Advertisement

International Journal of Earth Sciences

, Volume 103, Issue 1, pp 141–163 | Cite as

Ophicalcites from the northern Pyrenean belt: a field, petrographic and stable isotope study

  • Camille ClercEmail author
  • Philippe Boulvais
  • Yves Lagabrielle
  • Michel de Saint Blanquat
Original Paper

Abstract

Brecciated and fractured peridotites with a carbonate matrix, referred to as ophicalcites, are common features of mantle rocks exhumed in passive margins and mid-oceanic ridges. Ophicalcites have been found in close association with massive peridotites, which form the numerous ultramafic bodies scattered along the North Pyrenean Zone (NPZ), on the northern flank of the Pyrenean belt. We present the first field, textural and stable isotopic characterization of these rocks. Our observations show that Pyrenean ophicalcites belong to three main types: (1) a wide variety of breccias composed of sorted or unsorted millimeter- to meter-sized clasts of fresh or oxidized ultramafic material, in a fine-grained calcitic matrix; (2) calcitic veins penetrating into fractured serpentine and fresh peridotite; and (3) pervasive substitution of serpentine minerals by calcite. Stable isotopic analyses (O, C) have been conducted on the carbonate matrix, veins and clasts of samples from 12 Pyrenean ultramafic bodies. We show that the Pyrenean ophicalcites are the product of three distinct genetic processes: (1) pervasive ophicalcite resulting from relatively deep and hot hydrothermal activity; (2) ophicalcites in veins resulting from tectonic fracturing and cooler hydrothermal activity; and (3) polymictic breccias resulting from sedimentary processes occurring after the exposure of subcontinental mantle as portions of the floor of basins which opened during the mid-Cretaceous. We highlight a major difference between the eastern and western Pyrenean ophicalcites belonging, respectively, to the sedimentary and to the hydrothermal types. Our data set points to a possible origin of the sedimentary ophicalcites in continental endorheic basins, but a post-depositional evolution by circulation of metamorphic fluids or an origin from relatively warm marine waters cannot be ruled out. Finally, we discuss the significance of such discrepancy in the characteristics of the NPZ ophicalcites in the frame of the variable exhumation history of the peridotites all along the Pyrenean realm.

Keywords

Ophicalcite Ophicarbonate Stable isotopes Oxygen Carbon Veins Matrices Pyrenees Lherz Urdach Mantle exhumation Tectonic fracturation Hydrothermalism Sedimentary deposits 

Notes

Acknowledgments

This work was made possible, thanks to CNRS, Total and the Action Marges research group (INSU, Total, IFP, BRGM and IFREMER) through a Ph.D. grant to C. Clerc. We thank G. Früh-green and G. Manatschal for their valuable comments that helped improve the quality of the manuscript. We are grateful to B. Smith for improving the English, to J.-C. Ringenbach and Benoit Ildefonse for fruitful discussions and improvement of the quality of the figures and to C. Nevado for the high-quality thin sections realized at the Géosciences Montpellier laboratory.

References

  1. Abbate E, Bortolotti V, Passerini P (1970) Olistostromes and olistoliths. Sed Geol 4(3–4):521–557. doi: 10.1016/0037-0738(70)90022-9 CrossRefGoogle Scholar
  2. Agrinier P, Mével C, Girardeau J (1988) Hydrothermal alteration of the peridotites cored at the ocean/continent boundary of the Iberian margin: petrologic and stable isotope evidence. In Boillot G, Winterer EL et al (eds) Proceedings of the ocean drilling program, 103 scientific results, vol 103. Ocean Drilling Program, pp 225–234. Consulté de http://www-odp.tamu.edu/publications/103_SR/103TOC.HTM
  3. Agrinier P, Cornen G, Beslier MO (1996) Mineralogical and oxygen isotopic features of serpentinites recovered from the ocean/continent transition in the Iberia abyssal plain. In Whitmarsh RB, Sawyer DS, Klaus A, Masson DG (eds) Proceedings of the Ocean Drilling Program, 149 Scientific Results, vol 149. Ocean Drilling Program, pp 541–552Google Scholar
  4. Albarède F, Michard-Vitrac A (1978a) Datation du métamorphisme des terrains secondaires des Pyrénées par des méthodes Ar-Ar et Rb-Sr. Ses relations avec les péridotites associées. Bulletin de la société géologique de France XX(7):681–688. doi: 10.1016/0012-821X(78)90157-7
