Advertisement

International Journal of Earth Sciences

, Volume 103, Issue 2, pp 455–483 | Cite as

Constraining genesis and geotectonic setting of metavolcanic complexes: a multidisciplinary study of the Devonian Vrbno Group (Hrubý Jeseník Mts., Czech Republic)

  • Vojtěch Janoušek
  • Jaroslav Aichler
  • Pavel Hanžl
  • Axel Gerdes
  • Vojtěch Erban
  • Vladimír Žáček
  • Vratislav Pecina
  • Marta Pudilová
  • Kristýna Hrdličková
  • Petr Mixa
  • Eliška Žáčková
Original Paper

Abstract

The low-grade metavolcanic/volcanosedimentary complex of the Devonian Vrbno Group (Silesicum, NE Bohemian Massif, Czech Republic) occurs in two ~NE–SW trending belts, separated by tectonic slices of Cadomian metagranitic paraautochton. (1) The basic–intermediate lavas of the calc-alkaline Western Volcanic Belt came from a moderately depleted mantle \( \left( {\varepsilon_{\text{Nd}}^{370} \sim + 3} \right) \). Rare rhyolites (374.0 ± 1.7 Ma: 2σ, LA–ICP–MS U–Pb Zrn) were derived most likely from immature crust or by extensive fractionation of primary basaltic melts. The rock association is interpreted as a vestige of a deeply dissected continental arc. (2) The Eastern Volcanic Belt consists mainly of (nearly) contemporaneous (371.0 ± 1.4 Ma) felsic alkaline lavas with high HFSE contents, as well as high Ga/Al and Fe/Mg ratios, typical of within-plate igneous setting. The petrology and Nd–Sr isotopic data point to a high-T anatexis of a young metagranitic crust, resembling the Cadomian (Brunovistulian) basement, in a back-arc setting. The attenuated Brunovistulian lithosphere could have partially melted by the heat provided by the upwelling asthenosphere and/or underplating basic magma. (3) Finally, the region was penetrated by numerous subalkaline, MORB/EMORB-like dolerite sheets—a hallmark of the considerable crustal thinning.

Keywords

Bohemian Massif Devonian volcanic rocks Geochemistry U–Pb zircon dating Sr–Nd–O isotopes Variscan orogeny 

Notes

Acknowledgements

The manuscript benefited from reviews by M. Poujol and F. Finger, as well as from editorial handling of I. Braun. We are thankful to K. Schulmann (Czech Geological Survey, Prague) for enlightening discussions on structure and development of the Variscan Orogen, A. Přichystal (Masaryk University, Brno) for field assistance and advice, M. Chlupáčová (AGICO Inc., Brno) for comments on earlier version of the manuscript, and explaining the role of radioactive elements in particular, as well as D. Wilimský (former student at Masaryk University, Brno) for help in sample collection and zircon separation. We are also indebted to K. Žák, who has acquired the O isotopic analyses in the laboratories of the Czech Geological Survey. This work was financed by the Grant Agency of the Czech Republic (GAČR) Project 205/01/0331 (to J. Aichler) and Ministry of Education, Youth and Sports (MŠMT) project LK 11202 (ROPAKO, to K. Schulmann), which are gratefully acknowledged.

Supplementary material

531_2013_975_MOESM1_ESM.xls (50 kb)
Supplementary material 1 (XLS 50.5 kb) List of samples of metavolcanites from the southern part of the Vrbno Group
531_2013_975_MOESM2_ESM.doc (41 kb)
Supplementary material 2 (DOC 41 kb) Petrography and mineral chemistry
531_2013_975_MOESM3_ESM.xls (57 kb)
Supplementary material 3 (XLS 57 kb) U–Pb LA-ICP-MS data for dated acid metavolcanic rocks of the Vrbno Group
531_2013_975_MOESM4_ESM.xls (86 kb)
Supplementary material 4 (XLS 85.5 kb) Complete whole-rock major- and trace-element analyses for Devonian metavolcanic rocks, Hrubý Jeseník Mts. (wt. % and ppm, respectively)

