International Journal of Earth Sciences

, Volume 103, Issue 1, pp 83–102 | Cite as

Polyphase tectonics and late Variscan extension in Austria (Moldanubian Zone, Strudengau area)

  • Helga Zeitlhofer
  • David Schneider
  • Bernhard Grasemann
  • Konstantin Petrakakis
  • Martin Thöni
Original Paper


New data suggest syn-convergent extrusion and polyphase tectonics followed by late Variscan extension in the Strudengau area of the southern Moldanubian zone in Austria. The tectonic history can be summarized as follows: (1) The oldest ductile event is observed in HT/LP metamorphic pelitic gneisses, which preserve E-dipping foliation planes (D1-fabric) with NW–SE-trending lineations. (2) The overlying gneisses record HT/HP conditions with decompression-induced anatexis in the central part of the domain. These gneisses exhibit N–S trending, horizontal lineations along steep-dipping foliation planes (D2-fabric) crosscutting the D1-fabric of the pelitic gneisses. Along the margin, these rocks have been strongly mylonitized under amphibolite facies conditions (D2). D2 is interpreted as a significant vertical shear zone, which juxtaposes the HT/LP rocks against the orogenic lower crust. (3) Lastly, the whole area is overprinted by localized shear zones (D3-fabric) with top-to-the-NW kinematics. This newly discovered Strudengau shearing event is associated with isoclinal folding that possesses axial planes parallel to the mylonitic foliation and fold axes parallel to the stretching lineations. Initial mylonitization occurred under greenschist facies, representing the latest ductile event of the Strudengau area. The new geochronological data presented here indicate a narrow time frame (c. 323–318 Ma) for the D3 deformation. Therefore, this event is contemporaneous with the intrusion of the granites of the South Bohemian Batholith (330–310 Ma). The nearby South Bohemian Batholith and generally steep dyke swarms in the Strudengau area and to the north trend in a NE–SW preferred orientation, interpreted to be D3-synkinematic magmatism. In a regional context, the NW–SE stretching during D3 together with the synkinematic intrusion of dykes is associated with late orogenic extension in the Austrian Moldanubian Zone. Kinematic data of brittle normal faults and tension gashes are consistent with NW–SE-oriented extension under cooler conditions.


Variscan orogeny Bohemian Massif Lower crustal flow Extension Low-temperature shear zones 



We would like to thank Gerhard Fuchs, Manfred Linner, Christoph Iglseder, Kurt Decker, Hugh Rice, and Cornelius Tschegg for stimulating discussions. Excellent thin section preparation by Claudia Beybel and Sigrid Hrabe is grateful acknowledged. We thank Gernold Zulauf and an anonymous reviewer for constructive reviews of the manuscript.


  1. Aines RD, Rossman G (1984) The high temperature behavior of water and carbon dioxide in cordierite and beryl. Am Mineral 69:319–327Google Scholar
  2. Anczkiewicz R, Thirlwall MF (2003) Improving precision of Sm-Nd garnet dating by H2SO4 leaching: a simple solution to the phosphate inclusion problem. Geol Soc London, Spec Publ 220:83–91CrossRefGoogle Scholar
  3. Beaumont C, Jamieson RA, Nguyen MH, Lee B (2001) Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414:738–742CrossRefGoogle Scholar
  4. Beaumont C, Nguyen MH, Jamieson RA, Ellis S (2006) Crustal flow modes in large hot orogens, channel flow, ductile extrusion and exhumation in continental collision zones. Spec Publ 268:91–145CrossRefGoogle Scholar