  5. Albarède F, Michard-Vitrac A (1978b) Age and significance of the North Pyrenean metamorphism. Earth Planet Sci Lett 40(3):327–332. doi: 10.1016/0012-821X(78)90157-7 CrossRefGoogle Scholar
  6. Andreani M, Mével C, Boullier A-M, Escartín J (2007) Dynamic control on serpentine crystallization in veins: constraints on hydration processes in oceanic peridotites. Geochem Geophys Geosyst 8(2). doi: 10.1029/2006GC001373
  7. Artemyev DA, Zaykov VV (2010) The types and genesis of ophicalcites in lower Devonian olistostromes at cobalt-bearing massive sulfide deposits in the West Magnitogorsk paleoisland arc (South Urals). Russ Geol Geophys 51(7):750–763. doi: 10.1016/j.rgg.2010.06.003 CrossRefGoogle Scholar
  8. Avé-Lallemand HGA (1967) Structural and petrofabric analysis of an «Alpine type» peridotite: the lherzolite of the French Pyrénées. Leidse Geol Meded 42:1–57Google Scholar
  9. Azambre B, Rossy M (1976) Le magmatisme alcalin d’âge crétacé dans les Pyrénées occidentales; ses relations avec le métamorphisme et la tectonique. Bulletin de la société Géologique de france 7(18):1725–1728Google Scholar
  10. Bailey EB, McCallien WJ (1960) Some aspects of the Steinmann trinity, mainly chemical. Q J Geol Soc 116(1–4):365–395. doi: 10.1144/gsjgs.116.1.0365 Google Scholar
  11. Barbieri M, Masi U, Tolomeo L (1979) Stable isotope evidence for a marine origin of ophicalcites from the north-central Apennines (Italy). Mar Geol 30(3–4):193–204. doi: 10.1016/0025-3227(79)90015-X CrossRefGoogle Scholar
  12. Barrère P, Bouquet C, Debroas E-J, Pélissonier H, Peybernès B, Soulé J-C, Souquet P et al (1984) Carte géol. France (1/50 000), feuille Arreau (1072). OrléansGoogle Scholar
  13. Barrett TJ, Friedrichsen H (1989) Stable isotopic composition of atypical ophiolitic rocks from east Liguria, Italy. Chem Geol Isot Geosci Sect 80(1):71–84. doi: 10.1016/0168-9622(89)90049-3 CrossRefGoogle Scholar
  14. Bernoulli D, Weissert H (1985) Sedimentary fabrics in Alpine ophicalcites, South Pennine Arosa zone, Switzerland. Geology 13(11):755–758. doi: 10.1130/0091-7613(1985)13<755:SFIAOS>2.0.CO;2 CrossRefGoogle Scholar
  15. Bogoch R (1987) Classification and genetic models of ophicarbonate rocks. Ofioliti 12:23–36Google Scholar
  16. Bonatti E, Emiliani C, Ferrera G, Honnorez J, Rydell H (1974) Ultramafic carbonate breccias from the equatorial Mid-Atlantic Ridge. Mar Geol 16:83–102CrossRefGoogle Scholar
  17. Bonney TG (1879) Notes on some Ligurian and Tuscan serpentinites. Geol Mag 6(2):362–371CrossRefGoogle Scholar
  18. Bortolotti V, Passerini P (1970) Magmatic activity. Sed Geol 4(3–4):599–624. doi: 10.1016/0037-0738(70)90024-2 CrossRefGoogle Scholar
  19. Boschi C, Früh-Green G, Delacour A, Karson JA, Kelley DS (2006) Mass transfer and fluid flow during detachment faulting and development of an oceanic core complex, Atlantis Massif (MAR 30°N). Geochem Geophys Geosyst 7:39. doi: 10.1029/2005GC001074 Google Scholar
  20. Boulvais P, Fourcade S, Gruau G, Moine B, Cuney M (1998) Persistence of premetamorphic C and O isotopic signatures in marbles subject to Pan-African granulite-facies metamorphism and U-Th mineralization (Tranomaro, southeast Madagascar). Chem Geol 150:247–262CrossRefGoogle Scholar
  21. Boulvais P, de Parseval P, D’Hulst A, Paris P (2006) Carbonate alteration associated with talc-chlorite mineralization in the eastern Pyrenees, with emphasis on the St. Barthelemy Massif. Mineral Petrol 88:499–526CrossRefGoogle Scholar
  22. Boulvais P, Ruffet G, Cornichet J, Mermet M (2007) Cretaceous albitization and dequartzification of Hercynian peraluminous granite in the Salvezines Massif (French Pyrénées). Lithos 93(1–2):89–106. doi: 10.1016/j.lithos.2006.05.001 CrossRefGoogle Scholar
  23. Brotzu P, Ferrini V, Masi U, Morbidelli L, Turi B (1973) Contributo alla conoscenza delle «Rocce Verdi» dell’Appennino centrale. Nota III. La composizione isotopica della calcite presente in alcuni affioramenti di oficalciti del F 129 (S. Fiora) e sue implicazioni petrologiche. Period Mineral 42:591–619Google Scholar