References

  1. Aichler J (ed) (2000) Explanatory booklet to the geological map 1: 25,000, sheet 14-423 Libina. Czech Geological Survey, Prague (in Czech)Google Scholar
  2. Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47:505–539Google Scholar
  3. Barth V (1963) Variscan geosynclinal volcanism in Hrubý and Nízký Jeseník Mts. and its relation to tectonics. Acta Univ Palack Olom Fac Rer Nat 10:5–117 (in Czech)Google Scholar
  4. Bea F, Fershtater GB, Corretgé LG (1992) The geochemistry of phosphorus in granite rocks and the effects of aluminium. Lithos 29:43–56Google Scholar
  5. Bonin B (1996) A-type granite ring complexes: mantle origin through crustal filters and the anorthosite–rapakivi magmatism connection. In: Demaiffe D (ed) Petrology and geochemistry of magmatic suites of rocks in the continental and oceanic crusts. Université Libre de Bruxelles, Royal Museum for Central Africa (Tervuren), Brussels, pp 201–218Google Scholar
  6. Bonin B (2007) A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos 97:1–29Google Scholar
  7. Bonin B (2008) Death of super-continents and birth of oceans heralded by discrete A-type granite igneous events: the case of the Variscan–Alpine Europe. J Geosci 53:237–252Google Scholar
  8. Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114Google Scholar
  9. Bryan S (2007) Silicic large igneous provinces. Episodes 30:20–31Google Scholar
  10. Cháb J, Fediuková E, Fišera M, Novotný P, Opletal M (1990) Variscan orogeny in the Silesicum (ČSSR). Sbor geol věd, ložisk geol-mineral 29:9–39 (in Czech with English summary)Google Scholar
  11. Chlupáč I (1989) Fossil communities in the metamorphic lower Devonian of the Hrubý Jeseník Mts, Czechoslovakia. Neu Jb Geol Paläont, Abh 177:367–392Google Scholar
  12. Chopin F, Schulmann K, Skrzypek E, Lehmann J, Dujardin JR, Martelat JE, Lexa O, Corsini M, Edel JB, Štípská P, Pitra P (2012) Crustal influx, indentation, ductile thinning and gravity redistribution in a continental wedge: building a Moldanubian mantled gneiss dome with underthrust Saxothuringian material (European Variscan belt). Tectonics 31. doi:  10.1029/2011TC002951
  13. Clayton RN, Mayeda TK (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim Cosmochim Acta 27:43–52Google Scholar
  14. Collins WJ, Beams SD, White AJR, Chappell BW (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib Mineral Petrol 80:189–200Google Scholar
  15. Dallmeyer RD, Franke W, Weber K (1995) Pre-Permian geology of central and eastern Europe. Springer, BerlinGoogle Scholar
  16. Davidson JP, Hora JM, Garrison JM, Dungan MA (2005) Crustal forensics in arc magmas. J Volcanol Geotherm Res 140:157–170Google Scholar
  17. DePaolo DJ (1988) Neodymium isotope geochemistry. Springer, BerlinGoogle Scholar
  18. Dudek A (1980) The crystalline basement block of the Outer Carpathians in Moravia: BrunoVistulicum. Rozpr Čs Akad Věd, ř mat přír Věd 90:3–85Google Scholar
  19. Eby GN (1990) The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26:115–134Google Scholar
  20. Eby GN (1992) Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20:641–644Google Scholar
  21. Edel JB, Schulmann K, Holub FV (2003) Anticlockwise and clockwise rotations of the Eastern Variscides accommodated by dextral lithospheric wrenching: palaeomagnetic and structural evidence. J Geol Soc London 160:209–218Google Scholar
  22. Evans OC, Hanson GN (1993) Accessory-mineral fractionation of rare-earth element (REE) abundances in granitoid rocks. Chem Geol 110:69–93Google Scholar
  23. Faure G, Mensing TM (2004) Isotopes: Principles and Applications. Wiley, New JerseyGoogle Scholar
  24. Finger F, Hanžl P, Pin C, von Quadt A, Steyrer HP (2000) The Brunovistulian: Avalonian Precambrian sequence at the eastern end of the Central European Variscides? In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Fold Belt. Geological Society London Special Publications 179:103–112Google Scholar
  25. Finger F, Gerdes A, Janoušek V, René M, Riegler G (2007) Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and the Moravo–Moldanubian tectonometamorphic phases. J Geosci 52:9–28Google Scholar