  5. Behr HJ, Engel W, Franke W, Giese P, Weber K (1984) The Variscan belt in Central-Europe-main structures, geodynamic implications, open questions. Tectonophysics 109:15–40CrossRefGoogle Scholar
  6. Bird P (1991) Lateral extrusion of lower crust from under high topography, in the isostatic limit. J Geophys Res 96(B6):10275–10286Google Scholar
  7. Brandmayr M, Dallmeyer RD, Handler R, Wallbrecher E (1995) Conjugate shear zones in the Southern Bohemian Massif (Austria): implications for Variscan and Alpine tectonothermal activity. Tectonophysics 248:97–116CrossRefGoogle Scholar
  8. Breiter K, Koller F (2009) Mafic K- and Mg-rich magmatic rocks from Western Mühlviertel (Austria) area and the adjacent part of the Šumava Mountains (Czech Republic). Jb Geol BA 149(4):477–485Google Scholar
  9. Burg JP, Van den Driessche J, Brun JP (1994) Syn- to post-thickening extension in the Variscan Belt of Western Europe: modes and structural consequences. Géol de la France 3:33–51Google Scholar
  10. Cagnard F, Gapais D, Brun JP, Gumiaux C, Van den Driessche J (2003) Late pervasive crustal-scale extension in the south Armorican Hercynian belt (Vendée, France). J Struc Geol 26:435–449CrossRefGoogle Scholar
  11. Carey JW, Navrotky A (1992) The molar enthalpy of dehydration of cordierite. Am Mineral 77:930–936Google Scholar
  12. Chopin F et al (2012) Crustal influx, indentation, ductile thinning and gravity redistribution in a continental wedge: Building a Moldanubian mantled gneiss dome with underthrust Saxothuringian material (European Variscan belt). Tectonics 31:TC1013. doi: 10.1029/2011TC002951
  13. Culshaw NG, Beaumont C, Jamieson RA (2006) The orogenic superstructure-infrastructure concept: revisited, quantified, and revived. Geology 34:733–736CrossRefGoogle Scholar
  14. Dallmeyer RD, Franke W, Weber K (1995) Pre-permian geology of central and eastern Europe. Springer, BerlinCrossRefGoogle Scholar
  15. Debon F, Guerrot C, Menot RP, Vivier G, Cocherie A (1998) Late Variscan granites of the Belledonne massif (French western Alps): an early Visean magnesian plutonism. Schweiz Min Petr M 78(1):67–85Google Scholar
  16. Dörr W, Zulauf G (2010) Elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: the role of the Bohemian shear zone. Int J Earth Sci 99(2):299–325CrossRefGoogle Scholar
  17. Dudek A, Fediuková E (1974) Eclogites of the bohemian moldanubicum. Neues Jahrb für Min Abh 121:127–159Google Scholar
  18. Duretz T, Kaus BJP, Schulmann K, Gapais D, Kermarrec JJ (2011) Indentation as an extrusion mechanism of lower crustal rocks: insight from analogue and numerical modelling, application to the Eastern Bohemian Massif. Lithos 124(1–2):158–168CrossRefGoogle Scholar
  19. Faccenda M, Gerya TV, Chakraborty S (2008) Styles of post-subduction collisional orogeny: influence of convergence velocity, crustal rheology and radiogenic heat production. Lithos 103(1–2):257–287CrossRefGoogle Scholar
  20. Faure M (1995) Late orogenic carboniferous extension in the Variscan French Massif Central. Tectonics 14(1):132–153CrossRefGoogle Scholar
  21. Fiala J, Fuchs G, Wendt JI (1995) Stratigraphy of the Moldanubian zone. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-permian geology of central and eastern Europe. Springer, Berlin, pp 417–428CrossRefGoogle Scholar
  22. Finger F, Roberts MP, Haunschmid B, Schermaier A, Steyrer HP (1997) Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations. Min and Petrol 61:67–96CrossRefGoogle Scholar
  23. Finger F, Gerdes A, Janousek V, René M, Riegler G (2007) Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and the Moravo-Moldanubian tectonometamorphic phases. J Geosci 52:9–28Google Scholar