  24. Brun JP, Beslier MO (1996) Mantle exhumation at passive margins. Earth Planet Sci Lett 142(1–2):161–173. doi: 10.1016/0012-821X(96)00080-5 CrossRefGoogle Scholar
  25. Burton EA, Walter LM (1987) Relative precipitation rates of aragonite and Mg calcite from seawater: temperature or carbonate ion control? Geology 15(2):111–114. doi: 10.1130/0091-7613(1987)15<111:RPROAA>2.0.CO;2 CrossRefGoogle Scholar
  26. Canérot J, Delavaux F (1986) Tectonic and sedimentation on the north Iberian margin, Chainons Béarnais south Pyrenean zone (Pyrenees basco-béarnaises): new data about the signification of the lherzolites in the Saraillé area. Comptes Rendus de l’Académie des Sciences Series II 302(15):951–956Google Scholar
  27. Canérot J, Peybernès B, Ciszak R (1978) Présence d’une marge méridionale à l’emplacement des Chaînons Béarnais (Pyrénées basco-béarnaises). Bulletin de la société Géologique de france 7(20):673–676Google Scholar
  28. Casteras M (1970) Carte géol. France (1/50 000), feuille Oloron-Sainte-Marie (XV-46). OrléansGoogle Scholar
  29. Choukroune P, ECORS Team (1989) The Ecors Pyrenean deep seismic profile reflection data and the overall structure of an orogenic belt. Tectonics 8(1):23–39. doi: 198910.1029/TC008i001p00023 CrossRefGoogle Scholar
  30. Choukroune P, Mattauer M (1978) Tectonique des plaques et Pyrénées: Sur le fonctionnement de la faille transformante nord-Pyrénéenne; comparaisons avec les modèles actuels. Bulletin de la société géologique de France 20:689–700Google Scholar
  31. Choukroune P, Séguret M (1973) Carte structurale des Pyrénées. ELF-ERAPGoogle Scholar
  32. Clerc C (2012). Evolution du domaine Nord-Pyrénéen au Crétacé. Amincissement crustal extreme et thermicité élevée: un analogue pour les marges passives. PhD Thesis, Université Paris 6, Paris, France. http://tel.archives-ouvertes.fr/tel-00787952
  33. Clerc C, Lagabrielle Y, Neumaier M, Reynaud J-Y, Saint-Blanquat M (2012) Exhumation of subcontinental mantle rocks: evidence from ultramafic-bearing clastic deposits nearby the Lherz peridotite body, French Pyrenees. Bulletin de La Societe Geologique de France 183(5):443–459. doi: 10.2113/gssgfbull.183.5.443
  34. Cornelius HP (1912) Petrographische untershungen in den Bergen Zwischen Septiner—und Julierpass. Diss N Jahr MinGoogle Scholar
  35. Cortesogno L, Galbiati B, Principi G (1981) Descrizione dettagliata di alcuni caratteristici affioramenti di brecce serpentiniche della Liguria orientale ed interpretazione chiave geodinamica. Ophioliti 6:47–76Google Scholar
  36. Costa S, Maluski H (1988) Use of the 40Ar-39Ar stepwise heating method for dating mylonite zones: an example from the St. Barthélémy massif (Northern Pyrenees, France). Chem Geol Isot Geosci Sect 72(2):127–144. doi: 10.1016/0168-9622(88)90061-9 Google Scholar
  37. Dauteuil O, Ricou LE (1989) Une circulation de fluides de haute température à l’origine du métamorphisme crétacé nord-Pyrénéen. Geodin Acta 3(3):237–250Google Scholar
  38. Debeaux M, Thiébaut J (1958) Les affleurements du socle paléozoique entre les massifs de la Barousse et de Milhas. Bull Soc Hist Nat Toulouse 93:522–528Google Scholar
  39. Debroas E-J (1976) Sédimentogenèse et position structurale des flyschs crétacés du versant nord des Pyrénées centrales. Bull Bur Rech Géol Min I(4):305–320Google Scholar
  40. Debroas E-J (1990) Le flysch noir albo-cenomanien témoin de la structuration albienne à sénonienne de la Zone nord-pyrénéenne en Bigorre (Hautes-Pyrénées, France). Bulletin de la société Géologique de france 8(2):273–285Google Scholar
  41. Debroas E-J, Canérot J, Billotte M (2010) Les brèches d’Urdach, témoins de l’exhumation du manteau pyrénéen dans un escarpement de faille vraconnien-cénomanien inférieur (zone nord-pyrénéenne, Pyrénées-Atlantiques, France). Géologie de la France 2:53–63Google Scholar
  42. Demange M, Lia-Aragnouet F, Pouliguen M, Perrot X, Sauvage H (1999) Les syénites du castillet (massif de l’agly, pyrénées orientales, France): une roche exceptionnelle dans les pyrénées. Comptes Rendus de l’Académie des Sciences Series IIA Earth and Planetary Science 329(5):325–330. doi: 10.1016/S1251-8050(00)88582-1 Google Scholar
  43. Demeny A, Vennemann T, Koller F (2007) Stable isotope compositions of the Penninic ophiolites of the Köszeg-Rechnitz series. Central Eur Geol 50(1):29–46. doi: 10.1556/CEuGeol.50.2007.1.3 CrossRefGoogle Scholar
