International Journal of Earth Sciences

, Volume 103, Issue 3, pp 801–819 | Cite as

Fractures and faults in volcanic rocks (Campi Flegrei, southern Italy): insight into volcano-tectonic processes

  • Stefano Vitale
  • Roberto Isaia
Original Paper


The present study was focused to analyze fractures and faults in the Campi Flegrei calderas presently hosting several volcanic edifices, such as lava domes, scoria, and tuff cones. A complex network of fractures and faults affects the volcanic rocks, mostly as planar with highly variable density. Frequently faults appearing as conjugate structures showing normal kinematics often associated with ductile deformation such as drag folds and deflexed layers, suggesting a syn-eruption deformation. However, the most of faults, mainly hosted along the caldera/crater rims, are very steep with dominant normal and secondary reverse movements. The fracture pattern indicates a slight prevalence of NE–SW and NW–SE directions, but N–S and E–W trends also occur. Fractures and faults found in rocks older than 15 ka (Neapolitan Yellow Tuff included), measured in western and eastern sectors of the study area, indicate a rotation of ca. 30° of the main directions among these two sectors. For the faults occurring along the caldera/crater rims, we suggest a kinematic evolution characterized by the reactivation of tensile fractures previously formed in response to both regional extension and locale resurgent dome. Finally, normal faults located in the central sector of caldera, between La Starza and Accademia localities, cutting the youngest volcanic deposits, indicate a constant NNE–SSW extension probably related to the caldera resurgence.


Campanian Ignimbrite Neapolitan Yellow Tuff Caldera Deformation Structural geology Volcanism 



We thank the topic editor Christoph Breitkreuz and the reviewer Francesco Mazzarini for the extremely useful comments and suggestions that significantly improved this paper. Special thanks to Francesco D’Assisi Tramparulo, Carlo Scirocco, and Enrico Iannuzzi for the help in the field work and, finally, to Mauro Rosi for the interesting discussions. This work was partly funded by the Italian Department of Civil Defence Protection within framework DPC-INGV 2012-2021, Volcanological Project V1.

Supplementary material

531_2013_979_MOESM1_ESM.xlsx (35 kb)
Supplementary material 1 (XLSX 35 kb)