  24. Foley SF, Venturelli G, Green DH, Toscani L (1987) The ultrapotassic rocks: characteristics, classification and constraints for petrogenetic models. Earth Sci Rev 24:81–134CrossRefGoogle Scholar
  25. Franěk J, Schulmann K, Lexa O, Ulrich S, Štípská P, Haloda J, Týcová P (2011) Origin of felsic granulite microstructure by heterogeneous decomposition of alkali feldspar and extreme weakening of orogenic lower crust during the Variscan orogeny. J Metamorphic Geol 29:103–130CrossRefGoogle Scholar
  26. Frank MR, Candela PA, Piccoli PM (1998) K-feldspar-muscovite-andalusite-quartz-brine phase equilibria: an experimental study at 25 to 60 MPa and 400 to 550°C. Geochim Cosmochim Acta 62:3717–3727CrossRefGoogle Scholar
  27. Franke W (1989) Tectonostratigraphic units in the Variscan belt of central Europe. Geol Soc Am Spec Pap 230:67–90CrossRefGoogle Scholar
  28. Franke W (2000) The mid-European segment of the Variscides: tectono-stratigraphic units, terrane boundaries and plate tectonic evolution. Geol Soc Spec Publ 179:35–62CrossRefGoogle Scholar
  29. Friedl G (1997) U-Pb Datierungen an Zirkonen und Monaziten aus Gesteinen vom österreichischen Anteil der Böhmischen Masse. Unpublished Ph.D thesis, Uni of SalzburgGoogle Scholar
  30. Fuchs G (1976) Zur Entwicklung der Böhmischen Masse. Jb Geol BA 45–61Google Scholar
  31. Fuchs G (2005) Der geologische Bau der Böhmischen Masse im Bereich des Strudengaus (Niederösterreich). Jb Geol BA 145(3+4):283–291Google Scholar
  32. Fuchs G, Matura A (1976) Zur Geologie des Kristallins der südlichen Böhmischen Masse. Jb Geol BA 119:1–43Google Scholar
  33. Gebauer D, Friedl G (1993) A 1.38 Ga protolith age for the Dobra orthogneiss (Moldanubian Zone of the Southern Bohemian Massif, NE-Austria): Evidence from ion-microprobe (SHRIMP) dating of zircon. Eur J Min 5(1):115Google Scholar
  34. Gerdes A (2001) Magma homogenization during anatexis, ascent and/or emplacement? Constraints from the Variscan Weinsberg Granite. Terra Nova 13(4):305–312CrossRefGoogle Scholar
  35. Gerdes A, Wörner G, Henk A (2000) Post-collisional granite generation and HT-HP metamorphism by radiogenic heating: the Variscan South Bohemian Batholith. J Geol Soc London 157:577–587CrossRefGoogle Scholar
  36. Gerdes A, Friedl G, Parrish RR, Finger F (2003) High-resolution geochronology of Variscan granite emplacement: the South Bohemian Batholith. J Czech Geol Soc 48:53–54Google Scholar
  37. Gerya TV, Meilick FI (2011) Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts. J Metamorphic Geol 29:7–31CrossRefGoogle Scholar
  38. Gerya TV, Perchuk LL, Burg J-P (2008) Transient hot channels: perpetrating and regurgitating ultrahigh-pressure, high-temperature crust-mantle associations in collision belts. Lithos 103(1–2):236–256CrossRefGoogle Scholar
  39. Gratton J (1989) Crustal shortening, root spreading, isostasy, and the growth of orogenic belts: a dimensional analysis. J Geophys Res 94(B11):15627–15634Google Scholar
  40. Guy A, Edel J-B, Schulmann K, Tomek C, Lexa O (2011) A geophysical model of the Variscan orogenic root (Bohemian Massif): implications for modern collisional orogens. Lithos 124:144–157CrossRefGoogle Scholar
  41. Harrison TM, Célérier J, Aikman AB, Hermann J, Heizler MT (2009) Diffusion of 40Ar in muscovite. Geochim Cosmochim Acta 4:1039–1051CrossRefGoogle Scholar
  42. Holub FV, Klecka M, Matejka D (1995) Igneous activity (Moldanubian region: Moldanubian zone, ch.VIIC.3). In: Dallmeyer RD, Franke W, Weber K (eds) Pre-permian geology of central and eastern Europe. Springer B-H-NY 444–452Google Scholar