  44. Deramond J, Souquet P, Fondecave-Wallez M-J, Specht M (1993) Relationships between thrust tectonics and sequence stratigraphy surfaces in foredeeps: model and examples from the Pyrenees (Cretaceous-Eocene, France, Spain). Geol Soc Lond Special Publ 71(1):193–219. doi: 10.1144/GSL.SP.1993.071.01.09 CrossRefGoogle Scholar
  45. Dick HJB, Tivey MA, Tucholke BE (2008) Plutonic foundation of a slow-spreading ridge segment: oceanic core complex at Kane Megamullion, 23°30′N, 45°20′W. Geochem Geophys Geosyst 9:44. doi: 10.1029/2007GC001645
  46. Dietrich V, Vuagnat M, Bertrand J (1974) Alpine metamorphism of mafic rocks. Schweiz Mineral Petrogr Mitt 54:291–323Google Scholar
  47. Duée G, Lagabrielle Y, Coutelle A, Fortané A (1984) Les lherzolites associées aux Chaînons Béarnais (Pyrénées Occidentales): Mise à l’affleurement anté-dogger et resédimentation albo-cénomanienne. Comptes Rendus de l’Académie des Sciences Serie II 299:1205–1209Google Scholar
  48. Elders WA, Rex RW, Robinson PT, Biehler S, Meidav T (1972) Crustal Spreading in Southern California the imperial valley and the gulf of California formed by the rifting apart of a continental plate. Science 178(4056) (juin 10):15–24. doi: 10.1126/science.178.4056.15 Google Scholar
  49. Evans CA, Baltuck M (1988) Low-temperature alteration of peridotite, hole 637A. In: Boillot G, Winterer EL et al (ed.) Proceedings of the ocean drilling program, 103 scientific results, vol 103. Ocean Drilling Program, p 235–239. Consulté de http://www-odp.tamu.edu/publications/103_SR/103TOC.HTM
  50. Fabriès J, Lorand J-P, Bodinier J-L, Dupuy C (1991) Evolution of the Upper Mantle beneath the Pyrenees: evidence from Orogenic Spinel Lherzolite Massifs. J Petrol Special_Volume(2):55–76. doi: 10.1093/petrology/Special_Volume.2.55 Google Scholar
  51. Fabriès J, Lorand J-P, Bodinier J-L (1998) Petrogenetic evolution of orogenic lherzolite massifs in the central and western Pyrenees. Tectonophysics 292(1–2):145–167. doi: 10.1016/S0040-1951(98)00055-9 CrossRefGoogle Scholar
  52. Filleaudeau P-Y, Mouthereau F, Pik R (2011) Thermo-tectonic evolution of the south-central Pyrenees from rifting to orogeny: insights from detrital zircon U/Pb and (U-Th) He thermochronometry. Basin Res 23. doi: 10.1111/j.1365-2117.2011.00535.x
  53. Folk RL (1974) The natural history of crystalline calcium carbonate: effects of magnesium content and salinity. J Sediment Petrol 44:40–53Google Scholar
  54. Fortane A, Duee G, Lagabrielle Y, Coutelle A (1986) Lherzolites and the western «Chainons bearnais» (French Pyrenees): structural and paleogeographical pattern. Tectonophysics 129(1–4):81–98. doi: 10.1016/0040-1951(86)90247-7 CrossRefGoogle Scholar
  55. Früh-Green G, Weissert H, Bernoulli D (1990) A multiple fluid history recorded in Alpine ophiolites. J Geol Soc 147(6):959–970. doi: 10.1144/gsjgs.147.6.0959 CrossRefGoogle Scholar
  56. German CR, Klinkhammer GP, Rudnicki MD (1996) The rainbow hydrothermal plume, 36°15′N, MAR. Geophys Res Lett 23(21):2979–2982. doi: 10.1029/96GL02883 CrossRefGoogle Scholar
  57. Gianelli G, Principi G (1977) Northern Apennine ophiolite: an ancient transcurrent fault zone. Bolletino della Societa Geologica Italiana 96:53–58Google Scholar
  58. Gibson IL, Milliken KL, Morgan JK (1996) Serpentinite-Breccia Landslide deposits generated during crustal extension at the Iberia margin. In: Whitmarsh RB, Sawyer DS, Klaus A, Masson DG (eds) Proceedings of the ocean drilling program, 149 Scientific Results, vol 149. Ocean Drilling Program, pp 571–575. Consulté de http://www-odp.tamu.edu/publications/149_SR/149TOC.HTM
  59. Golberg J-M, Leyreloup AF (1990) High temperature-low pressure Cretaceous metamorphism related to crustal thinning (Eastern North Pyrenean Zone, France). Contrib Miner Petrol 104(2):194–207. doi: 10.1007/BF00306443 CrossRefGoogle Scholar
  60. Golberg J-M, Maluski H (1988) Données nouvelles et mise au point sur l’âge du métamorphisme pyrénéen. CR Acad Sci Paris 306:429–435Google Scholar
  61. Golberg J-M, Maluski H, Leyreloup A-F (1986) Petrological and age relationship between emplacement of magmatic breccia, alkaline magmatism, and static metamorphism in the North Pyrenean Zone. Tectonophysics 129 (1–4) (octobre 15): 275–290. doi: 10.1016/0040-1951(86)90256-8