  26. Floyd PA (1982) Chemical variation in Hercynian basalts relative to plate tectonics. J Geol Soc London 139:505–520Google Scholar
  27. Floyd PA (1995) Rhenohercynian foldbelt; autochthon and nonmetamorphic nappe units; igneous activity. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of central and eastern Europe. Springer, Berlin, pp 59–81Google Scholar
  28. Floyd PA, Winchester JA (1975) Magma type and tectonic setting discrimination using immobile elements. Earth Planet Sci Lett 27:211–218Google Scholar
  29. Floyd PA, Winchester JA (1978) Identification and discrimination of altered and metamorphosed volcanic rocks using immobile elements. Chem Geol 21:291–306Google Scholar
  30. Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Fold Belt. Geological Society London Special Publications 179:35–61Google Scholar
  31. Franke W (2006) The Variscan orogen in Central Europe: construction and collapse. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geological Society London Memoirs 32:333–343Google Scholar
  32. Franke W, Źelażniewicz A (2000) The eastern termination of the Variscides; terrane correlation and kinematic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Fold Belt. Geological Society London Special Publications 179:63–86Google Scholar
  33. Gerdes A, Zeh A (2006) Combined U–Pb and Hf isotope LA–(MC–) ICP–MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci Lett 249:47–61Google Scholar
  34. Gerdes A, Zeh A (2009) Zircon formation versus zircon alteration—new insights from combined U–Pb and Lu–Hf in situ LA–ICP–MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chem Geol 261:230–243Google Scholar
  35. Giordano D, Romano C, Dingwell DB, Poe B, Behrens H (2004) The combined effects of water and fluorine on the viscosity of silicic magmas. Geochim Cosmochim Acta 68:5159–5168Google Scholar
  36. Goldstein SL, O’Nions RK, Hamilton PJ (1984) A Sm–Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth Planet Sci Lett 70:221–236Google Scholar
  37. Hanson GN, Langmuir CH (1978) Modelling of major elements in mantle-melt systems using trace element approaches. Geochim Cosmochim Acta 42:725–741Google Scholar
  38. Hanžl P, Janoušek V, Žáček V, Wilimský D, Aichler J, Erban V, Pudilová M, Chlupáčová M, Buriánková K, Mixa P, Pecina V (2007) Magmatic history of granite-derived mylonites from the southern Desná Unit (Silesicum, Czech Republic). Mineral Petrol 89:45–75Google Scholar
  39. Harmon RS, Hoefs J (1995) Oxygen isotope heterogeneity of the mantle deduced from global 18O systematics of basalts from different geotectonic settings. Contrib Mineral Petrol 120:95–114Google Scholar
  40. Harris NBW, Pearce JA, Tindle AG (1986) Geochemical characteristics of collision-zone magmatism. In: Coward MP, Ries AC (eds) Collision tectonics. Geological Society London Special Publications 19:67–81Google Scholar
  41. Harrison TM, Watson EB (1984) The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochim Cosmochim Acta 48:1467–1477Google Scholar
  42. Hastie AR, Kerr AC, Pearce JA, Mitchell SF (2007) Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th–Co discrimination diagram. J Petrol 48:2341–2357Google Scholar
  43. Hegner E, Kröner A (2000) Review of Nd isotopic data and xenocrystic and detrital zircon ages from the pre-Variscan basement in the eastern Bohemian Massif: speculations on palinspastic reconstructions. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Fold Belt. Geological Society London Special Publications 179:113–129Google Scholar
  44. Hladil J (1988) Structure and microfacies of middle and upper Devonian carbonate buildups in Moravia, Czechoslovakia. Canad Soc Petroleum Geol Memoir 14:607–618Google Scholar
  45. Hladil J, Melichar R, Otava J, Galle A, Krs M, Man O, Pruner P, Čejchan P, Orel P (1999) The Devonian in the easternmost Variscides, Moravia: a holistic analysis directed towards comprehension of the original context. Abh Geol B-A 54:27–47Google Scholar
