International Journal of Earth Sciences

, Volume 103, Issue 3, pp 667–682 | Cite as

In situ LA-ICP-MS U–Pb titanite dating of Na–Ca metasomatism in orogenic belts: the North Pyrenean example

  • Sylvain Fallourd
  • Marc Poujol
  • Philippe Boulvais
  • Jean-Louis Paquette
  • Michel de Saint Blanquat
  • Philippe Rémy
Original Paper

Abstract

In the Pyrenees, in association with the rotation of the Iberian plate around Europe during the Mid-Cretaceous, a Na–Ca metasomatism is recognized as a complementary record of the hydrothermal activity that led to Na-metasomatism (albitization) and talc–chlorite mineralization. It affected metasedimentary rocks as well as Hercynian granites. In situ laser ablation ICP-MS U–Pb analyses of titanite grains formed in albitites during metasomatism date the Na–Ca metasomatism between 110 and 92 Ma. The temperature of the Na–Ca metasomatism is estimated to be approximately 550 °C. Both the time constraints and temperature estimates suggest that the Na–Ca metasomatism is related to the low-P high-T North Pyrenean metamorphism.

Keywords

Na–Ca metasomatism Albitization Pyrenees Titanite LA-ICP-MS U–Pb dating 

Supplementary material

531_2013_978_MOESM1_ESM.docx (65 kb)
Supplementary material 1 (DOCX 65 kb)
531_2013_978_MOESM2_ESM.docx (71 kb)
Supplementary material 2 (DOCX 71 kb)