  62. Gong Z, Langereis CG, Mullender TAT (2008) The rotation of Iberia during the Aptian and the opening of the Bay of Biscay. Earth Planet Sci Lett 273(1–2):80–93. doi: 16/j.epsl.2008.06.016 CrossRefGoogle Scholar
  63. Haggerty JA (1987) Petrology and geochemistry of Neogene sedimentary rocks from Mariana forearc seamounts. In: Keating BH, Fryer P, Batiza R, Boehlert GW (eds) Seamounts, Islands and Atolls, American Geophysical Union, Geophysical Monograph Series, vol 43, pp 175–186Google Scholar
  64. Haggerty JA (1991) Evidence from fluid seeps atop serpentine seamounts in the Mariana forearc: clues for emplacement of the seamounts and their relationship to forearc tectonics. Mar Geol 102(1–4):293–309. doi: 10.1016/0025-3227(91)90013-T CrossRefGoogle Scholar
  65. Henry P, Azambre B, Montigny R, Rossy M, Stevenson RK (1998) Late mantle evolution of the Pyrenean sub-continental lithospheric mantle in the light of new 40Ar-39Ar and Sm-Nd ages on pyroxenites and peridotites (Pyrenees, France). Tectonophysics 296(1–2):103–123. doi: 10.1016/S0040-1951(98)00139-5 CrossRefGoogle Scholar
  66. Hervouët Y, Torné X, Fortané A, Duée G, Delfaud J (1987) Resédimentation chaotique de méta-ophites et de marbres mésozoïques de la vallée du Job (Pyrénées commingeoises): relations détritisme/métamorphisme en zone nord-Pyrénéenne. C R Acad Sci II(305):721–726Google Scholar
  67. Jammes S, Manatschal G, Lavier LL, Masini E (2009) Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: example of the western Pyrenees. Tectonics 28(4). doi: 10.1029/2008TC002406
  68. Kelemen PB, Kikawa E, Miller DJ et al (eds) (2004) Proceedings of the ocean drilling program, 209 initial reports, vol 209. Ocean Drilling Program. Consulté de http://www-odp.tamu.edu/publications/209_IR/209TOC.HTM
  69. Kelley DS, Karson JA, Blackman DK, Früh-Green GL, Butterfield DA, Lilley MD, Olson EJ et al (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N. Nature 412(6843) (juillet 12):145–149. doi: 10.1038/35084000
  70. Knipper AL (1978) Ophicalcites and some other types of breccias accompanying the preorogenic formation of ophiolite complex. Geotektonika 2:50–66Google Scholar
  71. Knipper AL, Sharas’kin AY (1998) Exhumation of the upper-mantle and lower-crust rocks during rifting. Geotektonika 5:19–31Google Scholar
  72. Lagabrielle Y, Auzende J-M (1982) Active in situ disaggregation of oceanic crust and mantle on Gorringe Bank: analogy with ophiolitic massives. Nature 297(5866):490–493CrossRefGoogle Scholar
  73. Lagabrielle Y, Bodinier J-L (2008) Submarine reworking of exhumed subcontinental mantle rocks: field evidence from the Lherz peridotites, French Pyrenees. Terra Nova 20(1):11–21. doi: 10.1111/j.1365-3121.2007.00781.x CrossRefGoogle Scholar
  74. Lagabrielle Y, Cannat M (1990) Alpine Jurassic ophiolites resemble the modern central Atlantic basement. Geology 18(4):319–322. doi: 10.1130/0091-7613(1990)018<0319:AJORTM>2.3.CO;2 CrossRefGoogle Scholar
  75. Lagabrielle Y, Karpoff A-M, Cotten J (1992a) Mineralogical and geochemical analyses of sedimentary serpentinites from conical seamount (Hole 788A): implication for the evolution of serpentine seamounts. In: Fryer P, Pearce JA, Stokking LB et al (eds) Proceedings of the ocean drilling program, 125 scientific results, vol 125. Ocean Drilling Program, pp 325–342. Consulté de http://www-odp.tamu.edu/publications/125_SR/125TOC.HTM
  76. Lagabrielle Y, Bideau D, Cannat M, Karson JA, Mével C (1992b) Ultramafic-mafic plutonic rock suites exposed along the Mid-Atlantic ridge (10°N–30°N). Symmetrical-asymmetrical distribution and implications for seafloor spreading processes. In: Buck WR, Delaney PT, Karson JA, Lagabrielle Y (eds) Faulting and magmatism at mid-ocean ridges. Geophysical monograph, American Geophysical Union, Washington, DC, pp 153–176Google Scholar
  77. Lagabrielle Y, Labaume P, St Blanquat M (2010) Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): Insights from the geological setting of the lherzolite bodies. Tectonics 29(4). doi: 10.1029/2009TC002588