  1. Acocella V (2007) Understanding caldera structure and development: an overview of analogue models compared to natural calderas. Earth-Sci Rev 85:125–160CrossRefGoogle Scholar
  2. Acocella V (2008) Activating and reactivating pairs of nested collapses during caldera forming eruptions: Campi Flegrei (Italy). Geophys Res Lett 35:L17304. doi: 10.1029/2008GL035078 CrossRefGoogle Scholar
  3. Acocella V (2010) Evaluating fracture patterns within a resurgent caldera: Campi Flegrei, Italy. Bull Volcanol 72:623–638CrossRefGoogle Scholar
  4. Acocella V, Salvini F, Funiciello R, Faccenna C (1999) The role of transfer structures on volcanic activity at Campi Flegrei (southern Italy). J Volcanol Geotherm Res 91:123–139CrossRefGoogle Scholar
  5. Anderson EM (1905) The dynamics of faulting. Trans Edinb Geol Soc 8:387–402CrossRefGoogle Scholar
  6. Angelier J, Mechler P (1977) Sur une methode graphice de recherche des contraintes principales egalement utilisable en tectonique et en seismologie: la methode des diedres droits. Bulletin Societé Geologique France XIX(7):1309–1318Google Scholar
  7. Arienzo I, Moretti R, Civetta L, Orsi G, Papale P (2010) The feeding system of Agnano–Monte Spina eruption (Campi Flegrei, Italy): dragging the past into present activity and future scenarios. Chem Geol 270(1–4):135–147CrossRefGoogle Scholar
  8. Barberi F, Corrado G, Innocenti F, Luongo G (1984) Phlegraean Fields 1982–1984: brief chronicle of a volcano emergency in a densely populated area. Bull Volcanol 47(2):175–185CrossRefGoogle Scholar
  9. Barberi F, Carapezza M, Innocenti F, Luongo G, Santacroce R (1989) The problem of volcanic unrest: the Phlegraean Fields case history. Atti Conv Lincei 80:387–405Google Scholar
  10. Battaglia M, Troise C, Obrizzo F, Pingue F, De Natale G (2006) Evidence for fluid migration as the source of deformation at Campi Flegrei caldera (Italy). Geophys Res Lett 33:L01307–L013010. doi: 10.1029/2005GL024904 CrossRefGoogle Scholar
  11. Berrino G, Corrado G, Luongo G, Toro B (1984) Ground deformation and gravity change accompanying the 1982 Pozzuoli uplift. Bull Volcanol 47(2):187–200CrossRefGoogle Scholar
  12. Bingham C (1974) An antipodally symmetric distribution on the sphere. Ann Stat 2:1201–1225CrossRefGoogle Scholar
  13. Bodnar R, Cannatelli C, De Vivo B, Lima A, Belkin H, Milia A (2007) Quantitative model for magma degassing and ground deformation (bradyseism) at Campi Flegrei, Italy. Geology 35:791–794CrossRefGoogle Scholar
  14. Bruno PPG, Rapolla A, Di Fiore V (2003) Structural setting of the Bay of Naples (Italy) seismic reflection data: implications for Campanian volcanism. Tectonophysics 372:193–213CrossRefGoogle Scholar
  15. Calcaterra D, Gianni A, Ietto A, Pappone G (1988) Sistemi di fratturazione nei tufi post-calderici dell’area flegrea. Mem Soc Geol Italy 41:936–940Google Scholar
  16. Caputo R (1995) Evolution of orthogonal sets of coeval extension joints. Terra Nova 7:479–490CrossRefGoogle Scholar
  17. Casciello E, Cesarano M, Pappone G (2006) Extensional detachment faulting on the Tyrrhenian margin of the southern Apennines contractional belt (Italy). J Geol Soc Lond 163:617–629CrossRefGoogle Scholar
  18. Chiodini G, Caliro S, De Martino P, Avino R, Gherardi F (2012) Early signals of new volcanic unrest at Campi Flegrei caldera? Insights from geochemical data and physical simulations. Geology 40:943–946CrossRefGoogle Scholar
  19. Cinque A, Patacca E, Scandone P, Tozzi M (1993) Quaternary kinematic evolution of the southern Apennines. Relationships between surface geological features and deep lithospheric structures. Ann Geophys 36:249–260Google Scholar
  20. Civetta L, Orsi G, Pappalardo L, Fisher R, Heiken G, Ort M (1997) Geochemical zoning, mingling, eruptive dynamics and depositional processes—the Campanian Ignimbrite, Campi Flegrei caldera, Italy. J Volcanol Geotherm Res 75:183–197CrossRefGoogle Scholar
  21. Cosentino D, De Rita D, Funicello R, Parotto M, Salvini F, Vittori E (1984) Fracture system in Phlegraean Fields (Naples, southern Italy). Bull Volcanol 47(2):247–257CrossRefGoogle Scholar