References

  1. Albarède F, Vitrac AM (1978) Age and significance of the North Pyrenean metamorphism. Earth Planet Sci Lett 40:327–332CrossRefGoogle Scholar
  2. Barnolas A, Chiron J-C (1995) Synthèse géologique et géophysique des Pyrénées—volume 1: introduction. Géophysique. Cycle hercynien. Edition BRGM–ITGEGoogle Scholar
  3. Boulvais P, de Parseval P, D’Hulst A, Paris P (2006) Carbonate alteration associated with talc-chlorite mineralization in the eastern Pyrenees, with emphasis on the St. Barthelemy Massif. Mineral Petrol 88:499–526. doi:10.1007/s00710-006-0124-x CrossRefGoogle Scholar
  4. Boulvais P, Ruffet G, Cornichet J, Mermet M (2007) Cretaceous albitization and dequartzification of Hercynian peraluminous granite in the Salvezines Massif (French Pyrénées). Lithos 93:89–106. doi:10.1016/j.lithos.2006.05.001 CrossRefGoogle Scholar
  5. Carreras J, Capella I (1994) Tectonic levels in the Paleozoic basement of the Pyrenees: a review and a new interpretation. J Struct Geol 11:1509–1524CrossRefGoogle Scholar
  6. Carten RB (1986) Sodium–calcium metasomatism chemical, temporal, and spatial relationships at the Yerington, Nevada, porphyry copper deposit. Econ Geol 81:1495–1519CrossRefGoogle Scholar
  7. Choukroune P, ECORS Pyrénées team (1989) The ECORS Pyrénéan deep seismic profile reflection data and the overall structure of an orogenic belt. Tectonics 8:23–39CrossRefGoogle Scholar
  8. Choukroune P, Mattauer M (1978) Tectonique des plaques et Pyrénées: sur le fonctionnement de la faille transformante nord-pyrénéenne; comparaison avec les modèles actuels. Bull Soc Géol France 5:689–700Google Scholar
  9. Clavières V (1990) Muscovitisation et feldspathisation hydrothermale dans le massif granitique de Millas (Pyrénées Orientales). Géométrie, Géochimie, Modélisation. Thèse de doctorat, University Paris VI, FranceGoogle Scholar
  10. Clerc C, Lagabrielle Y, Neumaier M, Reynaud J-Y, de Saint Blanquat M (2012) Exhumation of subcontinental mantle rocks: evidence from ultramafic-bearing clastic deposits nearby the Lherz peridotite body, French Pyrenees. Bull Soc Géol France 183:443–459CrossRefGoogle Scholar
  11. Clerc C, Boulvais P, Lagabrielle Y, de Saint Blanquat M (2013) Ophicalcites from the Northern Pyrenean Belt: a field, petrographic and stable isotope study. Int J Earth Sci. doi:10.1007/s00531-013-0927-z
  12. Debon F, Fort PL (1983) A chemical–mineralogical classification of common plutonic rocks and associations. Trans R Soc Edinb Earth Sci 73:135–149CrossRefGoogle Scholar
  13. Debroas EJ (1990) Le flysch noir albo-cénomanien témoin de la structuration albienne à sénonienne de la zone nord-pyrénéenne en Bigorre (Hautes-Pyrénées, France). Bull Soc Géol France 8:273–286Google Scholar
  14. Dipple GM, Ferry JM (1992) Metasomatism and fluid flow in ductile fault zones. Contrib Miner Petrol 112:149–164CrossRefGoogle Scholar
  15. Engvik AK, Putnis A, Fitz Gerald JD, Austrheim H (2008) Albitization of granitic rocks: the mechanism of replacement of oligoclase by albite. Can Mineral 46:1401–1415. doi:10.3749/canmin.46.6.1401 CrossRefGoogle Scholar
  16. Evensen NM, Hamilton PJ, O’nions RK (1978) Rare-earth abundances in chondritic meteorites. Geochim Cosmochim Acta 42:1199–1212CrossRefGoogle Scholar
  17. Fidalgo Gonzalès L (2001) La cinématique de l’Atlantique Nord : la question de la déformation intraplaque. Thèse de Doctorat, Université de Bretagne Occidentale, France, pp 477Google Scholar
  18. Folkert JM, Harry NA (1987) Rb–Sr whole-rock investigations in the Aston massif, central Pyrenees. Geol Rundsch 76:787–794CrossRefGoogle Scholar
  19. Fourcade S (1981) Géochimie des granitoïdes. Thèse de Doctorat, Université Paris VII, France, pp 189Google Scholar
  20. Goldberg JM, Leyreloup AF (1990) High temperature-low pressure Cretaceous metamorphism related to crustal thinning (Eastern North Pyrenean Zone, France). Contrib Miner Petrol 104:194–207CrossRefGoogle Scholar
  21. Gong Z, Langereis CG, Mullender TAT (2008) The rotation of Iberia during the Aptian and the opening of the Bay of Biscay. Earth Planet Sci Lett 273:80–93. doi:10.1016/j.epsl.2008.06.016 CrossRefGoogle Scholar
  22. Grant JA (1986) The isocon diagram: a simple solution to Gresens’ equation for metasomatic alteration. Econ Geol 81:1976–1982CrossRefGoogle Scholar