  78. Lavoie D, Cousineau PA (1995) Ordovician ophicalcites of southern Quebec Appalachians: a proposed early seafloor tectonosedimentary and hydrothermal origin. J Sediment Res 65(2a):337–347. doi: 10.1306/D42680B8-2B26-11D7-8648000102C1865D Google Scholar
  79. Laznicka P (1988) Breccias and Coarse fragmentites: petrology, environments, associations. Elsevier Science, OresGoogle Scholar
  80. Le Pichon X, Bonnin J, Sibuet J-C (1970) La faille nord-Pyrénéenne: faille transformante liée à l’ouverture du Golfe de Gascogne. Comptes Rendus de l’Académie des Sciences, D 271:1941–1944Google Scholar
  81. Lemoine M (1980) Serpentinites, gabbros and ophicalcites in the Piemont-Ligurian domain of the Western Alps: possible indicators of océanic fracture zone and of associated serpentinite protrusions in the Jurassic-Cretaceous Thetys. Archives des Sciences Genèves 33:103–115Google Scholar
  82. Lemoine M, Tricart P, Boillot G (1987) Ultramafic and gabbroic ocean floor of the Ligurian Tethys (Alps, Corsica, Apennines): in search of a genetic imodel. Geology 15(7):622–625. doi: 10.1130/0091-7613(1987)15<622:UAGOFO>2.0.CO;2 CrossRefGoogle Scholar
  83. Lucazeau F, Leroy S, Rolandone F, Acremont E d’, Watremez L, Bonneville A, Goutorbe B, Düsünur D (2010) Heat-flow and hydrothermal circulation at the ocean–continent transition of the eastern gulf of Aden. Earth Planet Sci Lett 295(3–4) (juillet 1):554–570. doi: 10.1016/j.epsl.2010.04.039
  84. Manatschal G (2004) New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps. Int J Earth Sci 93(3):432–466. doi: 10.1007/s00531-004-0394-7 CrossRefGoogle Scholar
  85. Mattauer M, Choukroune P (1974) Les lherzolites des Pyrénées sont des extrusions de matériel ancien dans le Mésozoique nord Pyrénées. Paper presented at 2nd Réunion Annuelle des Sciences de la Terre, Soc. Géol. de Fr., ParisGoogle Scholar
  86. McCrea JM (1950) On the isotope chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857CrossRefGoogle Scholar
  87. Milliken KL, Morgan JK (1996) Chemical evidence for near-seafloor precipitation of cacite in serpentinites (site 897) and Serpentinite Breccias (Site 899), Iberia Abyssal Plain. In: Whitmarsh RB, Sawyer DS, Klaus A, Masson DG (eds) Proceedings of the ocean drilling program, 149 scientific results, vol. 149, Ocean Drilling Program, pp 553–558. Consulté de http://www-odp.tamu.edu/publications/149_SR/149TOC.HTM
  88. Minnigh LD, van Calsteren PWC, den Tex E (1980) Quenching: an additional model for emplacement of the Iherzolite at Lers (French Pyrenees). Geology 8(1):18. doi: 10.1130/0091-7613(1980)8<18:QAAMFE>2.0.CO;2 CrossRefGoogle Scholar
  89. Moine B, Fortune JP, Moreau P, Viguier F (1989) Comparative mineralogy, geochemistry, and conditions of formation of two metasomatic talc and chlorite deposits; Trimouns (Pyrenees, France) and Rabenwald (Eastern Alps, Austria). Econ Geol 84(5):1398–1416. doi: 10.2113/gsecongeo.84.5.1398 CrossRefGoogle Scholar
  90. Monchoux P (1970) Les lherzolites pyrénéennes: contribution à l’étude de leur minéralogie, de leur génèse et de leurs transformations (Thèse d’Etat). Univ. Toulouse, ToulouseGoogle Scholar
  91. Montigny R, Azambre B, Rossy M, Thuizat R (1986) K-Ar Study of cretaceous magmatism and metamorphism in the pyrenees: age and length of rotation of the Iiberian Peninsula. Tectonophysics 129(1–4):257–273. doi: 10.1016/0040-1951(86)90255-6 CrossRefGoogle Scholar
  92. Morgan JK, Milliken KL (1996) Petrography of calcite veins in serpentinized peridotite basement rocks from the Iberia Abyssal Plain, sites 897 and 899: kinematic and environmental implications. In: Whitmarsh RB, Sawyer DS, Klaus A, Masson DG (eds) Proceedings of the ocean drilling program, 149 scientific results, vol 149. Ocean Drilling Program, pp 559–569. Consulté de http://www-odp.tamu.edu/publications/149_SR/149TOC.HTM
  93. Muffler LJP, White DE (1969) Active metamorphism of upper Cenozoic sediments in the Salton Sea geothermal field and the Salton Trough, Southeastern California. Geol Soc Am Bull 80(2) (janvier 2):157–182. doi:10.1130/0016-7606(1969)80[157:AMOUCS]2.0.CO;2Google Scholar
  94. Muñoz JA (1992) Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section. Thrust Tectonics, Chapman and Hall. K. McClay, London, pp 235–246Google Scholar