  46. Hoefs J (2004) Stable isotope geochemistry. Springer, BerlinGoogle Scholar
  47. Hoskin PWO, Kinny PD, Wyborn D, Chappell BW (2000) Identifying accessory mineral saturation during differentiation in granitoid magmas: an integral approach. J Petrol 41:1365–1396Google Scholar
  48. Isaacson PE, Chlupáč I (1984) Significance of a Tropidoleptus assemblage from the Devonian of the Moravo–Silesian region, Czechoslovakia. Čas Mineral Geol 29:141–154Google Scholar
  49. Jacobsen SB, Wasserburg GJ (1980) Sm–Nd evolution of chondrites. Earth Planet Sci Lett 50:139–155Google Scholar
  50. Jakeš P, Patočka F (1982) Compositional variations of the Devonian volcanic rocks of the Jeseníky Mts. Věst Ústř úst geol 57:193–204Google Scholar
  51. Janoušek V (2006) Saturnin, R language script for application of accessory-mineral saturation models in igneous geochemistry. Geol Carpath 57:131–142Google Scholar
  52. Janoušek V, Finger F, Roberts MP, Frýda J, Pin C, Dolejš D (2004) Deciphering the petrogenesis of deeply buried granites: whole-rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif. Trans Roy Soc Edinb, Earth Sci 95:141–159Google Scholar
  53. Janoušek V, Farrow CM, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). J Petrol 47:1255–1259Google Scholar
  54. Jedlička J, Pecina V (1990) Chemistry of the metabasalts from Suchá Rudná, Vrbno Group, Hrubý Jeseník Mts. Věst Ústř úst Geol 65:301–313 (in Czech with English summary)Google Scholar
  55. Kalvoda J, Bábek O (2010) The margins of Laurussia in central and southeast Europe and southwest Asia. Gondwana Res 17:526–545Google Scholar
  56. Kalvoda J, Leichmann J, Bábek O, Melichar R (2003) Brunovistulian Terrane (Central Europe) and Istanbul Zone (NW Turkey): late Proterozoic and Paleozoic tectonostratigraphic development and paleogeography. Geol Carpath 54:139–152Google Scholar
  57. Kalvoda J, Bábek O, Fatka O, Leichmann J, Melichar R, Nehyba S, Špaček P (2008) Brunovistulian Terrane (Bohemian Massif, Central Europe) from late Proterozoic to late Paleozoic: a review. Int J Earth Sci 97:497–518Google Scholar
  58. Kirstein LA, Hawkesworth CJ, Garland FG (2001) Felsic lavas or rheomorphic ignimbrites: is there a chemical distinction? Contrib Mineral Petrol 142:309–322Google Scholar
  59. Kröner A, Štípská P, Schulmann K, Jaeckel P (2000) Chronological constrains on the pre-Variscan evolution of the northeastern margin of the Bohemian Massif, Czech Republic. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan belt. Geological Society London Special Publications 179:175–197Google Scholar
  60. Liew TC, Hofmann AW (1988) Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of Central Europe: indications from a Nd and Sr isotopic study. Contrib Mineral Petrol 98:129–138Google Scholar
  61. Loseille MC, Wones DR (1979) Characteristics and origin of anorogenic granites. Geol Soc Am Abstr Progr 11:468Google Scholar
  62. Ludwig KR (2003) Isoplot/Ex version 3.00. A geochronological toolkit for Microsoft Excel, User’s Manual. Berkeley Geochronology Center Special Publications 4, BerkeleyGoogle Scholar
  63. Lugmair GW, Marti K (1978) Lunar initial 143Nd/144Nd: differential evolution line of the lunar crust and mantle. Earth Planet Sci Lett 39:349–357Google Scholar
  64. MacDonald R (1974) Nomenclature and petrochemistry of the peralkaline oversaturated extrusive rocks. Bull Volcanol 38:498–516Google Scholar
  65. Magna T, Janoušek V, Kohút M, Oberli F, Wiechert U (2010) Fingerprinting sources of orogenic plutonic rocks from Variscan belt with lithium isotopes and possible link to subduction-related origin of some A-type granites. Chem Geol 274:94–107Google Scholar
  66. Mazur S, Alexandrowski P (2001) The Teplá(?)/Saxothuringian suture in the Karkonosze–Izera Massif, western Sudetes, central European Variscides. Int J Earth Sci (Geol Rundsch) 90:341–360Google Scholar
  67. Mazur S, Aleksandrowski P, Kryza R, Oberc-Dziedzic T (2006) The Variscan Orogen in Poland. Geol Quart 50:89–118Google Scholar