  43. Holub FV, Cocherie A, Rossi P (1997) Radiometric dating of granitic rocks from the Central Bohemian Plutonic Complex (Czech Republic): constraints on the chronology of thermal and tectonic events along the Moldanubian-Barrandian boundary. Compte Rendu, Académie des Sci Earth Planet 325:19–26Google Scholar
  44. Ibrmajer J (1981) Geological interpretation of gravity maps of Czechoslovakia. Geophys Synth Czech Bratislava 135–148Google Scholar
  45. Jamieson RA, Beaumont C, Nguyen MH, Lee B (2002) Interaction of metamorphism, deformation and exhumation in large convergent orogens. J Metamorphic Geol 20(1):9–24CrossRefGoogle Scholar
  46. Jamieson RA, Beaumont C, Nguyen MH, Culshaw NG (2007) Synconvergent ductile flow in variable-strength continental crust: Numerical models with application to the western Grenville orogen. Tectonics 26(5):TC5005. doi: 10.1029/2006TC002036
  47. Janoušek V, Farrow CM, Erban V (2006) Interpretation of whole-rock geochemical data in ingenous geochemistry: introducing geochemical data toolkit (GCDkit). J Petrol 47:1255–1259CrossRefGoogle Scholar
  48. Jochum C (1986) Experimentelle Untersuchungen zum Wassereinbau und zur Kinetik der Hydratation und Dehydratation von synthetischen und natürlichen Cordieriten. unpublished Ph.D. thesis, Uni of Bochum, 235Google Scholar
  49. Klötzli US, Koller F, Scharbert S, Höck V (2001) Cadomian lower-crustal contributions to granite petrogenesis (South Bohemian Pluton, Lower Austria): constraints from zircon typology, and geochronology, whole-rock, and feldspar Pb-Sr isotope systematics. J Petrol 42:1621–1642CrossRefGoogle Scholar
  50. Koppers AAP (2002) ArAR CALC: software for 40Ar/39Ar age calculations. Computer Geosci 28:605–619CrossRefGoogle Scholar
  51. Kossmat F (1927) Gliederung des variszischen Gebirgbaues. Abh Sächs Geol LA 1:3–40Google Scholar
  52. Kotková J, Schaltegger U, Leichmann J (2003) 338–335 Ma old intrusions in the Bohemian Massif: a relic of the orogen-wide durbachitic magmatism in European Variscides. J Czech Geol Soc 48(1–2):80–81Google Scholar
  53. Kotková J, Gerdes A, Parrish RR, Novak M (2007) Clasts of Variscan high-grade rocks within Upper Visean conglomerates: constraints on exhumation history from petrology and U-Pb chronology. J Metamorph Geol 25(7):781–801CrossRefGoogle Scholar
  54. Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:227–279Google Scholar
  55. Kröner A, Wendt I (1988) U-Pb zircon and Sm-Nd model ages of high grade Moldanubian metasediments, Bohemian Massif, Czechoslovakia. Contrib Min Petrol 99:257–266CrossRefGoogle Scholar
  56. Kröner A, Štípská P, Schulmann K, Jaeckel P (2000) Geochronological constraints on the pre-Variscan evolution of the northeastern margin of the Bohemian Massif, Czech Republik, Quantification and Modelling in the Variscan Belt. Spec Publication. Geol Soc London 179:175–197Google Scholar
  57. Linner M (1994) Metamorphism and migmatization of the paragneisses of the Monotonous group, SE Moldanubicum. Mitt der Österr Min Ges 139:83–84Google Scholar
  58. Linner M (1996) Metamorphism and partial melting of paragneisses of the Monotonous Group, SE Moldanubicum (Austria). Mineral Petrol 58(3–4):215–234CrossRefGoogle Scholar
  59. Ludwig KR (2003) Isoplot 3.00; a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Centre, Special Publication, vol 4, p 70Google Scholar
  60. Malavieille J (1993) Late orognic extension in mountain belts: insights from the basin and range and the late paleozoic Variscan belt. Tectonics 12(5):1115–1130CrossRefGoogle Scholar