  23. Heaman LM (2009) The application of U–Pb geochronology to mafic, ultramafic and alkaline rocks: an evaluation of three mineral standards. Chem Geol 261:43–52CrossRefGoogle Scholar
  24. Hövelmann J, Putnis A, Geisler T, Schmidt BC, Golla-Schindler U (2010) The replacement of plagioclase feldspars by albite: observations from hydrothermal experiments. Contrib Miner Petrol 159:43–59. doi:10.1007/s00410-009-0415-4 CrossRefGoogle Scholar
  25. Hurai V, Paquette J-L, Huraiová M, Konečný P (2010) U–Th–Pb geochronology of zircon and monazite from syenite and pincinite xenoliths in Pliocene alkali basalts of the intra-Carpathian back-arc basin. J Volcanol Geoth Res 198:275–287. doi:10.1016/j.jvolgeores.2010.09.012 CrossRefGoogle Scholar
  26. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211:47–69. doi:10.1016/j.chemgeo.2004.06.017 CrossRefGoogle Scholar
  27. Jaguin J, Boulvais P, Poujol M, Bosse V, Paquette J-L, Vilbert D (2013) Albitization in the Antimony Line, Murchison Greenstone Belt (Kaapvaal Craton): a geochemical and geochronological investigation. Lithos. doi:10.1016/j.lithos.2013.01.010
  28. Jammes S, Manatschal G, Lavier L, Masini E (2009) Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: example of western Pyrenees. Tectonics 28. doi:10.1029/2008TC002406
  29. Kent AJR, Ashley PM, Fanning CM (2000) Metasomatic alteration associated with regional metamorphism: an example from the Willyama Supergroup, South Australia. Lithos 54:33–62CrossRefGoogle Scholar
  30. Lagabrielle Y, Bodinier J-L (2008) Submarine reworking of exhumed subcontinental mantle rocks: field evidence from the Lherz peridotites, French Pyrenees. Terra Nova 20:11–21. doi:10.1111/j.1365-3121.2007.00781.x CrossRefGoogle Scholar
  31. Lagabrielle Y, Labaume P, de Saint Blanquat M (2010) Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): insights from the geological setting of the lherzolite bodies. Tectonics 29. doi:10.1029/2009tc002588
  32. Lagache M, Weisbrod A (1977) The system: two alkali feldspars-KCl–NaCI–H20 at moderate to high temperatures and low pressures. Contrib Miner Petrol 62:77–101CrossRefGoogle Scholar
  33. Laumonier B, Marignac C, Kister P (2010) Polymétamorphisme et évolution crustale dans les Pyrénées orientales pendant l’orogenèse varisque au Carbonifère supérieur. Bull Soc Géol France 181:411–428CrossRefGoogle Scholar
  34. Ludwig KR (2001) User’s manual for Isoplot/Ex version 2.49, a geochronological toolkit for Microsoft Excel. Special Publication, 1a Berkeley Geochronological Center, Berkeley, USAGoogle Scholar
  35. Mc Caig AM, Wickham SM, Hugh P, Taylor J (1990) Deep fluid circulation in alpine shear zones, Pyrenees, France: field and oxygen isotope studies. Contrib Miner Petrol 106:41–60CrossRefGoogle Scholar
  36. Mc Lelland J, Morrison J, Selleck B, Cunningham B, Olson C, Schmidt K (2002) Hydrothermal alteration of late- to post-tectonic Lyon Mountain Granitic Gneiss, Adirondack Mountains, New York: origin of quartz–sillimanite segregations, quartz–albite lithologies, and associated Kiruna-type low-Ti Fe-oxide deposits. J Metamorph Geol 20:175–190CrossRefGoogle Scholar
  37. Moine B, Fortuné J-P, Moreau P, Viguier F (1989) Comparative mineralogy, geochemistry and conditions of formation of two metasomatic talc and chlorite deposits: Trimouns (Pyrénées, France) and Rabenwald (Eastern Alps, Austria). Econ Geol 84:1398–1416CrossRefGoogle Scholar
  38. Montigny R, Azambre B, Rossy M, Thuizat R (1986) K-Ar study of Cretaceous magmatism and metamorphism in the Pyrénées: age and length of rotation of the Iberian Peninsula. Tectonophysics 129:257–273CrossRefGoogle Scholar
  39. Moody JB, Jenkins JE, Meyer D (1985) An experimental investigation of the albitization of plagioclase. Can Mineral 23:583–596Google Scholar
  40. Oliver NHS, Cleverley JS, Mark G, Pollard PJ, Fu B, Marshall LJ, Rubenach MJ, Williams PJ, Baker T (2004) Modeling the role of sodic alteration in the genesis of iron oxide-copper-gold deposits, Eastern Mount Isa Block, Australia. Econ Geol 99:1145–1176CrossRefGoogle Scholar
  41. Olivet JL (1996) La cinématique de la plaque ibérique. Bull Cent Rech Explor Prod Elf Aquitaine 20:131–195Google Scholar
  42. Pascal M-L (1979) Les albitites du massif de l’Agly (Pyrénées Orientales). Thèse de Doctorat, Ecole Nationale Supérieure des Mines, FranceGoogle Scholar
