Scholar
  47. Oberc-Dziedzic T (2003) The Izera granites: an attempt of the reconstruction of predeformational history. In: Ciężkowski W, Wojewoda J, Żelaźniewicz A (eds) Sudety Zachodnie: od wendu do czwartorzędu. WIND, Wrocław, pp 41–52 (in Polish English summary)Google Scholar
  48. Oberc-Dziedzic T, Kryza R (2012) Late stage Variscan magmatism in the Strzelin Massif (SW Poland): SHRIMP zircon ages of tonalite and Bt-Ms granite of the Gęsiniec intrusion. Geol Q 56:225–236CrossRefGoogle Scholar
  49. Oberc-Dziedzic T, Kryza R, Pin C (2009a) Granitoids as a source of knowledge of the evolution of the Earth crust in the Sudetes. Project N307 008 32/0314 of the Polish Ministry of Science and Education, final report. Institute of Geological Sciences, University of Wrocław (unpublished) (in Polish with English summary)Google Scholar
  50. Oberc-Dziedzic T, Kryza R, Pin C, Mochnacka K, Larionov A (2009b) The orthogneiss and schist complex of the Karkonosze-Izera Massif (Sudetes, SW Poland): U–Pb SHRIMP zircon ages, Nd-isotope systematics and protoliths. Geologia Sudetica 41:2–24Google Scholar
  51. Oberc-Dziedzic T, Kryza R, Białek J (2010a) Variscan multistage granitoid magmatism in Brunovistulicum: petrological and SHRIMP U/Pb zircon geochronological evidence from the southern part of the Strzelin Massif, SW Poland. Geol Q 54:301–324Google Scholar
  52. Oberc-Dziedzic T, Kryza R, Mochnacka K, Larionov A (2010b) Ordovician passive continental margin magmatism in the Central-European Variscides: a case study from the SE part of the Karkonosze-Izera Massif, Polish Sudetes. Int J Earth Sci 99:27–46CrossRefGoogle Scholar
  53. Oberc-Dziedzic T, Kryza R, Pin C, Madej S (2013) Variscan granitoid plutonism in the Strzelin Massif (SW Poland): petrology and age of the Strzelin granite intrusion. Geol Q 57(2):269–288. doi: 10.7306/gq.1083 Google Scholar
  54. Pin C, Rodriguez J (2009) Comment on “Rheic Ocean ophiolitic remnants in southern Iberia questioned by SHRIMP U–Pb zircon ages on the Beja-Acebuches amphibolites” by A. Azor et al. Tectonics 28:TC5013Google Scholar
  55. Pin C, Mierzejewski MP, Duthou JL (1987) Isochronous age Rb/Sr of Karkonosze granite from the quarry Szklarska Poręba Huta and significance of initial 87Sr/86Sr in this granite. Przegląd Geologiczny 10:512–517 (in Polish with English summary)Google Scholar
  56. Schaltegger U, Brack P, Ovtcharova M, Peytcheva I, Schoene B, Stracke A, Bargossi G (2009) Zircon and titanite recording 1.5 million years of magma accretion, crystallization and initial cooling in a composite pluton (southern Adamello batholith, northern Italy). Earth Planet Sci Lett 286:108–218CrossRefGoogle Scholar
  57. Schmitt AK, Danišík M, Evans NJ, Siebel W, Kiemele E, Aydin F, Harvey JC (2011) Acigöl rhyolite field, Central Anatolia (part 1): high-resolution dating of eruption episodes and zircon growth rates. Contrib Miner Petrol 162:1215–1231CrossRefGoogle Scholar
  58. Schmitz M, Schoene B (2007) Derivation of isotope ratios, errors and error correlations for U–Pb geochronology using 205 Pb-235 U-(233 U)-spiked isotope dilution thermal ionization mass spectrometric data. Geochem Geophys Geosyst 8:08006CrossRefGoogle Scholar
  59. Schoene B (2014) U–Th–Pb geochronology. In: Turekian KK, Holland HD (eds) Treatise on geochemistry (2nd ed), The crust, Elsevier, 4, pp 341–378Google Scholar
  60. Schoene B, Crowley JL, Condon D, Schmitz MD, Bowring SA (2006) Reassessing the uranium decay constants for geochronology using ID-TIMS U–Pb data. Geochim Cosmochim Acta 70:426–445CrossRefGoogle Scholar
  61. Schoene B, Guex J, Bartolini A, Schaltegger U, Blackburn TJ (2010) Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100,000-year level. Geology 38:387–390CrossRefGoogle Scholar
  62. Schoene B, Schaltegger U, Brack P, Latkoczy C, Stracke A, Günther D, Samperton K (2012) Rates of magma differentiation and emplacement in a ballooning pluton recorded by U–Pb TIMS-TEA, Adamello batholith, Italy. Earth Planet Sci Lett 355–356:162–173CrossRefGoogle Scholar
  63. Słaby E, Martin H (2008) Mafic and Felsic Magma Interaction in Granites: the Hercynian Karkonosze Pluton (Sudetes, Bohemian Massif). J Petrol 49:353–391Google Scholar
  64. Słaby E, Galbarczyk-Gąsiorowska L, Seltmann R, Müller A (2007) Alkali feldspar megacryst growth: geochemical modelling. Mineral Petrol 89:1–29CrossRefGoogle Scholar
  65. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221CrossRefGoogle Scholar
  66. Von Quadt A, Erni M, Martinek K, Moll M, Peytcheva I, Heinrich CA (2011) Zircon crystallization and the lifetimes of ore-forming magmatic-hydrothermal systems. Geology 39:731–734CrossRefGoogle Scholar
  67. Wotzlaw JF, Schaltegger U, Frick DA, Dungan MA, Gerdes A, Günther D (2013) Tracking the evolution of large volume silicic magma reservoirs from assembly to supereruption. Geology 41:867–870CrossRefGoogle Scholar
  68. Žák J, Klomínský J (2007) Magmatic structures in the Krkonoše-Jizera Plutonic Complex, Bohemian Massif: evidence for localized multiphase flow and small-scale thermal-mechanical instabilities in a granitic magma chamber. J Volcanol Geoth Res 164:254–267CrossRefGoogle Scholar
  69. Żelaźniewicz A, Fanning CM, Achramowicz S (2009) Refining the granite, gneiss and schist interrelationships within the Lusatian-Izera Massif, West Sudetes, using SHRIMP U–Pb zircon analyses and new geologic data. Geologia Sudetica 41:67–84Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ryszard Kryza
    • 1
    Email author
  • Urs Schaltegger
    • 2
  • Teresa Oberc-Dziedzic
    • 1
  • Christian Pin
    • 3
  • Maria Ovtcharova
    • 2
  1. 1.Institute of Geological SciencesUniversity of WrocławWrocławPoland
  2. 2.Earth and Environmental SciencesUniversity of GenevaGeneveSwitzerland
  3. 3.Département de Géologie, UMR 6524 CNRSUniversité Blaise PascalClermont-FerrandFrance

Personalised recommendations