  22. Costa A, Folch A, Macedonio G, Giaccio B, Isaia R, Smith V (2012) Quantifying volcanic ash dispersal and impact of the Campanian Ignimbrite super-eruption. Geophys Res Lett 39:L10310. doi: 10.1029/2012GL051605 CrossRefGoogle Scholar
  23. de Vita S, Orsi G, Civetta L, Carandente A, D’Antonio M, Di Cesare T, Di Vito M, Fisher RV, Isaia R, Marotta E, Ort M, Pappalardo L, Piochi M, Southon J (1999) The Agnano–Monte Spina eruption (4.1 ka) in the resurgent, nested Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91:269–301CrossRefGoogle Scholar
  24. De Vivo B, Rolandi G, Gans PB, Calvert A, Bohrson WA, Spera FJ, Belkin AE (2001) New constraints on the pyroclastic eruption history of the Campanian volcanic plain (Italy). Mineral Petrol 73:47–65CrossRefGoogle Scholar
  25. Deino AL, Orsi G, Piochi M, de Vita S (2004) The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera–Italy) assessed by 40Ar/39Ar dating method. J Volcanol Geotherm Res 133:157–170CrossRefGoogle Scholar
  26. Del Gaudio C, Aquino I, Ricciardi GP, Ricco C, Scandone R (2010) Unrest episodes at Campi Flegrei: a reconstruction of vertical ground movements during 1905–2009. J Volcanol Geotherm Res 185:48–56CrossRefGoogle Scholar
  27. Di Renzo V, Arienzo I, Civetta L, D’Antonio M, Tonarini S, Di Vito MA, Orsi G (2011) The magmatic feeding system of the Campi Flegrei caldera: architecture and temporal evolution. Chem Geol 281:227–241CrossRefGoogle Scholar
  28. Di Vito MA, Isaia R, Orsi G, Southon J, de Vita S, D’Antonio M, Pappalardo L, Piochi M (1999) Volcanism and deformation since 12000 years at the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91:221–246CrossRefGoogle Scholar
  29. Dvorak JJ, Gasparini P (1991) History of earthquakes and vertical ground movement in Campi Flegrei caldera, Southern Italy: comparison of precursory events to the A.D. 1538 eruption of Monte Nuovo and of activity since 1968. J Volcanol Geotherm Res 48:77–92CrossRefGoogle Scholar
  30. Fisher RV, Orsi G, Ort M, Heiken G (1993) Mobility of a large-volume pyroclastic flow-emplacement of the Campanian ignimbrite, Italy. J Volcanol Geotherm Res 56:205–220CrossRefGoogle Scholar
  31. Florio G, Fedi M, Cella F, Rapolla A (1999) The Campanian Plain and Phlegrean Fields: structural setting from potential field data. J Volcanol Geotherm Res 91:361–379CrossRefGoogle Scholar
  32. Geyer A, Martì J (2008) The new worldwide collapse caldera 232 database (ccdb): a tool for studying and understanding caldera processes. J Volcanol Geotherm Res 175:334–354CrossRefGoogle Scholar
  33. Giaccio B, Isaia R, Fedele F, Di Canzio E, Hoffecker J, Ronchitelli A, Sinitsyn A, Anikovich M, Lisitsyn S, Popov V (2008) The Campanian Ignimbriteand Codola tephra layers: two temporal/stratigraphic markers for the Early Upper Palaeolithic in southern Italy and eastern Europe. J Volcanol Geotherm Res 177:208–226CrossRefGoogle Scholar
  34. Gudmundsson A (1987) Tectonics of the Thingvellir fissure swarm, SW Iceland. J Struct Geol 9:61–69CrossRefGoogle Scholar
  35. Guidoboni E, Ciuccarelli C (2011) The Campi Flegrei caldera: historical revision and new data on seismic crises, bradyseisms, the Monte Nuovo eruption and ensuing earthquakes (twelfth century 1582 ad). Bull Volcanol 73:655–677CrossRefGoogle Scholar
  36. Hardy S (2013) Propagation of blind normal faults to the surface in basaltic sequences: insights from 2D discrete element modelling. Mar Pet Geol 48:149–159CrossRefGoogle Scholar
  37. Holohan EP, Troll VR, Walter TR, Munn S, McDonnell S, Shipton ZK (2005) Elliptical calderas in active tectonic settings: an experimental approach. J Volcanol Geotherm Res 144:119–135CrossRefGoogle Scholar
  38. Isaia R, Marianelli P, Sbrana A (2009) Caldera unrest prior to intense volcanism in Campi Flegrei (Italy) at 4.0 ka B.P.: implications for caldera dynamics and future eruptive scenarios. Geophys Res Lett 36:L21303. doi: 10.1029/2009GL040513 CrossRefGoogle Scholar
  39. Lirer L, Luongo G, Scandone R (1987) On the volcanological evolution of Campi Flegrei. EOS 68(16):226–234CrossRefGoogle Scholar
  40. Marianelli P, Sbrana A, Proto M (2006) Magma chamber of Campi Flegrei supervolcano at the time of eruption of the Campanian Ignimbrite. Geology 34:937–940CrossRefGoogle Scholar