  95. Ohnenstetter M (1979) La série ophiolitifère de Rospigliano (Corse) est-elle un témoin des phénomènes tectoniques, sédimentaires et magmatiques liés au fonctionnement des zones transformantes? Comptes Rendus de l’Académie des Sciences, Paris, D 289:1199–1202Google Scholar
  96. Olivet JL (1996) La cinématique de la plaque ibérique. Bull Cent Rech Explor Prod Elf-Aquitaine 20(1):131–195Google Scholar
  97. Passchier CW (1984) Mylonite-dominated footwall geometry in a shear zone. Central Pyrenees Geological Magazine 121(05):429–436. doi: 10.1017/S0016756800029964 CrossRefGoogle Scholar
  98. Peters T (1965) A water-bearing andradite from the Totalp serpentine (Davos, Switzerland). Am Mineralogist 50:1482–1486Google Scholar
  99. Picazo S, Cannat M, Delacour A, Escartin J, Rouméjon S, Silantyev S (2012) Deformation associated with the denudation of mantle-derived rocks at the Mid-Atlantic Ridge 13°–15°N: the role of magmatic injections and hydrothermal alteration. Geochem Geophys Geosyst. doi: 10.1029/2012GC004121 Google Scholar
  100. Plas A (1997) Petrologic and stable isotope constraints on fluid-rock interaction, serpentinization and alteration of oceanic ultramafic rocks. PhD Thesis, Swiss Federal Institute of Technology, SwissGoogle Scholar
  101. Poujol M, Boulvais P, Kosler J (2010) Regional-scale Cretaceous albitization in the Pyrenees: evidence from in situ U-Th-Pb dating of monazite, titanite and zircon. J Geol Soc 167(4):751–767. doi: 10.1144/0016-76492009-144 CrossRefGoogle Scholar
  102. Puigdefàbregas C, Souquet P (1986) Tecto-sedimentary cycles and depositional sequences of the Mesozoic and Tertiary from the Pyrenees. Tectonophysics 129(1–4):173–203. doi: 10.1016/0040-1951(86)90251-9 CrossRefGoogle Scholar
  103. Ravier J (1959) Le métamorphisme des terrains secondaires des Pyrénées. Mem Soc Geol Fr 86:1–250Google Scholar
  104. Ross DJ (1991) Botryoidal high magnesium calcite cements from the upper Cretaceous of the Mediterranean region. J Sediment Res 61:349–353Google Scholar
  105. Roure F, Combes P-J (1998) Contribution of the ECORS seismic data to the Pyrenean geology: crustal architecture and geodynamic evolution of the Pyrenees. Consulté de http://cat.inist.fr/?aModele=afficheN&cpsidt=1874322
  106. Schärer U, de Parseval P, Polvé M, St Blanquat M (1999) Formation of the Trimouns talc-chlorite deposit (Pyrenees) from persistent hydrothermal activity between 112 and 97 Ma. Terra Nova 11(1):30–37. doi: 10.1046/j.1365-3121.1999.00224.x CrossRefGoogle Scholar
  107. Schwarzenbach E (2011) Serpentinization, fluids and life: comparing carbon and sulfur cycles in modern and ancient environments. PhD Thesis, Swiss Federal Institute of Technology, ZurichGoogle Scholar
  108. Skelton AD, Valley JW (2000) The relative timing of serpentinisation and mantle exhumation at the ocean-continent transition, Iberia: constraints from oxygen isotopes. Earth Planet Sci Lett 178(3–4):327–338. doi: 10.1016/S0012-821X(00)00087-X CrossRefGoogle Scholar
  109. Smart PL, Palmer RJ, Whitaker F, Wright VP (1987) Neptunian dikes and fissures fills: an overview and account of some modern examples. In: James NP, Choquette PW (eds) Paleokarst. Springer, New York, pp 149–163Google Scholar
  110. Souquet P, Debroas E-J, Boirie J-M, Pons P, Fixari G, Dol J, Thieuloy J-P et al (1985) Le groupe du Flysch noir (albo-cénomanien) dans les Pyrénées. Bull centres de Rech Exlpo-Prod Elf-Aquitaine Pau 9(1):183–252Google Scholar
  111. Spooner ETC, Fyfe WS (1973) Sub-sea-floor metamorphism, heat and mass transfer. Contrib Miner Petrol 42(4):287–304. doi: 10.1007/BF00372607 CrossRefGoogle Scholar
  112. St Blanquat M (1993) La faille normale ductile du massif du Saint Barthélémy: evolution hercynienne des massifs nord-pyrénéens catazonaux considérée du point de vue de leur histoire thermique. Geodin Acta 6(1):59–77Google Scholar
  113. St Blanquat M, Brunel M, Mattauer M (1986) Les zones de cisaillements du massif nord Pyrénéen du Saint-Bartelemy, témoins probables de l’extension crustale d’âge crétacé. C R Acad Sci Paris 303:1339–1344Google Scholar
  114. St Blanquat M, Lardeaux JM, Brunel M (1990) Petrological arguments for high-temperature extensional deformation in the Pyrenean Variscan crust (Saint Barthélémy Massif, Ariège, France). Tectonophysics 177(1–3):245–262. doi: 10.1016/0040-1951(90)90284-F CrossRefGoogle Scholar