  68. Mazur S, Kröner A, Szczepański J, Turniak K, Hanžl P, Melichar R, Rodionov NV, Paderin I, Sergeev SA (2010) Single zircon U–Pb ages and geochemistry of granitoid gneisses from SW Poland: evidence for an Avalonian affinity of the Brunian microcontinent. Geol Mag 147:508–526Google Scholar
  69. Mazur S, Szczepański J, Turniak K, McNaughton NJ (2012) Location of the Rheic suture in the eastern Bohemian Massif: evidence from detrital zircon data. Terra Nova 24:199–206Google Scholar
  70. Millonig LJ, Gerdes A, Groat LA (2012) U–Th–Pb geochronology of meta-carbonatites and meta-alkaline rocks in the southern Canadian Cordillera: a geodynamic perspective. Lithos 152:202–217Google Scholar
  71. Montel JM (1993) A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chem Geol 110:127–146Google Scholar
  72. Pankhurst RJ, Leat PT, Sruoga P, Rapela CW, Marquez M, Storey BC, Riley TR (1998) The Chon Aike province of Patagonia and related rocks in West Antarctica: a silicic large igneous province. J Volcanol Geotherm Res 81:113–136Google Scholar
  73. Parry M, Štípská P, Schulmann K, Hrouda F, Ježek J, Kröner A (1997) Tonalite sill emplacement at an oblique plate boundary: northeastern margin of the Bohemian Massif. Tectonophysics 280:61–81Google Scholar
  74. Patiño Douce AE (1997) Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology 25:743–746Google Scholar
  75. Patočka F (1987) The geochemistry of mafic metavolcanics: implications for the origin of the Devonian massive sulfide deposits at Zlaté Hory, Czechoslovakia. Mineral Depos 22:144–150Google Scholar
  76. Patočka F, Hladil J (1997) Indications of possible magmatic arc/back-arc tectonic setting in the northern part of the Bohemian Massif during the Early Paleozoic. In: First international conference on North Gondwanan Mid-Palaeozoic Biodynamics (IGCP Project 421), 17–21 Sept 1997, Vienna, 45–46Google Scholar
  77. Patočka F, Valenta J (1990) Geochemistry of metatrachytes and metarhyolites from the southern part of the Devonian Vrbno Group in the Horní Město area and tectonic setting of the origin of the metavolcanics protolith. Čas Mineral Geol 35:41–62 (in Czech with English summary)Google Scholar
  78. Patočka F, Valenta J (1996) Geochemistry of the Late Devonian intermediate to acid metavolcanic rocks from the southern part of the Vrbno Group, the Jeseníky Mts. (Moravo–Silesian Belt, Bohemian Massif, Czech Republic): paleotectonic implications. Geolines 4:42–54Google Scholar
  79. Pearce JA (1996) A user’s guide to basalt discrimination diagrams. In: Wyman DA (ed) Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Geol Assoc Canada, short course notes 12:79–113Google Scholar
  80. Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48Google Scholar
  81. Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib Mineral Petrol 69:33–47Google Scholar
  82. Pearce JA, Parkinson IJ (1993) Trace element models of mantle melting: application to volcanic arc petrogenesis. In: Prichard HM, Alabaster T, Harris NBW, Neary CR (eds) Magmatic processes and plate tectonics. Geological Society London Special Publications 76:373–403Google Scholar
  83. Pearce JA, Stern RJ (2006) Origin of back-arc basin magmas: trace element and isotope perspectives. In: Christie DM, Fisher CR, Lee S-M, Givens S (eds) Back-arc spreading systems: geological, biological, chemical, and physical interactions. Geophysical Monograph Series 166. American Geophysical Union 63–86Google Scholar
  84. Pearce JA, Harris NW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983Google Scholar
  85. Pecina V, Aichler J, Mixa P, Chlupáčová M, Hanžl P, Žáček V, Wilimský D (2003) Metadolerites of the Vrbno Group and their origin, the Jeseníky Mts. Geolines 16:80–82Google Scholar
  86. Pichler T, Ridley WI, Nelson E (1999) Low-temperature alteration of dredged volcanics from the Southern Chile Ridge: additional information about early stages of seafloor weathering. Mar Geol 159:155–177Google Scholar
  87. Pin C, Majerowicz A, Wojciechowska I (1988) Upper Paleozoic oceanic crust in the Polish Sudetes: Nd–Sr isotope and trace element evidence. Lithos 21:195–209Google Scholar