  61. Matte P (1986) Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics 126:329–374CrossRefGoogle Scholar
  62. Matte P (1991) Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophysics 180:309–338CrossRefGoogle Scholar
  63. Matte P, Maluski H, Rajlich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: result of large-scale Variscan shearing. Tectonophysics 177:151–170CrossRefGoogle Scholar
  64. Matura A (1976) Hypothesen zum Bau und zur geologischen Geschichte des kristallinen Grundgebirges von Südmähren und dem niederösterreichischen Waldviertel. Jb Geol BA 119:63–73Google Scholar
  65. Moussallam Y, Schneider DA, Jának M, Thöni M (2012) Exhumation of deep mountain roots: lessons from the Western Tatra Mts, northern Slovakia. Lithos 144–145:88–108CrossRefGoogle Scholar
  66. Neubauer F, Dallmeyer D, Fritz H (2003) Chronological constraints of late- and post-orogenic emplacement of lamprophyre dykes in the southeastern Bohemian Massif, Austria. Schweizerische Mineral und Petrograph Mitt 83:317–330Google Scholar
  67. Passchier CW, Trouw RAJ (2005) Microtectonics. Springer, BerlinGoogle Scholar
  68. Petrakakis K (1986) Metamorphoseentwicklung in der südlichen Bunten Serie am Beispiel einiger Gneise, Moldanubikum, Niederösterreich. Tschermaks Min Petr Mitt 35:243–259CrossRefGoogle Scholar
  69. Petrakakis K (1997) Evolution of Moldanubian rocks in Austria: review and synthesis. J Metamorphic Geol 15:203–222CrossRefGoogle Scholar
  70. Plaumann S (1983) Die Schwerekarte 1:500 000 der Bundesrepublik Deutschland (Bouguer-Anomalien), Blatt Nord. Geol Jb E 27:3–16Google Scholar
  71. Plaumann S (1987) Karte der Bouguer-Anomalien in der Bundesrepublik Deutschland 1:1 500 000. Geol Jb E40:3–7Google Scholar
  72. Polanský J, Škvor V (1975) Structural-tectonic problems of north-western Bohemia (Summary of Czech. Text). J Geol Sci 13:47–64Google Scholar
  73. Pressler RE, Schneider DA, Petronis MS, Holm DK, Geissman JW (2007) Pervasive horizontal fabric and rapid vertical extrusion: lateral overturning and margin sub-parallel flow of deep crustal migmatites, northeastern Bohemian Massif. Tectonophysics 443:19–36CrossRefGoogle Scholar
  74. Renne PR, Swisher CC, Deino AL, Karner DB, Owens TL, DePaolo DJ (1998) Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemic Geol 145:117–152CrossRefGoogle Scholar
  75. Roberts MP, Finger F (1997) Do U-Pb zircon ages from granulites reflect peak metamorphic conditions? Geology 25(4):319–322CrossRefGoogle Scholar
  76. Roddick JC (1988) The assessment of errors in 40Ar/39Ar dating. In: radiogenic age and isotopic studies, Report 2. Geol Surv Can 88:7–16Google Scholar
  77. Roddick JC, Cliff RA, Rex DC (1980) The evolution of excess argon in Alpine biotites: a 40Ar-39Ar analysis. Earth Planet Sci Lett 48:185–208CrossRefGoogle Scholar
  78. Royden LH (1996) Coupling and decoupling of crust and mantle in convergent orogens: Implications for strain partitioning in the crust. J Geophys Res 101(17):679–692Google Scholar
  79. Scaillet S (2000) Numerial error analysis in 40Ar/39Ar dating. Chemic Geol 162:269–298CrossRefGoogle Scholar
  80. Schulmann K, Kroner A, Hegner E (2005) Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan orogen, Bohemian Massif, Czech Republic. Am J Sci 305:407–448CrossRefGoogle Scholar
  81. Schulmann K, Lexa O, Štípská P, Racek M, Tajčmanová L, Konopásek J, Edel JB, Peschler A, Lehmann J (2008) Vertical extrusion and horizontal channel flow of orogenic lower crust: key exhumation mechanisms in large hot orogens? J Metamorphic Geol 26:273–297CrossRefGoogle Scholar