  43. Pedersen RB, Dunning GR, Robins B (1989) U–Pb ages of néphéline syenite pegmatites from the Seiland Magmatic Province, N Norway. In: Gayer RA (ed) The Caledonide geology of Scandinavia. Graham & Trotman, London, pp 3–8CrossRefGoogle Scholar
  44. Perring CS, Pollard PJ, Dong G, Nunn AJ, Blake KL (2000) The lightning Creek sill complex, Cloncurry district, northwest Queensland: a source of fluids for Fe oxide Cu–Au mineralization and sodic–calcic alteration. Econ Geol 95:1067–1089Google Scholar
  45. Petersson J, Eliasson T (1997) Mineral evolution and element mobility during episyenitization (dequartzification) and albitization in the postkinematic Bohus granite, southwest Sweden. Lithos 42:123–146CrossRefGoogle Scholar
  46. Pin C, Paquette JL, Monchoux P, Hammouda T (2001) First field-scale occurrence of Si–Al–Na-rich low-degree partial melts from the upper mantle. Geology 29:451–454CrossRefGoogle Scholar
  47. Pin C, Monchoux P, Paquette J-L, Azambre B, Wang RC, Martin RF (2006) Igneous albitite dikes in orogenic lherzolites, Western Pyrenees, France: a possible source for corundum and alkali feldspar xenocrysts in basaltic terrenes. II. Geochemical and petrogenetic considerations. Can Mineral 44:843–856CrossRefGoogle Scholar
  48. Poujol M, Boulvais P, Kosler J (2010) Regional-scale Cretaceous albitization in the Pyrenees: evidence from in situ U–Th–Pb dating of monazite, titanite and zircon. J Geol Soc 167:751–767. doi:10.1144/0016-76492009-144 CrossRefGoogle Scholar
  49. Putnis A, John T (2010) Replacement processes in the earth’s crust. Elements 6:159–164. doi:10.2113/gselements.6.3.159 CrossRefGoogle Scholar
  50. Romer RL, Soler A (1995) U–Pb age and lead isotopic characterization of Au-bearing skarn related to the Andorra granite (central Pyrenees, Spain). Miner Depos 30:374–383. doi:10.1007/BF00202280 CrossRefGoogle Scholar
  51. Roure F, Choukroune P, Berastegui X, Munoz JA, Villien A, Matheron P, Bareyt M, Seguret M, Camara P, Deramond J (1989) ECORS deep seismic data and balanced cross-sections: geometric constraints on the evolution of the Pyrenees. Tectonics 8:41–50CrossRefGoogle Scholar
  52. Schärer U, de Parseval P, Polvé M, de Saint Blanquat M (1999) Formation of the Trimouns talc-chlorite deposit (Pyrenees) from persistent hydrothermal activity between 112 and 97 Ma. Terra Nova 11:30–37CrossRefGoogle Scholar
  53. Sheppard SMF (1986) Characterization and isotopic variations in natural waters. Rev Miner Geochem 6:165–183Google Scholar
  54. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221. doi:10.1016/0012-821x(75)90088-6 CrossRefGoogle Scholar
  55. Sun J, Yang J, Wu F, Xie L, Yang Y, Liu Z, Li X (2012) In situ U–Pb dating of titanite by LA-ICPMS. Chin Sci Bull 57(20):2506–2516CrossRefGoogle Scholar
  56. Tarduno JA (2002) From the cover: the Cretaceous superchron geodynamo: observations near the tangent cylinder. Proc Natl Acad Sci 99:14020–14025. doi:10.1073/pnas.222373499 CrossRefGoogle Scholar
  57. Tartese R, Boulvais P (2010) Differentiation of peraluminous granite ‘en route’ to the surface. Lithos 114:353–368CrossRefGoogle Scholar
  58. Turpin L, Maruejol P, Cuney M (1988) U–Pb, Rb–Sr and Sm–Nd chronology of granitic basement, hydrothermal albitites and uranium mineralization (Lagoa Real, South-Bahia, Brazil). Contrib Miner Petrol 98:139–147. doi:10.1007/BF00402107 CrossRefGoogle Scholar
  59. Vergés J, Fernàndez M, Martínez A (2002) The Pyrenean orogen: pre-, syn-, and post-collisional evolution. In: Rosenbaum G, Lister GS (eds) Reconstruction of the evolution of the Alpine–Himalayan Orogen. J Virtual Explor 8:57–76Google Scholar
  60. Zheng YF (1993) Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochimica Cosmochimica Acta 57:1079–1091CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sylvain Fallourd
    • 1
  • Marc Poujol
    • 1
  • Philippe Boulvais
    • 1
  • Jean-Louis Paquette
    • 2
  • Michel de Saint Blanquat
    • 3
  • Philippe Rémy
    • 4
  1. 1.Géosciences Rennes, UMR CNRS 6118, OSURUniversité Rennes 1Rennes CedexFrance
  2. 2.Laboratoire Magmas et Volcans, UMR CNRS 6524Université Blaise PascalClermont-Ferrand CedexFrance
  3. 3.Géosciences Environnement Toulouse/Observatoire Midi-PyrénéesToulouseFrance
  4. 4.ImerysSalvezinesFrance

Personalised recommendations