  88. Přichystal A (1990) Principal results of a study of the Paleozoic volcanism in the Šternberk–Horní Benešov Belt (the Nízký Jeseník Mts.). Sbor geol Věd, ložisk Geol Mineral 29:41–66 (in Czech with English summary)Google Scholar
  89. Přichystal A (1993) Paleozoic to Quaternary volcanism in the geological history of Moravia and Silesia. In: Přichystal A, Obstová V, Suk M (eds) Geologie Moravy a Slezska. Moravian Museum and Department of Geological Sciences, Faculty of Science, Masaryk University, Brno, 59–69 (in Czech with English summary)Google Scholar
  90. Richard P, Shimizu N, Allégre CJ (1976) 143Nd/146Nd, a natural tracer: an application to oceanic basalts. Earth Planet Sci Lett 31:269–278Google Scholar
  91. Roberts MP, Clemens JD (1993) Origin of high-potassium, calc-alkaline, I-type granitoids. Geology 21:825–828Google Scholar
  92. Römer F (1865) Über die Auffindung devonischer Versteinerungen auf dem Ostabhange des Altvatergerbirges. Z Dtsch Geol Gesell 2:579–593Google Scholar
  93. Römer F (1870) Geologie von Oberschlesien. Robert Nischkowsky, BreslauGoogle Scholar
  94. Sawkins FJ, Burke K (1980) Extensional tectonics and mid-Paleozoic massive sulfide occurrences in Europe. Geol Rundsch 69:349–360Google Scholar
  95. Schandl ES, Gorton MP (2002) Application of high field strength elements to discriminate tectonic settings in VMS environments. Econ Geol 97:629–642Google Scholar
  96. Schulmann K, Gayer R (2000) A model for continental accretionary wedge developed by oblique collision: the NE Bohemian Massif. J Geol Soc Lond 157:401–416Google Scholar
  97. Schulmann K, Lexa O, Štípská P, Racek M, Tajčmanová L, Konopásek J, Edel JB, Peschler A, Lehmann J (2008) Vertical extrusion and horizontal channel flow of orogenic lower crust: key exhumation mechanisms in large hot orogens? J Metamorph Geol 26:273–297Google Scholar
  98. Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux JM, Edel JB, Štípská P, Ulrich S (2009) An Andean type Palaeozoic convergence in the Bohemian Massif. C R Geosci 341:266–286Google Scholar
  99. Sheth HC, Torres-Alvarado IS, Verma SP (2002) What is the “Calc-alkaline rock series”? Int Geol Rev 44:686–701Google Scholar
  100. Skjerlie KP, Johnston AD (1992) Vapor-absent melting at 10 kbar of a biotite- and amphibole-bearing tonalitic gneiss: implications for the generation of A-type granites. Geology 20:263–266Google Scholar
  101. Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35Google Scholar
  102. Souček J (1978a) Metabasites of the Vrbno and Rejvíz Series, Hrubý Jeseník Mts. Acta Univ Carol, Geol 1978:323–349 (in Czech)Google Scholar
  103. Souček J (1978b) Metamorphic zones of the Vrbno and Rejvíz series, the Hrubý Jeseník Mountains, Czechoslovakia. Tschermaks Mineral Petrogr Mitt 25:195–217Google Scholar
  104. Steiger RH, Jäger E (1977) Subcommission on geochronology; convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362Google Scholar
  105. Štípská P, Schulmann K, Thompson AB, Ježek J, Kröner A (2001) Thermo-mechanical role of a Cambro–Ordovician paleorift during the Variscan collision: the NE margin of the Bohemian Massif. Tectonophysics 332:239–253Google Scholar
  106. Storey BC, Alabaster T, Hole MJ, Pankhurst RJ, Wever HE (1992) Role of subduction-plate boundary forces during the initial stages of Gondwana break-up: evidence from the proto-Pacific margin of Antarctica. In: Storey BC, Alabaster T, Pankhurst RJ (eds) Magmatism and the causes of continental break-up. Geological Society London Special Publications 68:149–163Google Scholar
  107. Suess FE (1912) Die moravische Fenster und ihre Beziehung zum Grundgebirge des Hohen Gesenkes. Denkschr Österr Akad Wiss Mat Naturwiss Kl 88:541–631Google Scholar
  108. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry M (eds) Magmatism in ocean basins. Geological Society London Special Publications 42:313–345Google Scholar
  109. Szczepański J (2007) A vestige of an early Devonian active continental margin in the East Sudetes (SW Poland)—evidence from geochemistry of the Jegłowa Beds, Strzelin Massif. Geol Quart 51:271–284Google Scholar