  82. Seifert F (1976) Stability of the Assemblage Cordierite + K-Feldspar + Quartz. Contrib Mineral Petrol 57:179–185CrossRefGoogle Scholar
  83. Seifert F, Schreyer W (1970) Lower temperature stability limit of Mg cordierite in the range 1-7 kbar water pressure: a redetermination. Contrib Mineral Petrol 27:225–238CrossRefGoogle Scholar
  84. Skrzypek E, Stìpská P, Lexa O, Schulmann K, Lexová M (2011) Prograde and retrograde metamorphic fabrics: a key for understanding burial and exhumation in orogens (Bohemian Massif). J Metamorphic Geol 29:451–472CrossRefGoogle Scholar
  85. Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time paths. Mineral Soc of Am, MonographGoogle Scholar
  86. Stipp M, Stunitz H, Heilbronner R, Schmid SM (2002) The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700°C. J Struc Geol 24:1861–1884CrossRefGoogle Scholar
  87. Štípská P, Powell R (2005) Constraining the P-T path of a MORB-type eclogite using pseudosections, garnet zoning and garnet-clinopyroxene thermometry: an example from the Bohemian Massif. J Metamorphic Geol 23:725–743CrossRefGoogle Scholar
  88. Suess FE (1926) Intrusionstektonik und Wandertektonik im variszischen Grundgebirge. Verl Gebrüder Borntraeger Berlin 268Google Scholar
  89. Svojtka M, Košler J, Vernera Z (2002) Dating granulite-facies structures and the exhumation of lower crust in the Moldanubian Zone of the Bohemian Massif. Geol Rundsch 91:373–385Google Scholar
  90. Thöni M, Miller C, Zanetti A, Habler G, Goessler W (2008) Sm-Nd isotope systematics of high-REE accessory minerals and major phases: ID-TIMS, LA-ICP-MS and EPMA data constrain multiple Permian: Triassic pegmatite emplacement in the Koralpe, Eastern Alps. Chemic Geol 254:216–237CrossRefGoogle Scholar
  91. Tschegg C, Bizimis M, Schneider DA, Akinin V, Ntaflos T (2011) Magmatism at the Eurasian-North American modern plate boundary: constraints from alkaline volcanism in the Chersky Belt (Yakutia). Lithos 125:825–835CrossRefGoogle Scholar
  92. Van Breemen O, Aftalion M, Bowes DR, Dudek A, Misar Z, Povondra P, Vrana S (1982) Geochronological studies of the Bohemian Massif Czechoslovakia and their significance in the Evolution of Central Europe. Trans R Soc Edinburgh Earth Sci 73:89–108CrossRefGoogle Scholar
  93. Vellmer C, Wedepohl KH (1994) Geochemical characterization and origin of granitoids from the South Bohemian Batholith in Lower Austria. Mitt der Österr Mineral Ges 139:120–121Google Scholar
  94. Wendt JI, Kröner A, Fiala J, Todt W (1994) U-Pb zircon and Sm-Nd dating of Moldanubian HP/HT granulites from South Bohemia, Czech Republic. J Geol Soc London 151:83–90CrossRefGoogle Scholar
  95. Žák J, Verner K, Finger F, Faryad SW, Chlupáčová M, Veselovský F (2011) The generation of voluminous S-type granites in the Moldanubian unit, Bohemian Massif, by rapid isothermal exhumation of the metapelitic middle crust. Lithos 121:25–40CrossRefGoogle Scholar
  96. Ziegler PA (1986) Geodynamic model for the Palaeozoic crustal consolidation of western and central Europe. Tectonophysics 126:303–328CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Helga Zeitlhofer
    • 1
  • David Schneider
    • 2
  • Bernhard Grasemann
    • 1
  • Konstantin Petrakakis
    • 1
  • Martin Thöni
    • 3
  1. 1.Department of Geodynamics and SedimentologyUniversity of ViennaViennaAustria
  2. 2.Department of Earth SciencesUniversity of OttawaOttawaCanada
  3. 3.Department of Lithospheric ResearchUniversity of ViennaViennaAustria

Personalised recommendations