  41. Milia A, Torrente MM, Giordano F (2000) Active deformation and volcanism offshore Campi Flegrei, Italy: new data from high-resolution seismic reflection profiles. Mar Geol 171:61–73CrossRefGoogle Scholar
  42. Morhange C, Marriner N, Laborel J, Todesco M, Oberlin C (2006) Rapid sea-level movements and noneruptive crustal deformation in the Phlegrean Fields caldera, Italy. Geology 34:93–96CrossRefGoogle Scholar
  43. Orsi G, D’Antonio M, de Vita S, Gallo G (1992) The Neapolitan Yellow Tuff, a large-magnitude trachytic phreatoplinian eruption: eruptive dynamics, magma withdrawal and caldera collapse. J Volcanol Geotherm Res 53:275–287CrossRefGoogle Scholar
  44. Orsi G, Di Vito M, de Vita S (1996) The restless, resurgent Campi Flegrei Nested Caldera (Italy): constraints on its evolution and configuration. J Volcanol Geotherm Res 74:179–214CrossRefGoogle Scholar
  45. Orsi G, Civetta L, Del Gaudio C, De Vita S, Di Vito MA, Isaia R, Petrazzuoli S, Ricciardi GP, Ricco C (1999) Short-term ground deformations and seismicity in the nested Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91:415–451CrossRefGoogle Scholar
  46. Orsi G, Di Vito MA, Isaia R (2004) Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull Volcanol 66:514–530CrossRefGoogle Scholar
  47. Perrotta A, Scarpati C, Luongo G, Morra V (2006) The Campi Flegrei caldera boundary in the city of Naples. In: De Vivo B (ed) Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites. Amsterdam, Elsevier, Developments in Volcanology 9:85–96Google Scholar
  48. Perrotta A, Scarpati C, Luongo G, Morra V (2010) Stratigraphy and volcanological evolution of the southwestern part of Campi Flegrei and Procida Island (Italy). In: Groppelli G, Viereck-Goette L (eds) Stratigraphy and geology of volcanic areas. Geol Soc Am Sp Paper 464:171–191Google Scholar
  49. Price NJ, Cosgrove JW (1990) Analysis of geological structures. Cambridge University Press, Cambridge, p 502Google Scholar
  50. Ragan DM (2009) Structural geology. An introduction to geometrical techniques. Cambridge University Press, Cambridge, p 602CrossRefGoogle Scholar
  51. Rolandi G, Bellucci F, Heizler MT, Belkin HE, De Vivo B (2003) Tectonic controls on the genesis of ignimbrites from the Campanian Volcanic Zone, southern Italy. Mineral Petrol 79:3–31CrossRefGoogle Scholar
  52. Rosi M, Sbrana A (1987) The Phlegraean Fields, Quaderni de ‘La ricerca Scientifica’ 114. Consiglio Nazionale delle Ricerche, RomeGoogle Scholar
  53. Rosi M, Vezzoli L, Aleotti P, De Censi M (1996) Interaction between Caldera collapse and eruptive dynamics during the Campanian Ignimbrite eruption, Phlegrean fields, Italy. Bull Volcanol 57:541–554CrossRefGoogle Scholar
  54. Sacchi M, Alessio G, Aquino I, Esposito E, Molisso F, Nappi R, Porfido S, Violante C (2009) Risultati preliminari della campagna oceanografica CAFE_07-Leg 3 nei Golfi di Napoli e Pozzuoli, Mar Tirreno Orientale. Quaderni di Geofisica 64:1–16Google Scholar
  55. Scarpati C, Cole P, Perrotta A (1993) The Neapolitan Yellow Tuff—a large volume multiphase eruption from Campi Flegrei, southern Italy. Bull Volcanol 55:343–356CrossRefGoogle Scholar
  56. Scarpati C, Perrotta A, Lepore S, Calvert A (2012) Eruptive history of Neapolitan volcanoes: constraints from 40Ar–39Ar dating. Geol Mag 150:412–425CrossRefGoogle Scholar
  57. Smith VC, Isaia R, Pearce NJC (2011) Tephrostratigraphy and glass compositions of post-15 kyr Campi Flegrei eruptions: implications for eruption history and chronostratigraphic markers. Quat Sci Rev 30:3638–3660CrossRefGoogle Scholar
  58. Vilardo G, Isaia R, Ventura G, De Martino P, Terranova C (2010) InSAR Permanent Scatterer analysis reveals fault reactivation during inflation and deflation episodes at Campi Flegrei caldera. Remote Sens Environ 114:2373–2383CrossRefGoogle Scholar
  59. Vitale S, Ciarcia S (2013) Tectono-stratigraphic and kinematic evolution of the southern Apennines/Calabria-Peloritani Terrane system (Italy). Tectonophysics 583:164–182CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse (DiSTAR)Università di Napoli Federico IINaplesItaly
  2. 2.Istituto Nazionale di Geofisica e VulcanologiaOsservatorio VesuvianoNaplesItaly

Personalised recommendations