  110. Tait JA, Bachtadse V, Soffel H (1996) Eastern Variscan fold belt: paleomagnetic evidence for oroclinal bending. Geology 24:871–874Google Scholar
  111. Tatsumi Y, Eggins S (1995) Subduction Zone Magmatism. Frontiers in Earth Sciences, Blackwell, Cambridge, MassGoogle Scholar
  112. Taylor HP Jr (1978) Oxygen and hydrogen isotope studies of plutonic granitic rocks. Earth Planet Sci Lett 38:177–210Google Scholar
  113. Turner S, Rushmer T (2009) Similarities between mantle-derived A-type granites and voluminous rhyolites in continental flood basalt provinces. Earth Environ Sci Trans R Soc Edinb 100:51–60Google Scholar
  114. Uyeda S (1982) Subduction zones: an introduction to comparative subductology. Tectonophysics 81:133–159Google Scholar
  115. Verma SP (1992) Seawater alteration effects on REE, K, Rb, Cs, Sr, U, Th, Pb and Sr–Nd–Pb isotope systematics of mid-ocean ridge basalt. Geochem J 26:159–177Google Scholar
  116. Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304Google Scholar
  117. Wedepohl KH, Meyer K, Muecke GK, Martin H, Eder FW (1983) Chemical composition and genetic relations of meta-volcanic rocks from the Rhenohercynian Belt of Northwest Germany. In: Martin H, Eder FW (eds) Intracontinental fold belts; case studies in the Variscan Belt of Europe and the Damara Belt in Namibia. Springer, Heidelberg, pp 231–256Google Scholar
  118. Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95:407–419Google Scholar
  119. Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newsl 19:1–23Google Scholar
  120. Wilimský D, Přichystal A (2005) Devonian intermediate to acid volcanism at the eastern margin of Silesicum and its geotectonic interpretation. In: Dubíková K, Ondrejka M (eds) Petrológia a geodynamika. Seminar. Abstract volume, 26 May 2005, Bratislava. Department of Mineralogy and Petrology, Comenius University, Bratislava, 9 (in Czech)Google Scholar
  121. Wilimský D, Hanžl P, Přichystal A, Aichler J, Mixa P, Pecina V, Žáček V (2003) Structures, textures and classification of the Devonian metavolcanics—southern part of the Vrbno Group (Silesicum, Jeseníky Mts., Czech Republic). J Czech Geol Soc 48:131–132Google Scholar
  122. Winchester JA, Floyd PA (1976) Geochemical magma type discrimination; application to altered and metamorphosed basic igneous rocks. Earth Planet Sci Lett 28:459–469Google Scholar
  123. Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343Google Scholar
  124. Wood DA (1980) The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet Sci Lett 50:11–30Google Scholar
  125. Žáček V (1996) Retrograded eclogite from the Staré Město Belt, NE margin of the Bohemian Massif. J Czech Geol Soc 41:167–175Google Scholar
  126. Žáček V (ed) (2000) Explanatory booklet to the geological map 1:25,000, sheet 14-421 Velké Losiny. Czech Geological Survey, Prague (in Czech)Google Scholar
  127. Žák J, Kratinová Z, Trubač J, Janoušek V, Sláma J, Mrlina J (2011) Structure, emplacement, and tectonic setting of Late Devonian granitoid plutons in the Teplá–Barrandian Unit, Bohemian Massif. Int J Earth Sci 100:1477–1495Google Scholar
  128. Zeh A, Gerdes A (2012) U–Pb and Hf isotope record of detrital zircons from gold-bearing sediments of the Pietersburg Greenstone Belt (South Africa)—is there a common provenance with the Witwatersrand Basin? Precambr Res 204–205:46–56Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vojtěch Janoušek
    • 1
  • Jaroslav Aichler
    • 1
  • Pavel Hanžl
    • 1
  • Axel Gerdes
    • 2
    • 3
  • Vojtěch Erban
    • 1
  • Vladimír Žáček
    • 1
  • Vratislav Pecina
    • 1
  • Marta Pudilová
    • 4
  • Kristýna Hrdličková
    • 1
  • Petr Mixa
    • 1
  • Eliška Žáčková
    • 1
  1. 1.Czech Geological SurveyPrague 1Czech Republic
  2. 2.GeowissenschaftenGoethe Universität FrankfurtFrankfurt am MainGermany
  3. 3.Department of Earth SciencesStellenbosch UniversityMatielandSouth Africa
  4. 4.Charles UniversityPrague 2Czech Republic

Personalised recommendations