  115. Surour AA, Arafa EH (1997) Ophicarbonates: calichified serpentinites from Gebel Mohagara, Wadi Ghadir area, Eastern Desert, Egypt. J Afr Earth Sci 24(3):315–324. doi: 10.1016/S0899-5362(97)00046-8 CrossRefGoogle Scholar
  116. Teixell A (1998) Crustal structure and orogenic material budget in the west central Pyrenees. Tectonics 17(3):395–406. doi: 199810.1029/98TC00561 CrossRefGoogle Scholar
  117. Ternet Y, Colchen M, Debroas E-J, Azambre B, Debon F, Bouchez J-L Gleizes G et al (1997) Notice explicative, Carte géol. France (1/50 000), feuille Aulus les Bains (1086). BRGM éd. BRGM, OrléansGoogle Scholar
  118. Thiébaut J, Debeaux M, Durand-Wackenheim C, Souquet P, Gourinard Y, Bandet Y, Fondecave-Wallez M-J (1988) Métamorphisme et halocinèse crétacés dans les évaporites de Betchat le long du chevauchement frontal Nord-Pyrénéen (Haute-Garonne et Ariège, France). C R Acad Sci Paris 307(13):1535–1540Google Scholar
  119. Thiébaut J, Durand-Wackenheim C, Debeaux M, Souquet P (1992) Métamorphisme des évaporites triasiques du versant nord des Pyrénées centrales et Occidentales. Bull Soc Hist Nat Toulouse 128:77–84Google Scholar
  120. Treves BE, Harper GD (1994) Exposure of serpentinites on ocean floor. Sequence of faulting and hydrofracturing in the Northern Apennine ophicalcites. Ophioliti 19:435–466Google Scholar
  121. Treves BE, Hickmott D, Vaggelli G (1995) Texture and microchemical data of oceanic hydrothermal calcite veins, Northern Apennine ophicalcites. Ophioliti 20(2):111–122Google Scholar
  122. Trommsdorff V, Evan BW, Pfeifer HR (1980) Ophicarbonate rocks: metamorphic reactions and possible origin. Arch Sci Genève 33:361–364Google Scholar
  123. Valley JW (1986) Stable isotope geochemistry of metamorphic rocks. In: Valley JW, Taylor HP Jr, O’Neil JR (eds) Stable isotopes in high temperature geological processes. Reviews in mineralogy, vol 16. Mineral. Soc. Am., pp 445–489Google Scholar
  124. Vergés J, Garcia-Senz J (2001) Mesozoic evolution and Cainozoic inversion of the Pyrenean rift. In: Ziegler et al PA (ed) Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins. Mem. Mus. Natl. Hist. Nat., Paris, pp 187–212. Consulté de http://www.ija.csic.es/gt/gdl/jverges/PDF/Verges_Garcia_2001.pdf
  125. Vielzeuf D (1984) Relations de phases dans le faciès granulite et implications géodynamiques. L’exemple des granulites des pyrénées. Thèse, Clermont-FerrandGoogle Scholar
  126. Vielzeuf D, Kornprobst J (1984) Crustal splitting and the emplacement of Pyrenean lherzolites and granulites. Earth Planet Sci Lett 67(1):87–96. doi: 10.1016/0012-821X(84)90041-4 CrossRefGoogle Scholar
  127. Vissers RLM, Drury MR, Newman J, Fliervoet TF (1997) Mylonitic deformation in upper mantle peridotites of the North Pyrenean Zone (France): implications for strength and strain localization in the lithosphere. Tectonophysics 279:303–325. doi: 10.1016/S0040-1951(97)00128-5 CrossRefGoogle Scholar
  128. Weissert H, Bernoulli D (1984) Oxygen isotope composition of calcite in Alpine ophicarbonates: a hydrothermal or Alpine metamorphic signal? Eclogae Geol Helv 77(1):29–43Google Scholar
  129. Wicks FJ, Whittaker EJW (1977) Serpentine textures and serpentinization. Can Mineralogist 15(4):459–488Google Scholar
  130. Winterer EL, Metzler CV, Sart M (1991) Neptunian dykes and associated breccias (Southern Alps, Italy and Switzerland): role of gravity sliding in open and closed systems. Sedimentology 38(3):381–404. doi: 10.1111/j.1365-3091.1991.tb00358.x CrossRefGoogle Scholar
  131. Zheng YF (2011) On the theoretical calculations of oxygen isotope fractionation factors for carbonate-water systems. Geochem J 45:341–354CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Camille Clerc
    • 1
    Email author
  • Philippe Boulvais
    • 2
  • Yves Lagabrielle
    • 3
  • Michel de Saint Blanquat
    • 4
  1. 1.Laboratoire de Géologie, CNRS-UMR 8538Ecole Normale SuperieureParis Cedex 5France
  2. 2.Géosciences Rennes, CNRS-UMR 6118Université de Rennes 1Rennes CedexFrance
  3. 3.Géosciences Montpellier, CNRS-UMR 5243Université de Montpellier 2MontpellierFrance
  4. 4.GET, CNRS-UMR 5563Université Paul SabatierToulouseFrance

Personalised recommendations